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Quantum structure in homology

Homology = holes in spaces

Homology has quantum mechanical structure.

Given discrete space 𝐺 and dimension 𝑘, decide if:
• (YES) 𝐺 has a 𝑘-dimensional hole.
• (NO) 𝐺 is far from having a 𝑘-dimensional hole.

…inside QMA and QMA1-hard.



Quantum algs for topological data analysis

…quantum advantage?



Quantum structure in classical problems

• Hidden subgroup problem ó quantum Fourier transform

• Jones polynomial ó topological quantum field theory

• Homology ó supersymmetry?



Topological data analysis

• 𝑘-simplices = 𝑘 + 1-cliques
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Figure 2: The pipeline of topological data analysis (adapted from [17]). First, points that are within ‘
distance are connected to create a graph. Afterwards, cliques in this graph are identified with simplices to

create a simplicial complex. Next, homology is used to construct linear operators that encode the topology.

Finally, the dimensions of the kernels of these operators are computed to obtain the Betti numbers which give

the number of holes.

which is often used as a more convenient way to compute Betti numbers [16], particularly in the
case of the quantum algorithm that we discuss in the next section.

In conclusion, if the clique complex is constructed from a point cloud according to the construc-
tion discussed above, then computing these Betti numbers can be viewed as a method to extract
features of the shape of the data (specifically, the number of holes are present at scale ‘). By
recording Betti numbers across varying scales ‘ in a so-called barcode [14], one can discern which
holes are “real” and which are “noise”, resulting in feature extraction that is robust to noise in the
data.

2.2 Quantum algorithm for Betti number estimation
The algorithm for Betti number estimation of Lloyd, Garnerone and Zanardi (LGZ) [12] utilizes
Hamiltonian simulation and phase estimation to estimate the dimension of the kernel (i.e., the
nullity) of the combinatorial Laplacian (which by Eq. (4) is equal to the corresponding Betti
number). To make our presentation self-contained, we review this quantum algorithm for Betti
number estimation (for a more in-depth review see [18]).

Estimating the nullity of a sparse Hermitian matrix can be achieved using some of the most
fundamental quantum-algorithmic primitives. Namely, using Hamiltonian simulation and quantum
phase estimation one can estimate the eigenvalues of the Hermitian matrix, given that the eigen-
vector register starts out in an eigenstate. Moreover, if instead the eigenvector register starts out
in the maximally mixed state (which can be thought of as a random choice of an eigenstate), then
measurements of the eigenvalue register produce approximations of eigenvalues, sampled uniformly
at random from the set of all eigenvalues. This routine is then repeated to estimate the nullity by
simply computing the frequency of zero eigenvalues (recall that the dimension of the kernel is equal
to the multiplicity of the zero eigenvalue). Note that this procedure does not strictly speaking es-
timate the nullity, but rather the number of small eigenvalues, where the threshold is determined
by the precision of the quantum phase estimation (see Section 2.2.1 for more details). The steps
of the quantum algorithm for Betti number estimation of LGZ are summarized in Figure 3.

In Step 1(a), Grover’s algorithm is used to prepare the uniform superposition over HG

k
, from

which one can prepare the state flG

k
by applying a CNOT gate to each qubit of the uniform

superposition into some ancilla qubits and tracing those out. When given access to the adjacency
matrix of G, one can check in O

!
k2"

operations whether a bitstring j œ {0, 1}n encodes a valid
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Figure 1: The boundary operators action on a 2-simplex (i.e. a triangle).

• The intersection of any two simplices in K is a face of both the simplices

Intuitively we can think of constructing a simplicial complex by gluing simplices together along faces.
In general, we can consider linear combinations of k-simplices, known as k-chains. The space of

k-chains forms a vector space.
To define the notion of a hole in a simplicial complex we need to introduce the boundary operator

@k. The boundary operator acts on k-simplices as:

@k[x0 . . . xk] =
k

�
j=0

(−1)j[x0 . . . x̂j . . . xk]

where the notation [x0�x̂j�xk] means that the jth vertex is deleted. In Figure 1 we demonstrate
the action of the boundary map on a 2-simplex. As the name suggests, the boundary map acting
on a simplex gives the boundary of that simplex. The action of @k can be extended by linearity to
collections of simplices.

We define any object that does not have a boundary as a cycle. So a cycle c satisfies c ∈ Ker@k.
All boundaries are cycles, because boundaries don’t themselves have a boundary. In other words, the
boundary operator is nilpotent:

@k ⋅ @k+1 = 0 (1)

How should we define what is a hole in a simplicial complex? Intuitively a hole is a cycle which
is not the boundary of anything. So a hole h satisfies h ∈ Ker@k, but there does not exist any v such
that h = @k+1v. Formally this means that holes are elements of the homology group:

Hk = Ker@k

Im@k+1

Note that the homology group is a quotient group, meaning that its elements are equivalence classes.
We can think of these equivalence classes as being sets of cycles that can be continuously deformed
into each other. Cycles which are boundaries can be continuously deformed to a single point, so these
are trivial elements in homology. If two non-trivial cycles cannot be continuously deformed into one
another then they are the boundaries of di↵erent holes, so are di↵erent elements of homology.

It is possible to define a co-boundary operator (see Section 7.3 for details):

dk = (@k+1)†

Which can in turn be used to define the Laplacian:

�k = dk−1@k + @k+1dk (2)

6

. . . Ck+1 Ck Ck−1 . . .
@k+1 @k

@k ○ @k+1 = 0

1

. . . Ck+1 Ck Ck−1 . . .
@k+1 @k

@k ○ @k+1 = 0

@k ○ @k+1 = 0 �⇒ Im@k+1 ⊆ Ker@k

Hk ∶= Ker@k� Im@k+1

�k = @†
k@k + @k+1@†

k+1

Ker�k ≅Hk

� ��k � � = ��@k � ���2 + ��@†
k+1� ���2

C−1 ⊕C0 ⊕C1 ⊕C2 ⊕ . . .

Q =�
k

@
†
k

H =�
k

�k

1

. . . Ck+1 Ck Ck−1 . . .
@k+1 @k

@k ○ @k+1 = 0

@k ○ @k+1 = 0 �⇒ Im@k+1 ⊆ Ker@k

Hk ∶= Ker@k� Im@k+1

1

Chain-space: 𝐶! = complex span of 𝑘-simplices



Complexity of homology?

Given graph, decide if:
• (YES) 𝐺 has a 𝑘-dimensional hole.
• (NO) 𝐺 has no 𝑘-dimensional hole.

Computational complexity?
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Figure 2: The pipeline of topological data analysis (adapted from [17]). First, points that are within ‘
distance are connected to create a graph. Afterwards, cliques in this graph are identified with simplices to

create a simplicial complex. Next, homology is used to construct linear operators that encode the topology.

Finally, the dimensions of the kernels of these operators are computed to obtain the Betti numbers which give

the number of holes.

which is often used as a more convenient way to compute Betti numbers [16], particularly in the
case of the quantum algorithm that we discuss in the next section.

In conclusion, if the clique complex is constructed from a point cloud according to the construc-
tion discussed above, then computing these Betti numbers can be viewed as a method to extract
features of the shape of the data (specifically, the number of holes are present at scale ‘). By
recording Betti numbers across varying scales ‘ in a so-called barcode [14], one can discern which
holes are “real” and which are “noise”, resulting in feature extraction that is robust to noise in the
data.

2.2 Quantum algorithm for Betti number estimation
The algorithm for Betti number estimation of Lloyd, Garnerone and Zanardi (LGZ) [12] utilizes
Hamiltonian simulation and phase estimation to estimate the dimension of the kernel (i.e., the
nullity) of the combinatorial Laplacian (which by Eq. (4) is equal to the corresponding Betti
number). To make our presentation self-contained, we review this quantum algorithm for Betti
number estimation (for a more in-depth review see [18]).

Estimating the nullity of a sparse Hermitian matrix can be achieved using some of the most
fundamental quantum-algorithmic primitives. Namely, using Hamiltonian simulation and quantum
phase estimation one can estimate the eigenvalues of the Hermitian matrix, given that the eigen-
vector register starts out in an eigenstate. Moreover, if instead the eigenvector register starts out
in the maximally mixed state (which can be thought of as a random choice of an eigenstate), then
measurements of the eigenvalue register produce approximations of eigenvalues, sampled uniformly
at random from the set of all eigenvalues. This routine is then repeated to estimate the nullity by
simply computing the frequency of zero eigenvalues (recall that the dimension of the kernel is equal
to the multiplicity of the zero eigenvalue). Note that this procedure does not strictly speaking es-
timate the nullity, but rather the number of small eigenvalues, where the threshold is determined
by the precision of the quantum phase estimation (see Section 2.2.1 for more details). The steps
of the quantum algorithm for Betti number estimation of LGZ are summarized in Figure 3.

In Step 1(a), Grover’s algorithm is used to prepare the uniform superposition over HG

k
, from

which one can prepare the state flG

k
by applying a CNOT gate to each qubit of the uniform
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Homology ≅ Quantum Mechanics

Chain-space 𝐶!

Laplacian ∆! Self-adjoint operator

Exp-dimensional Hilbert space

• Groundspace of ∆!  = homology.
• Laplacian is exponential-dimensional sparse matrix encoded 

succinctly by graph.
• Homology becomes Hamiltonian problem on ∆!.



Laplacian operator

Theorem:
Proof:
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Definitions:

Chain-space 𝐶!

Laplacian ∆! Self-adjoint operator

Exp-dimensional Hilbert space



Quantum complexity of homology

Gapped Clique Homology (GCH):
Given vertex-weighted graph 𝐺 and dimension 𝑘, decide if:
• (YES) 𝐺 has a 𝑘-dimensional hole.
• (NO) 𝐺 has no 𝑘-dimensional hole, and min eigenvalue of Laplacian is 

 at least 1/poly(𝑛).

GCH ∈ QMA

Our result: GCH is QMA1-hard



Supersymmetry

Fock space

Supercharge

Hamiltonian

Clique complex

Chain space

Boundary map

Laplacian

Fermion hard-core model

Supersymmetry Homology



Dequantizing TDA?

• Quantum algorithms exploit Hamiltonian simulation and phase 
estimation of the Laplacian ∆!

• Minimum eigenvalue of ∆!  is QMA1-hard
è ∆!  possesses no exploitable structure
è quantum TDA algorithms cannot be dequantized.



Hardness construction overview

Reduce from local Hamiltonian problem

• (YES)  Ground energy = 0
• (NO)   Ground energy ≥ 1/poly(𝑛)

�min(H) = 0 �⇒ Hk ≠ 0

�min(H) ≥ 1�polyn �⇒ �min(�k) ≥ 1�polyn

H =�
i

��i���i�
��i� = �

z∈{0,1}n
az �z� , az ∈ Z

2

Graph 𝐺, dimension 𝑘
• (YES)  𝐺 has a 𝑘-dimensional hole.
• (NO)   𝐺 has no 𝑘-dimensional hole, 

       and 𝜆"#$ Δ! ≥ 1/poly(𝑛).

reduce



Hardness construction: 1 qubit

1-qubit graph 𝐺%

| ⟩0 | ⟩1

𝐻! 𝐺! ≅ ℂ"



Hardness construction: 1 qubit

1-qubit graph 𝐺%

⟩0 ⟨0

| ⟩0 | ⟩1

𝐻! 𝐺! ≅ ℂ"



Hardness construction: ⟩− ⟨−

| ⟩0 | ⟩1

*

*

*



Hardness construction: tensor products
• Join: connect graphs all-to-all

• 𝑛-qubit graph 𝐺* = 𝐺% ∗ ⋯∗ 𝐺% (𝑛 times)

• 𝐺+:

�min(H) = 0 �⇒ Hk ≠ 0

�min(H) ≥ 1�polyn �⇒ �min(�k) ≥ 1�polyn

H =�
i

��i���i�
��i� = �

z∈{0,1}n
az �z� , az ∈ Z

K ∗L ∶= {‘� ⊗ ⌧ ’ = � ∪ ⌧ ∶ � ∈ K, ⌧ ∈ L}

Ck(K ∗L) = �
i+j=k−1Ci(K)⊗Cj(L)

Hk(K ∗L) = �
i+j=k−1Hi(K)⊗Hj(L)

‘�K∗L =�K ⊗ + ⊗�L’
�K∗Lk � �⊗ �'� = (�Ki � �)⊗ �'� + � �⊗ (�Lj �'�)

for � � ∈ Ci(K) , �'� ∈ Cj(L) , i + j = k − 1
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Weighting

• Weight vertices of graph

• Topology unchanged

• Affects Laplacian ∆!

• Qubit vertices weight = 1
• Gadget vertices weight = 𝜆  𝜆 = 1/poly(𝑛)
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Definitions:



Spectral sequences

~𝜆!

~𝜆"

~1

∆#

6

• Want perturbative expansion of Laplacian groundspace.

Weight 𝜆

Weight 1



Spectral sequences

• Spectral sequences give sequence of spaces 𝑒,!

• Theorem [Forman 1995]: 𝑒,! ≅ 𝐸,!

• Difficult topology/analysis becomes easy algebra
• Replaces role of perturbation theory in perturbative gadgets
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Spectral sequences: back to example
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Conclusion

Laplacian ∆!:
• Sparse matrix
• Encodes topology
• Efficient access from graph input
• Supersymmetric Hamiltonian
• Locality = degree of complement graph, not constant for us…

• Towards PCPs: Discrete graph problem – gadgets for gap-
amplification?


