Quantum complexity of clique homology

With Tamara Kohler

https://arxiv.org/pdf/2311.17234

Quantum structure in homology

Homology = holes in spaces

Homology has quantum mechanical structure.

Given discrete space *G* and dimension *k*, decide if:

- (YES) *G* has a *k*-dimensional hole.
- (NO) G is far from having a k-dimensional hole.

... inside QMA and QMA1-hard.

Quantum algs for topological data analysis

ARTICLE

Received 17 Sep 2014 | Accepted 9 Nov 2015 | Published 25 Jan 2016

DOI: 10.1038/ncomms10138 OPEN

Quantum algorithms for topological and geometric analysis of data

Seth Lloyd¹, Silvano Garnerone² & Paolo Zanardi³

Analyzing Prospects for Quantum Advantage in Topological Data Analysis

Dominic W. Berry,^{1,*} Yuan Su,² Casper Gyurik,³ Robbie King,^{2,4} Joao Basso,² Alexander Del Toro Barba[®],² Abhishek Rajput[®],⁵ Nathan Wiebe,^{5,6} Vedran Dunjko,³ and Ryan Babbush[®]^{2,†}

 ¹ School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2109, Australia ² Google Quantum AI, Venice, California 90291, USA ³ applied Quantum algorithms (aQa), Leiden University, Leiden 2300 RA, Netherlands
 ⁴ Department of Computing and Mathematical Sciences, Caltech, Pasadena, California 91125, USA ⁵ Department of Computer Science, University of Toronto, Ontario M5S 2E4, Canada ⁶ Pacific Northwest National Laboratory, Richland, Washington 99354, USA

A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits

Sam McArdle,^{1,2} András Gilyén,³ and Mario Berta^{1,2,4}

 ¹AWS Center for Quantum Computing, Pasadena, CA 91125, USA
 ²Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, USA
 ³Alfréd Rényi Institute of Mathematics, Budapest, Hungary
 ⁴Department of Computing, Imperial College London, London, UK (Dated: September 27, 2022)

...quantum advantage?

Quantum structure in classical problems

- Hidden subgroup problem 🖙 quantum Fourier transform
- Jones polynomial \Leftrightarrow topological quantum field theory
- Homology \Leftharpoonup supersymmetry?

Topological data analysis

• k-simplices = k + 1-cliques

Homology

Chain-space: $C_k = \text{complex span of } k$ -simplices

$$\cdots \longrightarrow C_{k+1} \xrightarrow{\partial_{k+1}} C_k \xrightarrow{\partial_k} C_{k-1} \longrightarrow$$

$$\stackrel{\partial_2}{\underbrace{\left(\begin{array}{c} & & \\ & &$$

 $H_k := \operatorname{Ker} \partial_k / \operatorname{Im} \partial_{k+1}$

2 3

Complexity of homology?

Given graph, decide if:

- (YES) *G* has a *k*-dimensional hole.
- (NO) G has no k-dimensional hole.

Computational complexity?

Homology \cong Quantum Mechanics

- Groundspace of Δ_k = homology.
- Laplacian is exponential-dimensional sparse matrix encoded succinctly by graph.
- Homology becomes Hamiltonian problem on Δ_k .

Laplacian operator

Definitions:

$$\Delta_{k} = \partial_{k}^{\dagger} \partial_{k} + \partial_{k+1} \partial_{k+1}^{\dagger}$$
$$H_{k} \coloneqq \operatorname{Ker} \partial_{k} / \operatorname{Im} \partial_{k+1}$$

Theorem: Ker $\Delta_k \cong H_k$ Proof: $\langle \psi | \Delta_k | \psi \rangle = ||\partial_k | \psi \rangle ||^2 + ||\partial_{k+1}^{\dagger} | \psi \rangle ||^2$

Quantum complexity of homology

Gapped Clique Homology (GCH):

Given vertex-weighted graph *G* and dimension *k*, decide if:

- (YES) *G* has a *k*-dimensional hole.
- (NO) G has no k-dimensional hole, and min eigenvalue of Laplacian is at least 1/poly(n).

 $GCH \in QMA$

Our result: GCH is QMA1-hard

Supersymmetry

Dequantizing TDA?

- Quantum algorithms exploit Hamiltonian simulation and phase estimation of the Laplacian Δ_k
- Minimum eigenvalue of Δ_k is QMA1-hard
- $\rightarrow \Delta_k$ possesses no exploitable structure
- → quantum TDA algorithms *cannot* be dequantized.

Hardness construction overview

Reduce from local Hamiltonian problem

$$H = \sum_{i} |\phi_i\rangle \langle \phi_i|$$

- (YES) Ground energy = 0
- (NO) Ground energy $\geq 1/\text{poly}(n)$

Graph *G*, dimension *k*

- (YES) *G* has a *k*-dimensional hole.
- (NO) G has no k-dimensional hole, and $\lambda_{\min}(\Delta_k) \ge 1/\text{poly}(n)$.

Hardness construction: 1 qubit

$$H_1(G_1)\cong \mathbb{C}^2$$

1-qubit graph G_1

Hardness construction: 1 qubit

Hardness construction: $|-\rangle\langle -|$

Hardness construction: tensor products

• Join: connect graphs all-to-all

 $\mathcal{K} * \mathcal{L}$

- *n*-qubit graph $G_n = G_1 * \cdots * G_1$ (*n* times)
- *G*₂:

Weighting

- Weight vertices of graph
- Topology unchanged
- Affects Laplacian Δ_k
- Qubit vertices weight = 1
- Gadget vertices weight = λ $\lambda = 1/\text{poly}(n)$

Definitions: $\Delta_k = \partial_k^{\dagger} \partial_k + \partial_{k+1} \partial_{k+1}^{\dagger}$

Spectral sequences

• Want **perturbative** expansion of **Laplacian** groundspace.

$E_{j}^{k} = \{ |\psi\rangle \in C_{k} :$ $\exists |\psi_{\lambda}\rangle = |\psi\rangle + \lambda |\psi_{1}\rangle + \lambda^{2} |\psi_{2}\rangle + \dots$ s.t. $\langle \psi_{\lambda} | \Delta_{k} | \psi_{\lambda} \rangle = \mathcal{O}(\lambda^{2j}) \}$

- Spectral sequences give sequence of spaces e_i^k
- Theorem [Forman 1995]: $e_j^k \cong E_j^k$

Spectral sequences

- Difficult topology/analysis becomes easy algebra
- Replaces role of **perturbation theory** in perturbative gadgets

Conclusion

Laplacian Δ_k :

- Sparse matrix
- Encodes topology
- Efficient access from graph input
- Supersymmetric Hamiltonian
 - Locality = degree of complement graph, **not** constant for us...
- Towards PCPs: Discrete graph problem gadgets for gapamplification?