
Relaxed Local Correctability
from Local Testing
Vinayak M. Kumar and Geoffrey Mon
University of Texas at Austin

Locally correctable codes (LCCs)
LDCs/LCCs have correctors that query very few indices…
…but optimal LCC parameters are a big mystery.

𝑤 ∈ 0,1 𝑛, 𝛿-close to 𝑐 ∈ 𝐶

𝑖 ∈ [𝑛] 𝑐𝑖 w.p. 2/3

𝑞 queries

Local correctability: what’s known?
Focusing on asymptotically good LCCs (constant
rate and correcting radius); how many queries
required?

Lower bound*
𝑞 ≥ ෩Ω log 𝑛

[Katz–Trevisan 00, Woodruff 07]

Upper bound
𝑞 ≤ 2 ෨𝑂 log 𝑛 = 𝑛𝑜 1

[Kopparty–Meir–Ron-Zewi–Saraf 17]

Best asymptotically good LCCs

Technique Queries Due to
low-degree polynomials 𝑛𝜖 [Babai–Fortnow–Levin–Szegedy 91,

Rubinfeld–Sudan 96]

multiplicity codes 𝑛𝜖 [Kopparty–Saraf–Yekhanin 14]

lifted Reed-Solomon 𝑛𝜖 [Guo–Kopparty–Sudan 13]

expander codes 𝑛𝜖 [Hemenway–Ostrovsky–Wootters 15]

distance amplification 𝑛𝑜(1) [Kopparty–Meir–Ron-Zewi–Saraf 17]

Lower bound [Katz–Trevisan 00, Woodruff 07]. 𝑞 ≥ ෩Ω log 𝑛

hi
gh

-r
at

e

What if we relax the definition?
Allow the corrector to give up if it detects errors.
Why? e.g. when constructing PCPs, it’s convenient if
the proofs form a code with good local properties.

If the local corrector detects errors, we can reject 𝜋.

Instance 𝑥
“Proof” 𝜋

Reject when 𝜋 is
obviously wrong
(local testability)

Spot check that 𝜋
corresponds to 𝑥

(local correctability)
relaxed local correctable codes (RLCCs)

RLCCs: formal definition
Def ([Ben-Sasson–Goldreich–Harsha–Sudan–Vadhan 06, Gur–Ramnarayan–Rothblum 20]).
𝐶 ⊆ 0,1 𝑛 is a relaxed locally correctable code (RLCC) with
𝑞 queries and radius 𝛿 if it has a corrector 𝑀 making 𝑞 queries s.t.

1. soundness: for all 𝑤 ∈ 0,1 𝑛 which are 𝛿-close to some 𝑐 ∈ 𝐶,
∀𝑖 ∈ 𝑛 . Pr 𝑀𝑤 𝑖 ∈ 𝑐𝑖 , ⊥ ≥ 2/3

2. completeness: 𝑀 never rejects when 𝑤 ∈ 𝐶.

[Ben-Sasson–Goldreich–Harsha–Sudan–Vadhan 06]: when 𝑞 = 𝑂(1),
dramatic improvement over known LDC constructions!

Some more applications of RLCCs
PCPs/interactive oracle proofs [Ron-Zewi–Rothblum 20]

Proofs of proximity [Ben-Sasson–Goldreich–Harsha–Sudan–Vadhan 06,
Goldreich–Gur–Komargodski 15, Gur–Rothblum 17, Gur–Rothblum 18,
Goldreich–Gur 21]

Adaptivity hierarchy for property testing [Cannone–Gur 17]

Fault-tolerant data structures [Chen–Grigorescu–de Wolf 09]

Relaxing helps asymptotically good RLCCs:
Lower bound [Gur–Lachish 21, Dall’Agnol–Gur–Lachish 21, Goldreich 23]. 𝑞 ≥ ෩Ω log 𝑛

Technique Query complexity Due to
existing LCCs 𝑛𝑜 1 [Kopparty–Meir–

Ron-Zewi–Saraf 17]

iterated tensoring log 𝑛 𝑂(log log 𝑛) [Gur–Ramnarayan–
Rothblum 20]

row-evasive partitioning log 𝑛 𝑂(log log log 𝑛) [Cohen–Yankovitz 22]

nested LTCs log69 𝑛 this work
nested expander codes log2+𝑜(1) 𝑛 [Cohen–Yankovitz 23]

Compare to 𝑞 ≥
෩Ω log 𝑛 for LCCs

Construction approach
Want RLCC constructions for arbitrarily large block length.
Start with a trivial RLCC with tiny block length.
Boost block length iteratively: use the smaller RLCC to
build a bigger one; repeat until desired block length reached.

Gur, Ramnarayan, and Rothblum; Cohen and Yankovitz ‘22
follow this approach, and we will too

Prior work: iterated tensor product
[Gur–Ramnarayan–Rothblum] use
tensoring to boost block length.
If 𝐶 ∈ 𝔽𝑛 is a linear code, then
𝐶 ⊗ 𝐶 ∈ 𝔽𝑛×𝑛 is the code where
every row and column is in 𝐶.
Thm ([Gur–Ramnarayan–Rothblum 20]).
If 𝐶 is an RLCC, then 𝐶 ⊗ 𝐶 is too.

∈ 𝐶 ⊗ 𝐶

∈ 𝐶

Prior work: tensor product of RLCCs
Run the 𝐶-corrector on the row that contains the index that we want.
Use the 𝐶-corrector on polylog 𝑛 random columns
to check that the row is consistent with the rest.
Multiplicative query overhead at each step:
need to recurse on the 𝐶-corrector polylog 𝑛 times.
⇒ polylog 𝑛 ⋯ polylog 𝑛
= log 𝑛 𝑂 log log 𝑛 total queries

𝑖

[Cohen–Yankovitz 22] improve query factor per step
to polylog log 𝑛 ⇒ log 𝑛 𝑂 log log log 𝑛 queries

Query cost of tensoring grows too fast
Tensoring compares overlapping parts
of the input against each other
At each tensor product step, we must
recurse multiple times on the smaller
code’s local corrector
⇒ multiplicative query cost

Can we get additive query cost?
Instead of recursing multiple times per
iteration, let’s use some outside help

𝑖 ∈ 𝐶

: locally testable codes
Locally testable codes (LTCs) can detect corruption locally.
Local tester 𝑇 makes 𝑞 queries and rejects with probability
proportional to the distance from the code:

∀𝑤 ∈ 0,1 𝑛. Pr 𝑇𝑤 = ⊥ ≥ 𝜅 ⋅ dist 𝑤, LTC .

𝑇 never rejects when 𝑤 ∈ LTC.

We have great high-rate LTCs [Dinur–Evra–Livne–Lubotzky–Mozes 22];
use them to build iteratively bigger RLCCs!

Block length boosting operation: nesting
Def. Let 𝐶1 ⊆ 0,1 𝑛 and 𝐶2 ⊆ 0,1 𝑁 where 𝑛 divides 𝑁.
The code formed by nesting 𝐶1 in 𝐶2 is

𝐶2 ⋒ 𝐶1 ≔ 𝐶2 ∩ 𝐶1
𝑁/𝑛

.

(𝑛 need not divide 𝑁)

𝐶1 =
𝐶2 =

𝐶2 ⋒ 𝐶1 =

∈ 𝐶2

∈ 𝐶1 ∈ 𝐶1

direct product

LTC ⋒ RLCC ⇒ bigger RLCC

Thm. If RLCC ⊆ 0,1 𝑛 has radius 𝛿 and LTC ⊆ 0,1 𝑁 has
distance 2𝛿, then LTC ⋒ RLCC ⊆ 0,1 𝑁 is an RLCC with
radius 𝛿.

Design a local corrector that handles two cases:
corrupted bits ≤ 𝛿𝑛: correct by recursing on smaller RLCC
corrupted bits > 𝛿𝑛: detect corruption using the tester

length 𝑁 length 𝑛 length 𝑁

RLCC =
LTC =

LTC ⋒ RLCC =

∈ LTC

∈ RLCC

Nesting: # corrupted bits ≤ 𝛿𝑛

Let input 𝑤 satisfy dist 𝑤, LTC ⋒ RLCC ≤ 𝛿.
Let 𝑐 ∈ LTC ⋒ RLCC be the codeword closest to 𝑤.
Close case: suppose # corrupted bits ≤ 𝛿𝑛.
Pick the unique interval 𝐼 ≔ 𝑘𝑛 + 1, … , 𝑘𝑛 + 𝑛 ∋ 𝑖.
dist 𝑤ȁ𝐼 , 𝑐ȁ𝐼 ≤ 𝛿 and 𝑐ȁ𝐼 ∈ RLCC by construction.

𝑤

𝑛 2𝑛 3𝑛 𝑁

…𝑖

RLCC has radius 𝛿 so we can recursively call its corrector on 𝑤ȁ𝐼!

Nesting: # corrupted bits > 𝛿𝑛

Let input 𝑤 satisfy dist 𝑤, LTC ⋒ RLCC ≤ 𝛿.
Let 𝑐 ∈ LTC ⋒ RLCC be the codeword closest to 𝑤.
Close case: We can recurse on an interval
Far case: suppose # corrupted bits > 𝛿𝑛.

⇒ dist 𝑤, 𝑐 > 𝛿𝑛/𝑁.
⇒ dist 𝑤, LTC > 𝛿𝑛/𝑁 ⇒ tester rejects w.p. 𝜅𝛿𝑛/𝑁.
Repeat tester 𝑂(𝑁/𝜅𝛿𝑛) times to find corruption w.p. 2/3.

Only an additive query cost!
Let input 𝑤 satisfy dist 𝑤, LTC ⋒ RLCC ≤ 𝛿.
Let 𝑐 ∈ LTC ⋒ RLCC be the codeword closest to 𝑤.
Close case: We can recurse on an interval
Far case: Local tester finds corruption
Putting it together: the local corrector for LTC ⋒ RLCC

Run the LTC tester 𝑂(𝑁/𝜅𝛿𝑛) times
Recurse on the RLCC corrector for the interval containing 𝑖

⇒ Nesting adds only 𝑂 𝑁/𝜅𝛿𝑛 ⋅ 𝑞LTC more queries

Nesting: parameters summary

LTC RLCC LTC ⋒ RLCC
length 𝑁 length 𝑛 length 𝑁

distance 2𝛿 correcting radius 𝛿 correcting radius 𝛿

𝑞LTC queries 𝑞 queries 𝑞 + 𝑂(𝑞LTC𝑁/𝜅𝛿𝑛) queries

rate 1 − 휀LTC rate 1 − 휀 rate 1 − 휀 − 휀LTC

⇒

LTC has 휀LTC𝑁
linear constraints

RLCC𝑁/𝑛 has 휀𝑁
linear constraints

at most 휀 + 휀LTC 𝑁
linear constraints

Iteratively nesting to build RLCCs
Well-behaved: nesting incurs only additive cost in rate, queries.
Now we can iterate:

𝐶 ≔ LTC𝑚 ⋒ LTC𝑚−1 ⋒ … LTC2 ⋒ LTC1 …

Let each LTC𝑗 ⊆ 0,1 𝑛𝑗 have rate 1 − 휀, distance 2𝛿, 𝑞 queries, and
suppose 𝑛𝑗+1/𝑛𝑗 = 𝑟 for all 𝑗.

Then 𝐶 is an RLCC with rate 1 − 𝑚휀, radius 𝛿, and query complexity

𝑛1 +

𝑗

𝑂
𝑞𝑛𝑗+1

𝜅𝛿𝑛𝑗
= 𝑛1 + 𝑂

𝑚𝑟𝑞

𝜅𝛿
.

⋯ ⋯ ⋯ ⋯⋯ ⋯⋯ ⋯

LTC𝑚−2 LTC𝑚−2LTC𝑚−2 LTC𝑚−2

Iteratively nesting: visual

LTC𝑚−1 LTC𝑚−1

LTC𝑚

𝑚 = log𝑟 𝑛

Iteratively nesting: concrete parameters
𝐶 is an RLCC with rate 1 − 𝑚휀, radius 𝛿, and query complexity

𝑛1 + 𝑂
𝑚𝑟𝑞

𝜅𝛿
.

𝐶 needs constant rate ⇒ pick an LTC family with 휀 = 𝑂(1/ log 𝑛).

Thm ([Dinur–Evra–Livne–Lubotzky–Mozes 22]).
For any 휀 ∈ 0,1 , there is a family of explicit linear LTCs with
𝑅 = 1 − 휀; 𝑞, 𝑟 = poly 1/휀 ; and 𝛿, 𝜅 = poly 휀 .

⇒
𝑚𝑟𝑞

𝜅𝛿
= polylog 𝑛

Iteratively nesting: almost done!
After plugging in [Dinur–Evra–Livne–Lubotzky–Mozes 22],

 𝐶 ≔ LTC𝑚 ⋒ LTC𝑚−1 ⋒ … LTC2 ⋒ LTC1 … is an RLCC with

Rate 1 −
log𝑟 𝑛

log 𝑛
= 1 − 𝑜(1) because 𝑟 = polylog 𝑛,

query complexity polylog 𝑛 , and
distance 1/polylog 𝑛

Not asymptotically good yet! But simply nest with one last LTC which
is asymptotically good.Thm. Asymptotically good RLCCs with query complexity log69 𝑛.

Closing remarks
Cohen and Yankovitz improve queries to log2+𝑜(1) 𝑛

Optimal query complexity: log 𝑛 or even log 𝑛?
RLCC with (poly)log queries which is also an LTC?

{vmkumar,gmon}@cs.utexas.edu
This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-2137420. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

	Slide 1: Relaxed Local Correctability from Local Testing
	Slide 2: Locally correctable codes (LCCs)
	Slide 3: Local correctability: what’s known?
	Slide 4: Best asymptotically good LCCs
	Slide 5: What if we relax the definition?
	Slide 6: RLCCs: formal definition
	Slide 7: Some more applications of RLCCs
	Slide 8: Relaxing helps asymptotically good RLCCs:
	Slide 9: Construction approach
	Slide 10: Prior work: iterated tensor product
	Slide 11: Prior work: tensor product of RLCCs
	Slide 12: Query cost of tensoring grows too fast
	Slide 13: 🔨: locally testable codes
	Slide 14: Block length boosting operation: nesting
	Slide 15: LTC double intersection RLCC implies bigger RLCC
	Slide 16: Nesting: # corrupted bits less than or equal to delta n
	Slide 17: Nesting: # corrupted bits greater than delta n
	Slide 18: Only an additive query cost!
	Slide 19: Nesting: parameters summary
	Slide 20: Iteratively nesting to build RLCCs
	Slide 21: Iteratively nesting: visual
	Slide 22: Iteratively nesting: concrete parameters
	Slide 23: Iteratively nesting: almost done!
	Slide 24: Closing remarks

