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A philosophy question…

What makes quantum problem inherently different from classical?

• Quantum world
• Quantum Chemistry
• (Challenging…)

• Classical world
• 3-SAT..
• (Many SAT-Solvers…)

(??) SAT-Solver

v Uncertainty principle: non-Commuting⇔ Quantum
v Today: Relationship between Commuting & Hardness of quantum problems



Outline

o Commuting Local Hamiltonian problems (CLHP) [Bravyi-Vyalyi03]
o More Motivation

o Overview of results 
o Statement of the Structure Lemma
o 2-local CLHP

o Toric code & 4-local 2D CLHP



Local Hamiltonian problems (LHP)
vLHP is the quantum MAX-3SAT.
vInput: (H,a,b)

• k-Local Hamiltonian

• 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛)
• λ 𝐻 : ground energy of H

v Output:
• “Yes” if λ 𝐻 ≤ 𝑎
• “No” if λ 𝐻 ≥ 𝑏

𝐻 = ℎ1 + … + ℎ𝑚
n-qudit Hermitian k-qudit hi

n qudits, k=3

v LHP is QMA-Complete (quantum NP)
[KKR06]



Commuting LHP
v Input: (H,a,b)
• k-Local Hamiltonian

• 𝑏 − 𝑎 ≥ 1/𝑝𝑜𝑙𝑦(𝑛)
• λ 𝐻 : ground energy of H

v Output:
• “Yes” if λ 𝐻 ≤ 𝑎
• “No” if λ 𝐻 ≥ 𝑏

𝐻 = ℎ1 + … + ℎ𝑚
n-qudit Hermitian k-qudit

v Commuting LHP (CLHP)
• ℎ!, ℎ" = 0.
• [Bravyi-Vyalyi03]

§  Examples:
• 3-SAT
• Toric code, CSS code
• Quantum double model



Is CLHP quantum (QMA) or classical (NP)?
Intuitive reasons

SAT

§ NP-Complete
§ Classical

CLHP

“Simple” but quantum

§ Uncertainty principle



Is CLHP quantum (QMA) or classical (NP)?
Intuitive reasons

§ QMA1-Complete
§ Quantum.

SAT

§ NP-Complete
§ Classical

CLHP

“Simple” but quantum

LHP

§ CLH can be very quantum!

§ Toric code:
§ highly entangled
§ Ω(log 𝑛) depth quantum

circuit for the ground state.

§ Uncertainty principle

§ 𝒉𝒋 𝒋 diagonalize simultaneously

§ But diagonalizing unitary may be
complex.



Main problem

1) Complexity of CLHP:
§ NP? QMA1? QCMA?

2) Ground state of CLH:
§ Easy or hard to prepare?
§ Easy: Trivial ground state, constant-depth quantum circuit.

CLHP: “Simple” but quantum



Reasons to be interested in CLH
CLH: “Simple” but quantum

Topological order

• Error correcting codes
• Stabilizer codes

• Self-correcting Quantum memory
[BT09][AHHH08]

Test ground for hard problems:

• Quantum PCP [AE13] [ABN22] 
• Mixing time for Gibbs preparation

(Thermalization) [KB16] [BCG+23] 
• Quantum Lovasz Local Lemma

(Ground state preparation) [GS17]



Overview of known results
• “Some special case of CLHP is in NP”
• 2-local, qudit [Bravyi-Vyalyi03]
• 3-local, qubits + qutrits (“Nearly Euclidean”) [Aharonov-Eldar11]

• 4-local, 2D, qubits [Schuch11]
• [Aharonov-Kenneth-Vigdorovich18]
• 4-local, 2D, qutrits [Irani-Jiang23]

• Factorized, qubits, [Bravyi-Vyalyi03]
• Factorized-2D, qudits, [Irani-Jiang23]

“Classical”
Trivial ground state

“Quantum”
No trivial ground state



Overview of known results
• “Some special case of CLHP is in NP”
• 2-local, qudit [Bravyi-Vyalyi03] (constructive)
• 3-local, qubits + qutrits (“Nearly Euclidean”) [Aharonov-Eldar11]

• 4-local, 2D, qubits [Schuch11]
• [Aharonov-Kenneth-Vigdorovich18] (constructive)
• 4-local, 2D, qutrits [Irani-Jiang23]

• Factorized, qubits, [Bravyi-Vyalyi03]
• Factorized-2D, qudits, [Irani-Jiang23] (constructive)

“Classical”
Trivial ground state

“Quantum”
No trivial ground state

• Next talk: Isaac & Daniel classification of 2D gapped ground states
ground states of CLHs.



Overview of known results
• “Some special case of CLHP is in NP”
• 2-local, qudit [Bravyi-Vyalyi03] (constructive)
• 3-local, qubits + qutrits (“Nearly Euclidean”) [Aharonov-Eldar11]

• 4-local, 2D, qubits [Schuch11]
• [Aharonov-Kenneth-Vigdorovich18] (constructive)
• 4-local, 2D, qutrits [Irani-Jiang23]

• Factorized, qubits, [Bravyi-Vyalyi03]
• Factorized-2D, qudits, [Irani-Jiang23] (constructive)

“Quantum”
No trivial ground state

Is CLHP in NP? QCMA? QMA?
Tool box & Technical challenges.

“Classical”
Trivial ground state



Toolbox covered in this talk

• [Bravyi-Vyalyi03]
• Structure Lemma : 2-local commuting⇒Decoupling (5 mins)

• [Schuch11]
• Transform CLHP-2D to computing trace. (10-15 mins)

• [Irani-Jiang23]
• Non-constructive self-reduction for CLHP. (5 mins)



The structure Lemma [BV03]
• 2-local commuting⇒Decoupling

h2h1

q1 q q2

Ø (?) Ground state of 𝒉𝟏 + 𝒉𝟐

Ø If no overlap.
Ø GS: Tensor of 2-qudit state

ℎ&, ℎ' = 0 ⇒Decoupling

Ø GS of 𝒉𝟏 + 𝒉𝟐 can be prepared
by constant depth circuit.



• More general 2-local interaction

The structure Lemma [BV03]

• 2-local CLH: Trivial ground state, prepared by constant depth circuit.

• NP witness: constant depth circuit for GS (constructive proof)



Limitation of structure lemma

v Can structure Lemma proves general CLHP ∈NP?

v No it can’t… o Structure Lemma⇒ Trivial GS

o No trivial ground state for Toric code!

o Toric code: 4-local CLH on 2D.

o GS needs Ω(log 𝑛) depth quantum circuits.



Outline: New ideas for qudit-CLHP-2D

v (?) qudit-CLHP-2D ∈NP?

o why structure lemma doesn’t work
o Qubit-CLHP-2D [Sch11] (computing trace)

o Qutrit-CLHP-2D, [IJ23] (non-constructive self-reduction)
o Factorized-qudit-CLHP-2D [IJ23]



Qudit-CLHP-2D

v Assume p projections
v Qudit-CLHP-2D:

𝐻 =&
"

𝑝

 Decide
𝜆(𝐻) = 0 𝑜𝑟 𝜆(𝐻) ≥ 1

Goal: Prove qubit-CLHP-2D ∈ NP
Certify 𝜆(𝐻) = 0 classically.



Why structure Lemma doesn’t work?

4-local
Incompatible decomposition

2-local
star-like interaction



[Sch11]
Non-constructive proof for qubit-CLHP-2D ∈ NP

v [Sch11] Transform the CLHP-2D to computing trace.

v 𝐻 = ∑(𝑝
v 𝑝 commuting projections
v Certify 𝜆(𝐻) = 0 classically.



Why proving trace is easier?

Take Toric code as an example



Why proving trace is easier?
Take Toric code as an example

vProving∑ non-negative terms >0 is equivalent to proving one term >0!
vNP witness: index of one non-negative term.



Qubit-CLHP-2D in NP

• General qubit-CLHP-2D: classify qubits

(a) Similar to Toric code (b) two terms acts as Identity on q.

Decompose the trace w.r.t to all qubits in (a)
Each sub-trace will be of 1D structure because of the identity.



Qubit-CLHP-2D: Equivalence to Toric code permitting boundary
Constructive proof [AKV18]

v Ground state can be prepared similarly as Toric code
by poly-size quantum circuit.

v “Measure & Correct.”

v “Interior qubit” q: 𝑝&, 𝑝', 𝑝), 𝑝* act non-trivially
on q.



4-local: qubit to qudit.
v Qudit/Qutrit is very different from qubit.

o +1 dimension introduces degeneracy.
o Sub-trace: 1D structure.



New for 4-local qudit [IJ23]
v Non-constructive proof.
o “rounding” for self-reduction

§ 𝑝 = 𝑝+! ⊗𝑝+" ⊗𝑝+# ⊗𝑝+$



v Factorized Hamiltonian can look very different
from stabilizer Hamiltonian.
o Stabilizer H: Regular way of commuting

o Factorized H: Singular way of commuting

vWe prove the ground space
of factorized-CLHP looks
like stabilizer Hamiltonian.

v Non-constructive proof.
o “rounding” for self-reduction

4-local qudit [IJ23]



Key technique for qutrit-CLHP-2D in NP
Non-constructive self-reduction for CLHP: qutrit to qubit?
Goal:𝐻 = ∑!# 𝑝" (projection) prove 𝜆 𝐻 = 0;Decrease dimension of qudit



Key technique for qutrit-CLHP-2D in NP
Non-constructive self-reduction for CLHP: qutrit to qubit?

For CLHP we can do
more!

Goal:𝐻 = ∑!# 𝑝" (projection) prove 𝜆 𝐻 = 0;Decrease dimension of qudit



v Non-constructive Self-reduction:
o We get a CLHP with smaller dimension in qudit q.
Ø 𝜆 𝐻 = 0 iff exists 𝑖, 𝜆 I𝐻! = 0

v This lemma works for any qudit, any geometry.



Open problems

v Qudit-CLHP-2D:

§ Complexity & Ground state preparation
o In NP? Non-trivial class in QCMA?
o Can GS be prepared by poly-size quantum circuit?

v (?) 2D Area Law⇒ poly-size quantum circuit?

§ 2D Area law: for GS, entanglement entropy across any cut
is proportional to the boundary.

o 2D Area law (?) poly-size ground state (?)
o Qudit-CLHP-2D: Area law (yes) & poly-size ground state (?)

Thanks for listening. Question?
“Some special case of CLHP is in NP”
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