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Quantum structure in homology
Homology = holes in spaces
Homology has quantum mechanical structure.

Given discrete space G and dimension k, decide if:

* (YES) G has ak-dimensional hole.
* (NO) G is far from having a k-dimensional hole.

...inside QMA and QMA1-hard.
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...quantum advantage?



Quantum structure in classical problems

* Hidden subgroup problem < quantum Fourier transform
* Jones polynomial <» topological quantum field theory

e Homology <~ supersymmetry?



Topological data analysis
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e k-simplices = k + 1-cliques




Homology
Chain-space: C};, = complex span of k-simplices
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Complexity of homology?

Given graph, decide if:
 (YES) G has ak-dimensional hole.
* (NO) G has no k-dimensional hole.

Computational complexity?



Homology = Quantum Mechanics

Chain-space C, o 4 @ensional Hilb@
) Self-adjoint o@

Laplacian A,

* Groundspace of A, = homology.

* Laplacian is exponential-dimensional sparse matrix encoded
succinctly by graph.

* Homology becomes Hamiltonian problem on A,.



Laplacian operator

Chain-space C, o 4 @ensional Hilb@
) Self-adjoint o@

Laplacian A

Definitions:

Ak — a};ak + ak+1a/i+1 Theorem: Ker Ay ~ Hy

: A - 11O 2 1191 2
Hy = Kerdy[Tmdp,y | 700f WA =0 0ol




Quantum complexity of homology

Gapped Clique Homology (GCH):

Given vertex-weighted graph ¢ and dimension k, decide if:
 (YES) G has ak-dimensional hole.

* (NO) G has no k-dimensional hole, and min eigenvalue of Laplacian is
at least 1/poly(n).

GCH € QMA

Our result: GCH is QMA1-hard



Supersymmetry

Supersymmetry Homology

Fock space Chain space

Supercharge Boundary map

Laplacian

@ hard-cor@

Hamiltonian

Clique complex
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Dequantizing TDA?

* Quantum algorithms exploit Hamiltonian simulation and phase
estimation of the Laplacian A,

* Minimum eigenvalue of A, is QMA1-hard
=>» A, possesses no exploitable structure
=» quantum TDA algorithms cannot be dequantized.



Hardness construction overview

Reduce from local Hamiltonian problem
H =Y |6:)(6]

* (YES) Ground energy =0
* (NO) Ground energy = 1/poly(n)

reduce Graph G, dimension k

_  (YES) G has a k-dimensional hole.
* (NO) G hasno k-dimensional hole,

and Amin(Ax) = 1/poly(n).



Hardness construction: 1 qubit

0) 1)

H,(Gy) = C?
1-qubit graph G4



Hardness construction: 1 qubit
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H,(Gy) = C?
1-qubit graph G4
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Hardness construction: |—){(—]|
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Hardness construction: tensor products

* Join: connect graphs all-to-all
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* n-qubit graph G,, = G{ * -+ * (1 (n times)




Weighting

« Weight vertices of graph Definitions:
Ak = (9;28;,3 + 8k+18;2+1

* Topology unchanged

» Affects Laplacian A

* Qubit vertices weight =1
* Gadget vertices weight = A4 A = 1/poly(n)



Spectral sequences
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* Want perturbative expansion of Laplacian groundspace.
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Spectral sequences
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* Spectral sequences give sequence of spaces

* Theorem [Forman 1995]:
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* Difficult topology/analysis becomes easy algebra

* Replaces role of perturbation theory in perturbative gadgets
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Conclusion

Laplacian Ay:

e Sparse matrix

* Encodes topology

* Efficient access from graph input

e Supersymmetric Hamiltonian
* Locality = degree of complement graph, not constant for us...

* Towards PCPs: Discrete graph problem — gadgets for gap-
amplification?



