Coding Theory in Almost Linear Time and Sublinear Space

Dana Moshkovitz

UT Austin

Based on joint works with **Joshua Cook** (UT Austin)

Algorithmic Coding Theory

$C:\{0,1\}^k \to \{0,1\}^n$

- Constant rate n=O(k)
- Constant relative distance $d=\Omega(n)$
- Encoding complexity
- Decoding complexity

```
Time n<sup>1+o(1)</sup>
Space n<sup>o(1)</sup>
```

Our Results

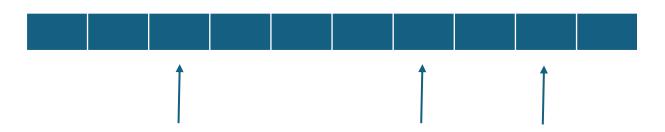
- 1. Code with deterministic **encoding** in time $n^{1+o(1)}$ and space $\sim log n$.
 - Impossible without random access to input.
- 2. Code with deterministic **decoding** in time $n^{1+o(1)}$ space $n^{o(1)}$.
 - Follows from locall orrectable codes and new efficient derandomization.

Non uniform

Still open: A code that can be encoded and decoded simultaneously in efficient time-space.

Time-Space Efficient Randomized Correction

Follows from locally decodes



There are efficient randomized decoders with no(1) queries for asymptotically good codes [Kopparty-Saraf-Yekhanin'11, Guo-Kopparty-Sudan'13, Hemenway-Ostrovsky-Wootters' 13, Kopparty-Meir-Ron Zewi-Saraf' 16].

We can decrease their error probability to $\ll 1/n$ by repetition. Then they give randomized decoders in time $n^{1+o(1)}$ and space $n^{o(1)}$.

Time-Space Efficient **Deterministic** Decoding

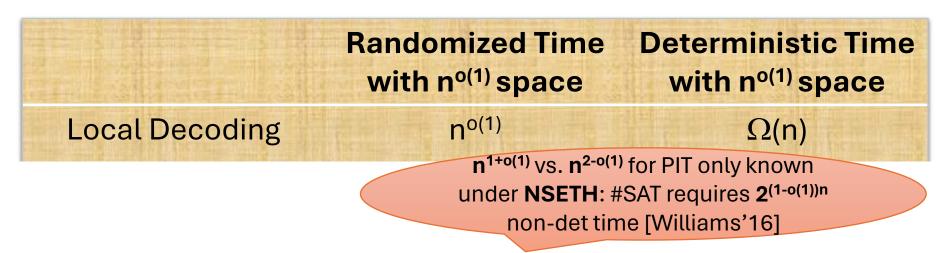
- Existing locally correctable codes give **non-adaptive** (non-uniform) **deterministic** decoders that run in time $n^{2+o(1)}$ and space $n^{o(1)}$.
 - Since only O(n) randomness strings are needed for the exp(n) possible corrupted codewords.
- Gronemeier '06: Non-adaptive deterministic decoders that run in time $n^{1+\delta}$ must use space at least $n^{1-\delta}$.
- Is there a quadratic time lower bound for **all deterministic** decoders that use space $n^{o(1)}$?

Randomization Speed-up?

• Efficient derandomization [Nisan-Wigderson'88, Impagliazzo-Wigderson'97,...,Doron-Moshkovitz-Oh-Zuckerman'20, Chen-Tell'21-22]: Under plausible assumptions:

time-t space-s randomized ⇒ time≈tn space-s deterministic

Is this tight?



Theorem: There exists an asymptotically good error correcting code with a (non-uniform) decoder running in time $n^{1+o(1)}$ and space $n^{o(1)}$.

Perfect completeness;
Non-adaptive;
Smooth; Systematic;

Time n^{1+o(1)} space n^{o(1)} (non-uniform) decoder

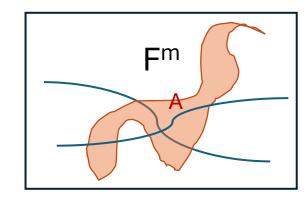
Uniform Decoders?

To get **uniform** decoder for Reed-Mueller code need better **curve samplers**.

Specifically, $|F|^{m+O(k)}$ degree-k curves in F^m so for every $A \subseteq F^m$ of fraction μ , it holds

$$P_c(|c \cap A| >> \mu |F|) < \mu |F|^{-\Omega(k)}$$
.

[TaShma-Umans'06, Guo'13]: $|F|^{O(m+k)}$ curves of degree poly(k) with sampling error $|F|^{-\Omega(k)}$.

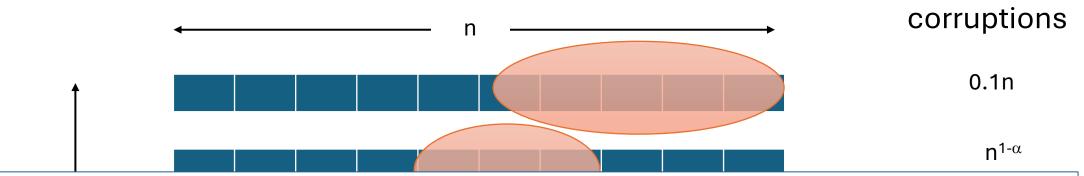


Locally Testing Typical Locally Correctable Codes

Lemma: For a typical locally correctable code C (perfect completeness, non-adaptive, smooth, systematic), local T that **for w with dist(w,C)<0.1**,
%dist(w,C) < P(T accepts) < 2dist(w,C).

Again, O(n) randomness strings suffice since there are exp(n) possible w. Hence, one can estimate dist(w,C) deterministically non-uniformly in time $n^{1+o(1)}$ and space $n^{o(1)}$.

The Iterative Correction Method

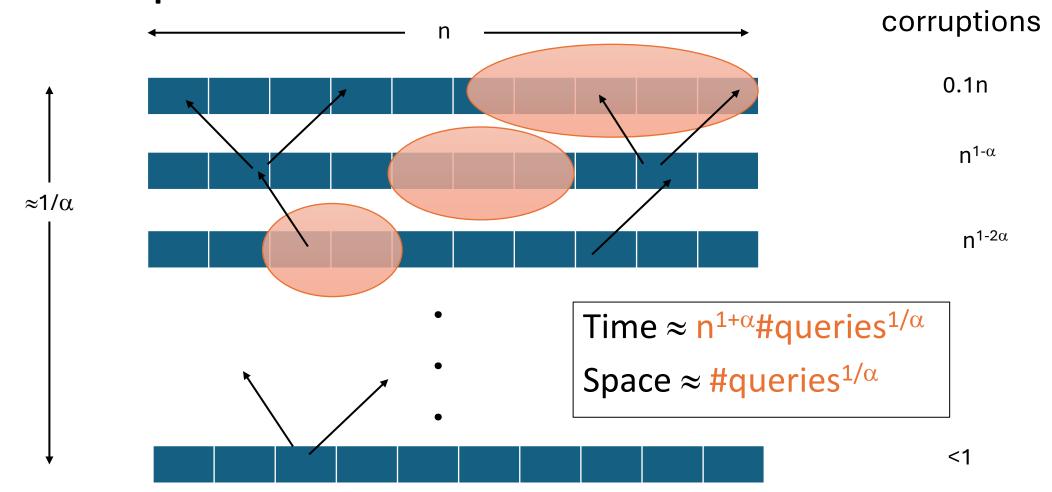


Key Claim: Among the O(n) randomness strings, at most $\approx n^{\alpha}$ can fail to improve the number of corruptions by $(1/n^{\alpha})$.

There are $\approx (n^{\alpha})^{1/\alpha}$ randomness sequences, but only $\approx n^{1+\alpha}$ operations

<1

Time-Space Efficient Deterministic Decoder

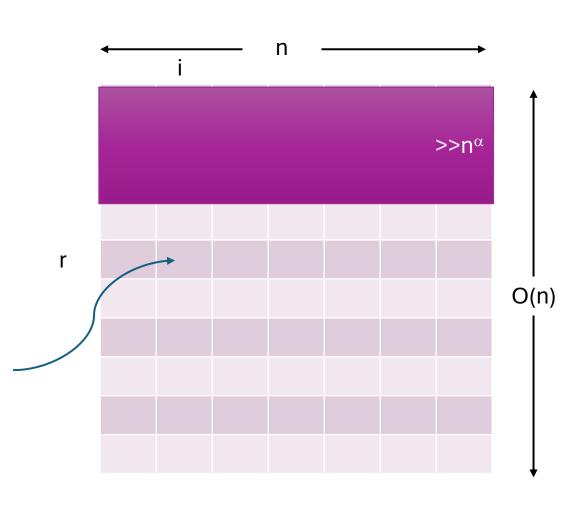


Proof of Key Claim: $\approx n^{\alpha}$ Randomness Strings Suffice For $1/n^{\alpha}$ Less Corruptions

For simplicity, assume there are $\Omega(n)$ corruptions and we want $O(n^{1-\alpha})$.

- O(n) correction failures in the entire table.
- Thus, can't have >> n^{α} rows contribute $n^{1-\alpha}$ failures each.

 Corrects i on randomness r?



Our Results

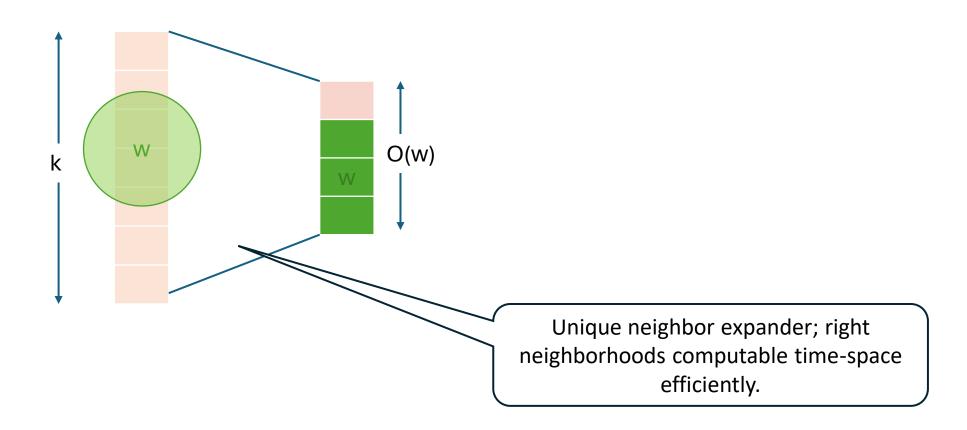
- 1. Code with deterministic **encoding** in time $n^{1+o(1)}$ and space $\sim logn$.
 - Impossible without random access to input.
- 2. Code with deterministic **decoding** in time $n^{1+o(1)}$ space $n^{o(1)}$.
 - Follows from locall orrectable codes and new efficient derandomization.

Non uniform

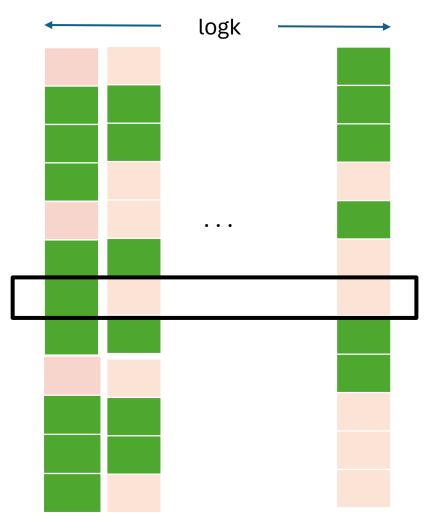
Still open: A code that can be encoded and decoded simultaneously in efficient time-space.

Time-Space Efficient Encoding via Expanders

We'll construct a linear code. Assume message has w=o(k) non-zeros.



Time-Space Efficient Encoding



- 1. Per approximate weight w, hash.
- 2. Repeat so n bits per w.
- 3. Encode each row.