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Algorithmic Coding Theory

C:{0,1}k→{0,1}n

• Constant rate n=O(k)

• Constant relative distance d=(n)

• Encoding complexity

• Decoding complexity
Time n1+o(1) 
Space no(1)



Our Results

1. Code with deterministic encoding in time n1+o(1) and space ~logn.
• Impossible without random access to input.

2. Code with deterministic decoding in time n1+o(1) space no(1).
• Follows from locally correctable codes and new efficient derandomization.

Still open: A code that can be encoded and decoded simultaneously in 
efficient time-space. 

Non uniform



Time-Space Efficient Randomized Decoding

Follows from locally decodable codes

There are efficient randomized decoders with no(1) queries for asymptotically 
good codes [Kopparty-Saraf-Yekhanin’11, Guo-Kopparty-Sudan’13, Hemenway-
Ostrovsky-Wootters’13,Kopparty-Meir-RonZewi-Saraf’16]. 

We can decrease their error probability to << 1/n by repetition. Then they give 
randomized decoders in time n1+o(1) and space no(1).

Correction

correctable



Time-Space Efficient Deterministic Decoding 

• Existing locally correctable codes give non-adaptive (non-uniform) 
deterministic decoders that run in time n2+o(1) and space no(1).
• Since only O(n) randomness strings are needed for the exp(n) possible 

corrupted codewords.

• Gronemeier ‘06: Non-adaptive deterministic decoders that run in 
time n1+ must use space at least n1-.

• Is there a quadratic time lower bound for all deterministic decoders 
that use space no(1)?



Randomization Speed-up?
• Efficient derandomization [Nisan-Wigderson’88, Impagliazzo-

Wigderson’97,…,Doron-Moshkovitz-Oh-Zuckerman’20, Chen-Tell’21-22]: 
Under plausible assumptions:

 time-t space-s randomized  timetn space-s deterministic 

Is this tight?

Randomized Time 
with no(1) space

Deterministic Time 
with no(1) space

Local Decoding no(1) (n)
Global Decoding n1+o(1) n2-o(1)?n1+o(1) vs. n2-o(1) for PIT only known 

under NSETH: #SAT requires 2(1-o(1))n 
non-det time [Williams’16]



Theorem: There exists an asymptotically good error correcting code 
with a (non-uniform) decoder running in time n1+o(1) and space no(1).

Typical locally 
correctable code

Time n1+o(1) space no(1)  

(non-uniform) decoder 
Perfect completeness; 

Non-adaptive; 
Smooth; Systematic; 



Uniform Decoders?

To get uniform decoder for Reed-Mueller 
code need better curve samplers. 

Specifically, |F|m+O(k) degree-k curves in Fm so 
for every AFm of fraction , it holds 

                    Pc(|cA|>> |F|) < |F|-(k).

[TaShma-Umans’06, Guo’13]: |F|O(m+k) curves 
of degree poly(k) with sampling error |F|-(k). 

Fm

A



Locally Testing Typical Locally Correctable 
Codes
Lemma: For a typical locally correctable code C (perfect completeness, 
non-adaptive, smooth, systematic), local T that for w with dist(w,C)<0.1, 

   ½dist(w,C) < P(T accepts) < 2dist(w,C).

Again, O(n) randomness strings suffice since there are exp(n) possible w. 
Hence, one can estimate dist(w,C) deterministically non-uniformly in time 
n1+o(1) and space no(1). 



The Iterative Correction Method

.

.

.

n corruptions

0.1n

n1-

n1-2

1/

<1

Key Claim: Among the O(n) randomness strings, at most n can 
fail to improve the number of corruptions by (1/n).

There are (n)1/ randomness sequences, but only n1+ operations



Time-Space Efficient Deterministic Decoder

.

.

.

n corruptions

0.1n

n1-

n1-2

1/

<1

Time  n1+#queries1/

Space  #queries1/



Proof of Key Claim: n Randomness Strings 
Suffice For 1/n Less Corruptions
For simplicity, assume there 
are (n) corruptions and we 
want O(n1-).

• O(n) correction failures in 
the entire table.

• Thus, can’t have >> n rows 
contribute n1- failures 
each.

n

O(n) 
r

i

Corrects i on 
randomness r? 

>>n



Our Results

1. Code with deterministic encoding in time n1+o(1) and space ~logn.
• Impossible without random access to input.

2. Code with deterministic decoding in time n1+o(1) space no(1).
• Follows from locally correctable codes and new efficient derandomization.

Still open: A code that can be encoded and decoded simultaneously in 
efficient time-space. 

Non uniform





Time-Space Efficient Encoding via Expanders

We’ll construct a linear code. Assume message has w=o(k) non-zeros.

wk w O(w)

Unique neighbor expander; right 
neighborhoods computable time-space 

efficiently.



Time-Space Efficient Encoding
logk

. . .

1. Per approximate weight w, hash.
2. Repeat so n bits per w. 
3. Encode each row.
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