Quantum complexity of clique homology

With Tamara Kohler

https://arxiv.org/pdf/2311.17234

Quantum structure in homology

Homology = holes in spaces

Homology has quantum mechanical structure.

Given discrete space G and dimension k, decide if:

- (YES) $\quad G$ has a k-dimensional hole.
- (NO) $\quad G$ is far from having a k-dimensional hole.
...inside QMA and QMA1-hard.

Quantum algs for topological data analysis

ARTICLE
Received 17 Sep 2014 | Accepted 9 Nov 2015 | Published 25 Jan $2016 \quad$ DOl: 10.1038/ncomms10138 OPEN
Quantum algorithms for topological and geometric analysis of data

Seth Lloyd ${ }^{1}$, Silvano Garnerone ${ }^{2}$ \& Paolo Zanardi ${ }^{3}$

Analyzing Prospects for Quantum Advantage in Topological Data Analysis

Dominic W. Berry, ${ }^{1, *}$ Yuan Su, ${ }^{2}$ Casper Gyurik, ${ }^{3}$ Robbie King, ${ }^{2,4}$ Joao Basso, ${ }^{2}$ Alexander Del Toro Barba $\odot,{ }^{2}$ Abhishek Rajput $\odot,{ }^{5}$ Nathan Wiebe, ${ }^{5,6}$ Vedran Dunjko, ${ }^{3}$ and Ryan Babbush $\oplus^{2, \dagger}$
${ }^{1}$ School of Mathematical and Physical Sciences, Macquarie University, Sydney, NSW 2109, Australia ${ }^{2}$ Google Quantum AI, Venice, California 90291, USA
${ }^{3}$ applied Quantum algorithms (aQa), Leiden University, Leiden 2300 RA, Netherlands
${ }^{4}$ Department of Computing and Mathematical Sciences, Caltech, Pasadena, California 91125, USA
${ }^{5}$ Department of Computer Science, University of Toronto, Ontario M5S 2E4, Canada
${ }^{6}$ Pacific Northwest National Laboratory, Richland, Washington 99354, USA

A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits

Sam McArdle, ${ }^{1,2}$ András Gilyén, ${ }^{3}$ and Mario Berta ${ }^{1,2,4}$
${ }^{1}$ AWS Center for Quantum Computing, Pasadena, CA 91125, USA
${ }^{2}$ Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, USA
${ }^{3}$ Alfréd Rényi Institute of Mathematics, Budapest, Hungary
${ }^{4}$ Department of Computing, Imperial College London, London, UK (Dated: September 27, 2022)

...quantum advantage?

Quantum structure in classical problems

- Hidden subgroup problem \Leftrightarrow quantum Fourier transform
- Jones polynomial \Leftrightarrow topological quantum field theory
- Homology \Leftrightarrow supersymmetry?

Topological data analysis

- k-simplices $=k+1$-cliques

Homology

Chain-space: $C_{k}=$ complex span of k-simplices

$$
H_{k}:=\operatorname{Ker} \partial_{k} / \operatorname{Im} \partial_{k+1}
$$

$$
\partial_{k} \circ \partial_{k+1}=0
$$

Complexity of homology?

Given graph, decide if:

- (YES) $\quad G$ has a k-dimensional hole.
- (NO) $\quad G$ has no k-dimensional hole.

Computational complexity?

Homology \cong Quantum Mechanics

Exp-dimensional Hilbert space
Laplacian Δ_{k}

- Groundspace of $\Delta_{k}=$ homology.
- Laplacian is exponential-dimensional sparse matrix encoded succinctly by graph.
- Homology becomes Hamiltonian problem on Δ_{k}.

Laplacian operator

Laplacian Δ_{k}

Definitions:
$\Delta_{k}=\partial_{k}^{\dagger} \partial_{k}+\partial_{k+1} \partial_{k+1}^{\dagger}$
$H_{k}:=\operatorname{Ker} \partial_{k} / \operatorname{Im} \partial_{k+1}$

Exp-dimensional Hilbert space
Self-adjoint operator

Theorem: $\operatorname{Ker} \Delta_{k} \cong H_{k}$
Proof:

$$
\langle\psi| \Delta_{k}|\psi\rangle=\| \partial_{k}|\psi\rangle\left\|^{2}+\right\| \partial_{k+1}^{\dagger}|\psi\rangle \|^{2}
$$

Quantum complexity of homology

Gapped Clique Homology (GCH):
Given vertex-weighted graph G and dimension k, decide if:

- (YES) G has a k-dimensional hole.
- (NO) $\quad G$ has no k-dimensional hole, and min eigenvalue of Laplacian is at least $1 / \mathrm{poly}(n)$.

GCH \in QMA

Our result: GCH is QMA1-hard

Supersymmetry

Supersymmetry

Supercharge

Hamiltonian

Clique complex

Homology

Fermion hard-core model

Dequantizing TDA?

- Quantum algorithms exploit Hamiltonian simulation and phase estimation of the Laplacian Δ_{k}
- Minimum eigenvalue of Δ_{k} is QMA1-hard
$\rightarrow \Delta_{k}$ possesses no exploitable structure
\rightarrow quantum TDA algorithms cannot be dequantized.

Hardness construction overview

Reduce from local Hamiltonian problem

$$
H=\sum_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|
$$

-(YES) Ground energy = 0

- (NO) Ground energy $\geq 1 / \operatorname{poly}(n)$

Graph G, dimension k

- (YES) G has a k-dimensional hole.
- (NO) G has no k-dimensional hole, and $\lambda_{\text {min }}\left(\Delta_{k}\right) \geq 1 / \operatorname{poly}(n)$.

Hardness construction: 1 qubit

1-qubit graph G_{1}

$$
H_{1}\left(G_{1}\right) \cong \mathbb{C}^{2}
$$

Hardness construction: 1 qubit

Hardness construction: $|-\rangle\langle-|$

Hardness construction: tensor products

- Join: connect graphs all-to-all

$$
\mathcal{K} * \mathcal{L}
$$

- n-qubit graph $G_{n}=G_{1} * \cdots * G_{1}(n$ times $)$
- G_{2} :

Weighting

- Weight vertices of graph

$$
\begin{aligned}
& \text { Definitions: } \\
& \qquad \Delta_{k}=\partial_{k}^{\dagger} \partial_{k}+\partial_{k+1} \partial_{k+1}^{\dagger}
\end{aligned}
$$

- Topology unchanged
- Affects Laplacian Δ_{k}
- Qubit vertices weight = 1
- Gadget vertices weight $=\lambda$

$$
\lambda=1 / \operatorname{poly}(n)
$$

Spectral sequences

- Want perturbative expansion of Laplacian groundspace.

Spectral sequences

$$
\begin{aligned}
& E_{j}^{k}=\left\{|\psi\rangle \in C_{k}:\right. \\
& \exists\left|\psi_{\lambda}\right\rangle=|\psi\rangle+\lambda\left|\psi_{1}\right\rangle+\lambda^{2}\left|\psi_{2}\right\rangle+ \\
&\text { s.t. } \left.\left\langle\psi_{\lambda}\right| \Delta_{k}\left|\psi_{\lambda}\right\rangle=\mathcal{O}\left(\lambda^{2 j}\right)\right\}
\end{aligned}
$$

- Spectral sequences give sequence of spaces e_{j}^{k}
- Theorem [Forman 1995]: $\quad e_{j}^{k} \cong E_{j}^{k}$
- Difficult topology/analysis becomes easy algebra
- Replaces role of perturbation theory in perturbative gadgets

Conclusion

Laplacian Δ_{k} :

- Sparse matrix
- Encodes topology
- Efficient access from graph input
- Supersymmetric Hamiltonian
- Locality = degree of complement graph, not constant for us...
- Towards PCPs: Discrete graph problem - gadgets for gapamplification?

