List Decoding of Tanner and Expander Amplified Codes from Distance Certificates

#### Shashank Srivastava TTIC



Fernando Granha Jeronimo (UC Berkeley)



Madhur Tulsiani (TTIC)

## **Linear Codes**

Code  $C \subseteq \{0,1\}^n$  $x \in \{0,1\}^k$  — Encoding  $\rightarrow \widetilde{y} \in \{0,1\}^n \xrightarrow{\text{Decoding}} y$ Noisy  $y \in C$ Channel y: codeword C: code • *C* is linear if it is a subspace of  $\mathbb{F}_2^n$ . •  $\delta(C) = \min_{y_1 \neq y_2 \in C} \Delta(y_1, y_2).$  $\widetilde{v}$  $\delta/2$ • Rate of *C* is  $\frac{k}{-}$ . n

## List Decoding

- What happens when number of errors exceeds  $\delta/2$ ?
- Hope: Number of codewords is polynomial, if not 1.
- Johnson bound: Upto  $J(\delta)$ , list size is bounded.

 $\delta/2 < J(\delta) < \delta$ 

• Algorithmic task: find the list.

#### Tanner Codes [Tanner'81, Sipser-Spielman'96, Zémor'01]



- Codewords: {0,1} assignment to edges.
- Every local view belongs to an inner code  $C_0$ .

Low-Density Parity Check (LDPC)

Linear-time decoders

Thm (Sipser-Spielman'96): Distance of Tanner code is at least  $\delta = \delta_0 (\delta_0 - \lambda)$ .

# **Decoding Tanner Codes**

- Sipser-Spielman'96:  $\approx \delta/48$
- Zémor'01:  $\approx \delta/4$
- Skachek-Roth'03:  $\approx \delta/2$



## Main Theorem

Inner Code:  $C_0$  – distance  $\delta_0$ 

Graph:  $G - \lambda$ -expander

Theorem (Jeronimo-S-Tulsiani): For any  $\epsilon > 0$ , the Tanner code *C* with distance at least  $\delta = \delta_0(\delta_0 - \lambda)$  can be list-decoded from radius  $J(\delta) - \epsilon$  in time  $n^{O_d(1/\epsilon^4)}$ .



### Why care about list-decoding Tanner codes?

- Unique-decoding to list-decoding requires new ideas.
- Most list-decoding algorithms work for algebraic codes.
- Tanner codes: Source of *linear* time decoders.

## Techniques

- Covering Lemma: Algorithm-friendly proof of Johnson bound.
- Proofs-to-Algorithms paradigm for codes.



• Used for decoding Ta-Shma code [Richelson-Roy'23]

• Rounding algorithms for convex optimization based decoders.

## **Covering Lemma**

In about an hour, the moon will cover the sun.



Source - Getty Images

# **Covering Lemma**

Lemma. Given a family  $\mathscr{F}$  of unit vectors in  $\mathbb{R}^n$ , and a unit vector  $g \in \mathbb{R}^n$ , such that  $\forall f \in \mathscr{F}, \quad \langle g, f \rangle > \alpha. \quad \alpha \in (0,1)$ There exists  $g' \in conv(\mathscr{F})$  such that,  $\forall f \in \mathscr{F}, \quad \langle g', f \rangle > \alpha^2.$ 



Proof. g' is the smallest  $\ell_2$ -norm vector in  $conv(\mathcal{F})$ .

## From codes to geometry

Embed  $f \in \mathbb{F}_2^n$  into  $\mathbb{R}^n$  as  $\chi(f)_i = (-1)^{f_i}$ .  $\Delta(f_1, f_2) = \frac{1 - \langle \chi(f_1), \chi(f_2) \rangle}{2}$   $\Delta(f_1, f_2) = \frac{1 - \beta}{2} \iff \langle \chi(f_1), \chi(f_2) \rangle = \beta$ 

- Hamming Distance  $\leftrightarrow$  Inner product.
- Hamming Ball  $\leftrightarrow$  Half-space.

Johnson Bound:

For 
$$\delta = \frac{1-\beta}{2}$$
, list sizes are polynomial until  $J(\delta) = \frac{1-\sqrt{\beta}}{2} \in \left(\frac{\delta}{2}, \delta\right)$ .

## Algorithm-friendly proof of Johnson bound

 $\begin{array}{c} 0 \rightarrow 1 \\ 1 \rightarrow -1 \end{array}$ 

 $\delta = \frac{1-\beta}{2}$   $J(\delta) = \frac{1-\sqrt{\beta}}{2}$ 

• For any  $h \in \mathscr{L}(r, J(\delta))$ , it holds that  $\langle \chi(r), \chi(h) \rangle > \sqrt{\beta}$ .

• Covering Lemma  $\implies$  There is an  $r' \in conv(\mathscr{L})$  such that for any  $h \in \mathscr{L}(r, J(\delta))$ ,

 $\langle r', \chi(h) \rangle > \beta$ .

• r' as a convex combination  $\rightarrow$  distribution  $\mathcal{D}$  over C.

 $\mathbb{E}_{f\sim \mathcal{D}}\left[\Delta(f,h)\right] < \delta$ 

Theorem

• Support of  $\mathscr{D}$  contains  $\mathscr{L}(r, J(\delta))$ .

• Pick  $\mathscr{D}$  with support size  $\leq n + 1$ . Carathéodory's

Can take exponential time!

#### **Exponential Time Algorithm**

1. Use covering lemma to find distribution  $\mathscr{D}$ over *C* such that for every  $h \in \mathscr{L}(r, J(\delta))$ ,  $\mathbb{E}_{f\sim \mathscr{D}}[\Delta(f, h)] < \delta$ .

- 2. Sample h' from  $\mathcal{D}$ .
- 3. Use distance of C to conclude

h' = h

with some probability.



Let  $F \subseteq E, S \subseteq L, T \subseteq R$  be positions where  $f, g \in \mathbb{F}_2^E$ differ. Four distances: 1.  $\Delta_E(f,g) = \frac{|F|}{nd}$ 2.  $\Delta_E(f,g) = \frac{|S|}{|S|}$ 2.  $\Delta_L(f,g) =$ 3.  $\Delta_{R}(f,g) = \frac{|T|}{n}$ 4.  $\Delta_{LR}(f,g) = \sqrt{\Delta_{L}(f,g) \cdot \Delta_{R}(f,g)}$ 











$$\begin{split} \delta_{0} \cdot \Delta_{LR}(f,g) &\leq \Delta_{E}(f,g) \leq \Delta_{LR}(f,g)^{2} + \lambda \cdot \Delta_{LR}(f,g) \\ \Delta_{LR}(f,g)^{2} - (\delta_{0} - \lambda) \cdot \Delta_{LR}(f,g) &\geq 0 \\ \Delta_{LR}(f,g) &= 0 \text{ or } \Delta_{LR}(f,g) \geq \delta_{0} - \lambda \\ &\implies \Delta_{E}(f,g) \geq \delta_{0}(\delta_{0} - \lambda) \end{split}$$

## **Continuous Relaxation for Tanner Code**



#### Distance Proof for Relaxation of Tanner Code?

$$\begin{split} \mathbb{E}_{e}[\widetilde{\mathbb{E}}\left[\mathbf{1}_{f_{e}\neq0}\right]] &\geq \mathbb{E}_{l}[\widetilde{\mathbb{E}}\left[\delta_{0}\cdot\mathbf{1}_{f_{l}\neq0}\right]]\\ \Delta_{E}(\widetilde{\mathcal{D}}, 0) &\geq \delta_{0}\cdot\Delta_{L}(\widetilde{\mathcal{D}}, 0)\\ \Delta_{E}(\widetilde{\mathcal{D}}, 0) &\geq \delta_{0}\cdot\Delta_{LR}(\widetilde{\mathcal{D}}, 0) \end{split}$$

#### Distance Proof for Relaxation of Tanner Code?

$$\mathbb{E}_{e}[\widetilde{\mathbb{E}}[\mathbf{1}_{f_{e}\neq0}]] \leq \mathbb{E}_{l\sim r}[\widetilde{\mathbb{E}}[\mathbf{1}_{f_{l}\neq0}\cdot\mathbf{1}_{f_{r}\neq0}]]$$

$$? \leq \mathbb{E}_{l,r}[\widetilde{\mathbb{E}}[\mathbf{1}_{f_{l}\neq0}\cdot\mathbf{1}_{f_{r}\neq0}]]$$

$$? \leq \mathbb{E}_{l,r}[\widetilde{\mathbb{E}}[\mathbf{1}_{f_{l}\neq0}]\cdot\widetilde{\mathbb{E}}[\mathbf{1}_{f_{r}\neq0}]]$$

## **Continuous Relaxation for Tanner Code**



Ensemble of distributions  $\widetilde{\mathscr{D}} = \{\mathscr{D}_{\ell}\}_{\ell \in L}, \{\mathscr{D}_{r}\}_{r \in R}$ Consistency along edges

Modifications:

• Enforce positive semidefinite-ness of (global) covariance matrix.

Used for LP

Decoding

•  $\{\mathscr{D}_{\ell}\}_{\ell \in L}, \{\mathscr{D}_r\}_{r \in R}$  induced by another ensemble of distributions over *t*-sized sets, for  $t \gg d$ .

# Key steps in the proof



#### **Exponential Time Algorithm**

1. Use covering lemma to find distribution  $\mathscr{D}$ over *C* such that for every  $h \in \mathscr{L}(r, J(\delta))$ ,

 $\mathbb{E}_{f\sim \mathcal{D}}[\Delta(f,h)] < \delta$ 

- 2. Sample h' from  $\mathcal{D}$ .
- 3. Use distance of C to conclude

h'=h.

#### **Exponential Time Algorithm**

- 1. Use covering lemma to find distribution  $\mathscr{D}$ over *C* such that for every  $h \in \mathscr{L}(r, J(\delta))$ ,  $\mathbb{E}_{f\sim \mathscr{D}}[\Delta(f, h)] < \delta$
- 2. Sample h' from  $\mathcal{D}$ .

Condition  $\mathcal{D}$  on all *n* coordinates to get h'.

3. Use distance of  $C \Delta(h',h) (\Delta(h',h) - \delta) \ge 0$  to conclude

 $\frac{h'=h}{\Delta(h',h)=0}.$ 

Time  $n^{1/\eta^2}$ 

#### Exponential Time Algorithm Polynomial Time Algorithm

#### Time $2^n$

- 1. Use covering lemma to find distribution  $\mathscr{D}$ over *C* such that for every  $h \in \mathscr{L}(r, J(\delta))$ ,  $\mathbb{E}_{f\sim \mathscr{D}}[\Delta(f, h)] < \delta$
- 2. Sample h' from  $\mathcal{D}$ .

Condition  $\mathcal{D}$  on all *n* coordinates to get h'.

3. Use distance of  $C \Delta(h', h) (\Delta(h', h) - \delta) \ge 0$ to conclude h' = h

 $\Delta(h',h)=0.$ 

- 1. Use covering lemma to find pseudodistribution  $\widetilde{\mathscr{D}}$  over C such that for every  $h \in \mathscr{L}(r, J(\delta)),$  $\widetilde{\mathbb{E}}_{f\sim \widetilde{\mathscr{D}}}[\Delta(f, h)] < \delta$
- 2. Condition  $\widetilde{\mathscr{D}}$  on  $O(1/\eta^2)$  coordinates to get h'. 3. Use  $\Delta(h', h) (\Delta(h', h) - \delta) + \eta \ge 0$  to conclude  $\Delta(h', h) \le O(\eta)$ .
- 4. Unique-decode from h'.

## **Extensions**

- Distance Amplification Scheme of Alon-Edmonds-Luby'95
  - $C_{base}$ : high-rate positive distance code



- Non-binary Tanner codes
- (Weighted) List Recovery
- Concatenated Code upto Johnson bound

## Alon-Edmonds-Luby (AEL) Amplification

- Only impose local code constraint on left side
- Local view on the right to be seen as a single alphabet symbol 
  $$\begin{split} \delta_0 \cdot \Delta_L(f,g) &\leq \Delta_E(f,g) \leq \Delta_L(f,g) \cdot \Delta_R(f,g) + \lambda \\ \Delta_R(f,g) &\geq \delta_0 - \frac{\lambda}{\Delta_L(f,g)} \end{split}$$
- Choose an (high-rate) outer code C<sub>1</sub> with distance δ<sub>1</sub>, and λ = ε · δ<sub>1</sub>.
   Final code has rate R(C<sub>1</sub>) · R(C<sub>0</sub>) and distance δ<sub>0</sub> λ/δ<sub>1</sub>.

# List Decoding for AEL Amplification

- Typically, inner code is Reed-Solomon, with rate  $R_0$  and distance  $1 R_0$ .
- Choose outer code  $C_1$  to be a high-rate code, decodable upto some constant radius.
- Final code has distance  $1 R_0 \epsilon$ .
- Can be list decoded to radius  $1 \sqrt{R_0} \epsilon_2$ .
- Works via reduction to (unique-)decoding of  $C_1$ .

## **Future Directions**

- Faster Algorithms
  - Spectral
  - Regularity Lemmas
- Beyond Johnson bound
  - Interesting combinatorially also
- Quantum LDPC Codes
  - [Upcoming work] Can list-decode quantum AEL codes.

# Thank you!

## **Deterministic Algorithm**

- All of these algorithms can be made deterministic.
- Try out all conditionings.

• For degree-t SoS, only  $n^t$  many conditionings.

• Use threshold rounding to derandomize the rest.

# **Correlation Rounding via Conditioning**

[Barak, Raghavendra, Steurer '11]

- Suppose  $\mathbb{E}_{l,r}[\widetilde{\mathbb{E}}[\mathbf{1}_{f_l\neq 0} \cdot \mathbf{1}_{f_r\neq 0}]]$  and  $\mathbb{E}_{l,r}[\widetilde{\mathbb{E}}[\mathbf{1}_{f_l\neq 0}] \cdot \widetilde{\mathbb{E}}[\mathbf{1}_{f_r\neq 0}]]$  are more than  $\eta$ -different.
- Then  $\{\mathscr{D}_{\ell}\}_{\ell \in L}$  and  $\{\mathscr{D}_r\}_{r \in R}$  are correlated on average.
- Conditioning  $\mathscr{D}$  on a random  $r \in R$  reduces the average variance of  $\{\mathscr{D}_\ell\}_{\ell \in L}$  by  $\Omega_d(\eta^2)$ .
- After  $O(1/\eta^2)$  conditionings, must have low correlation on average.
- Can afford to condition this many times if the ensemble was induced by larger degree moments.