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• Large scale: Exabytes of data stored on hundreds of thousands to millions of 
disks

• Failures are common
• Disk failures measured as annualized failure rates (AFR)
• AFR =>  expected % of disk failures in a year

• Erasure codes employed to add redundancy for fault tolerance

Cloud storage: Large-scale clusters



Notation and terminology

• [n, k] code 
• Encodes k “message” symbols into n “code 

symbols”

• “Length” = n and “Dimension” = k

• Systematic code

• r = n-k (number of parity symbols)

k
message symbols

r = (n-k) 
parity symbols

n code symbols

• Meeting certain decodability requirements 
- Maximum Distance Separable (MDS) = any k out of n sufficient to decode



a b c d e f P1 P2 P3

……

Erasure coding in distributed storage systems

distributed on disks
across servers (across failure domains)

(n=9, k=6) code

a b c d e f

a b c d e f P1 P2 P3

data blocks parity blocks

Erasure coding example:



Erasure coding in distributed storage systems

[9, 6] erasure code (6 data, 3 parities) 

P P P



Redundancy configuration in storage systems
• Amount of redundancy  

- Function of the erasure code parameters, “n” and “k” 

- Example (n=9, k=6): 1.5x redundancy

• Chosen to meet durability, availability, performance 
requirements
- Mean time to data loss (MTTDL) target for disk failure rate

- Reconstruction latency constraints for degraded reads



Redundancy configuration in storage systems

[9, 6] erasure code (6 data, 3 parities) 

• Code parameters decide: amount of redundancy and fault tolerance
• Chosen to meet durability (e.g. MTTDL) and availability requirements
• Based on (average) failure rate across disk fleet

P P P

Today’s redundancy configuration mechanisms 
are “one-scheme-for-all disks”.

However… 



Disk failure rates vary across makes/models

• Deployed in production 
at Google, NetApp, 
Backblaze

Orders of magnitude variation in failure rate  
across makes/models

• > 5.3 million HDDs
• > 60 makes/models

S. Kadekodi, F. Maturana, S. Subramanya, J. Yang, K.V. Rashmi, G. Ganger, "Pacemaker: avoiding HeART attacks in storage clusters with disk-
adaptive redundancy”, USENIX OSDI, 2020.



Disk failure rates vary over time with age
Disk hazard (bathtub) curve
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S. Kadekodi, K. V. Rashmi, and G. Ganger, “Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-reliability 
heterogeneity”, USENIX FAST 2019.



Reality: different disks fail differently

• Single storage cluster may have multiple makes/models of different ages

Same redundancy is either insufficient or overly wasteful

Reliability



Opportunity to reduce storage overhead
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Lower	failure	rate

lower failure rate        lower redundancy        lower storage cost

S. Kadekodi, K. V. Rashmi, and G. Ganger, “Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-reliability 
heterogeneity”, USENIX FAST 2019.

Disk-Adaptive Redundancy 
(DARE)



Savings via adaptive coding
From evaluation on production cluster data at Google and 
Backblaze

• Potential for 11-16% savings in storage space
- Translates to 1000s of fewer disks 

- Savings of millions of dollars

• Significant savings due to the scale

1. S. Kadekodi, K. V. Rashmi, and G. Ganger, “Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-
reliability heterogeneity”, USENIX FAST 2019.

2. S. Kadekodi, F. Maturana, S. Subramanya, J. Yang, K.V. Rashmi, G. Ganger, "Pacemaker: avoiding HeART attacks in storage clusters with disk-
adaptive redundancy”, USENIX OSDI, 2020.



Need for Adaptive Coding in Storage Systems
1. Disk failure rates are variable

2. Data temperature varies over time
- On hot  data

§ use low rate, shorter block length, higher redundancy

- On cold data
§ use higher rate, longer block length, lower redundancy



Collaboration with Google on disk-adaptive coding 
for real-world storage clusters



Code conversion problem
Convert data encoded under [!! , #!] initial code $! into data 
encoded under [!" , #"] final code $"

     Data encoded under $!     →    Data encoded under $" 
 (initial configuration)         (final configuration) 

• Same information stored in initial and final configurations but 
encoded differently

F. Maturana and K.V. Rashmi, “Convertible Codes: Enabling Efficient Conversion of Coded Data in Distributed Storage”, 
ITCS 2020 and IEEE Transactions on Information Theory 2022.



Code conversion problem
• Default approach: 
    Re-encode the data on disks undergoing failure rate transition

• Requires reading all the data units and computing new parities

• High cost of conversion
- Typically a large number of code conversions at a time

- Results in highly varying and large spikes of resource consumption



High cost of 
conversion

Challenge: Conversion of coded data
Conversion cost estimate on traces from production clusters at Google 



Related work
• Specific cases of code conversion:

- Rashmi et al 2011, Xia et al. 2015, Mousavi et al. 2018, Wu et al. 2020

• Variants of code conversion:
- Huang et al. 2015, Rai et al 2015, Sonowal & Rai 2017, Hu et al. 2018, Su et al. 2020

• Regenerating codes: applicable for conversions with fixed dimension (k) 
and increasing length (n)
- Dimakis et al 2010, El Rouayheb & Ramchandran 2010, Rashmi et al 2011, Shah et al 2011, 

Suh & Ramchandran 2011, Cadambe et al 2011, Shah et al 2012, Tamo et al 2013, 
Papailiopoulos et al 2013, Sasidharan et al 2015, Guruswami & Wooters 2016, Ye & Barg
2017, Dau & Milenkovic 2017, Rashmi et al 2017, Chowdhury & Vardy 2018, Hou et al. 2019, 
Mital et al 2019., Chen & Barg 2019, Mahdaviani et al 2019, Alrabiah & Guruswami 2019, 
Chen et al. 2020, …



A framework to study code conversion: 
Convertible Codes

• To handle change in dimension from !!  to !"
- consider ! = lcm('!, '") message symbols 

    

• Conversion takes multiple codewords in the initial configuration to multiple 
codewords in the final configuration

F. Maturana and K.V. Rashmi, “Convertible Codes: Enabling Efficient Conversion of Coded Data in Distributed 
Storage”, ITCS 2020 and IEEE Transactions on Information Theory, 2022.



Convertible codes framework
  ["! , !!] code     →   ["" , !"] code 
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Convertible codes framework
• Multiple codewords 
    => need to specify how to partition message symbols among codewords

• Initial partition (%!) 
- map message symbols into initial codewords

• Final partition (%")
- map message symbols into final codewords



Example: Code conversion
• '! ∶ [3,2] ⇒ '" ∶ [5,3] 
• * = lcm !! = 2, !" = 3 = 6
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Example: Code conversion
Initial partition

Final partition
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• '! ∶ [3,2] ⇒ '" ∶ [5,3]

• For systematic codes

Example: Code conversion+ȴȣʻƟɫɻǩȴȣɻ
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Convertible Codes
Definition [(2#, 3#; 2$, 3$) Convertible Code]

A ("! , !!; "" , !") convertible code over 5% is defined by: 

(1) a pair of codes ('! , '") over 5%
- !! is an ["! , $!] code; !" is an ["" , $"] code

(2) a pair of partitions %! , %" of [* = lcm(!! , !")]
- Each subset in %! is of size $! and each subset in %" is of size $" 

(3) a conversion procedure 8&!→&"
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Code conversion: Toy example

a b c d e f

Final codeword

[5, 3]

[8, 6]

Data is kept
unchanged

Parities can be designed
for conversion

= * + , - . /

1 1
1 3
1 2
1 6
1 4
1 5

+ * + ,
1 1
1 3
1 2

+ - . /
1 1
1 3
1 2

1 0
0 6

<=(7)Initial
codeword 1

Initial
codeword 2

a b c (! d e f(" (!# ("#

)")!



Types of code conversions

  

Merge Split

General regime

Generalized merge Generalized split



Code conversion regimes

294/7/24

Merge regime Split regime

#" = &!#! #! = &"#"



2. Conversion bandwidth
(total size of data transmitted)

Cost of code conversion

4/7/24 30

1. Access cost
(# of nodes read or written)



Cost of code conversion for linear MDS codes

4/7/24 31

Merge regime Split regime

Access cost Conversion bandwidth

Merge regime

Split regime

General regime

Tight lower bounds + explicit optimal constructions



Access cost: lower bound

4/7/24 32

Theorem

*$

Relative
savings

If !& ≤ !',
access cost is #'!&

If !& > !',
access cost is #'%'

(no savings)

How to construct 
codes here?

Fixed +%, 	 +$ = /%+%, *%

(r = n – k = number of parities for a systematic code)
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A B C
A

+B
+C

A
+2B
+3C

1 1 1
1 1 2

1 1 3
[A  B  C]

systematic parity matrix
'

4/7/24

Constructing codes



Properties for efficient conversion

4/7/24 34

Super-regular Block-constructible

Optimal MDS 
convertible code
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1 1 1
1 2 4
1 3 9
1 4 16

Systematic + MDS  ⇔ super-regular
Every square submatrix is invertible

Parity matrix
'

Elements from
Finite field (#

)

#

Super-regular

4/7/24



37

8"

9# =

Initial
codeword 1

Initial
codeword 2

Initial
codeword 3

:!'!

9$ = Initial
codeword 1 '!

Each block of !$ is spanned by "$ columns of !#

Access 8" columns

Block-constructible

4/7/24

9$ = Initial
codeword 3

8!

'!

9$ = Initial
codeword 2 '!



Theorem (informal)
Construction of access-optimal convertible codes for 
all merge regime parameters for large enough field 
sizes.

4/7/24 38

Access cost: construction



$! = 3, *! = 3 	→ ($" = 6, *" = 3)

11

A. Explicit construction
Recall that, in the merge regime, kF = �kI , for any integer � � 2 and arbitrary nI and nF . Also, recall that

rI = nI�kI and rF = nF �kF . Notice that when rI < rF , or kI  rF , constructing an access-optimal convertible
code is trivial. In those cases, one can simply access all the kF = �kI data blocks of the initial stripes, which
meets the bound stated in Theorem 5. Thus, assume rF  min{rI , kI}.

Let GI ,GF be the generator matrices of CI , CF respectively. Our construction is systematic, that is, both CI

and CF are systematic MDS codes. Thus GI ,GF are of the form GI = [I|PI ] and GF = [I|PF ], where PI is a
kI ⇥ rI matrix and PF is a kF ⇥ rF matrix. Therefore, to define the initial and final code, only PI and PF need
to be specified. Let Fq be a finite field of size q = pD, where p is any prime and the degree D depends on the
convertible code parameters and will be specified later in this section. Let ✓ be a primitive element of Fq.

Define entry (i, j) of PI 2 FkI⇥rI
q as ✓(i�1)(j�1), where (i, j) ranges over [kI ]⇥[rI ]. Entry (i, j) of PF 2 FkF⇥rF

q

is defined in an identical fashion, as ✓(i�1)(j�1), where (i, j) ranges over [kF ]⇥ [rI ].
For example, for kI = 3, rI = 3, kF = 6, rF = 3, the matrices PI and PF would be:

PI =

2

4
1 1 1
1 ✓ ✓2

1 ✓2 ✓4

3

5 PF =

2

6666664

1 1 1
1 ✓ ✓2

1 ✓2 ✓4

1 ✓3 ✓6

1 ✓4 ✓8

1 ✓5 ✓10

3

7777775

Our explicit construction is stable (recall from Lemma 7 that all access-optimal MDS convertible codes in the
merge regime are stable), that is, it has exactly kF = �kI unchanged encoding vectors. Given that our construction
is also systematic it follows that these unchanged encoding vectors correspond exactly to the systematic elements
of CF .

B. Proof of optimal access cost during conversion
Throughout this section, we use the following notation for submatrices: let M be a n⇥m matrix, the submatrix of

M defined by row indices {i1, . . . , ia} and column indices {j1, . . . , jb} is denoted by M [i1, . . . , ia; j1, . . . , jb]. For
conciseness, we use ⇤ to denote all row or column indices, e.g., M [⇤; j1, . . . , jb] denotes the submatrix composed
by columns {j1, . . . , jb}, and M [i1, . . . , ia; ⇤] denotes the submatrix composed by rows {i1, . . . , ia}.

We first recall an important fact about systematic MDS codes.

Proposition 9 ([12]). Let C be an [n, k] code with generator matrix G = [I|P ]. Then C is MDS if and only if P
is superregular, that is, every square submatrix of P is nonsingular3.

Thus, to be MDS, both PI and PF need to be superregular.
From the bound in Lemma 3, to be access-optimal during conversion when rF  kI , the columns of PF (that

is, the new encoding vectors) have to be such that they can be constructed by only accessing rF columns of GI

(that is, the initial encoding vectors) during conversion. Thus, it suffices to show that the columns of PF can be
constructed by accessing only rF columns of PI during conversion. To capture this property, we introduce the
following definition.

Definition 5 (t-column constructible). We will say that an n⇥m1 matrix M1 is t-column constructible from an
n ⇥m2 matrix M2 if and only if there exists a subset S ✓ cols(M2) of size t, such that the m1 columns of M1

are in the span of S. We say that a �n ⇥m1 matrix M1 is t-column block-constructible from an n ⇥m2 matrix
M2 if and only if for every i 2 [�], the submatrix M1[(i� 1)n+ 1, . . . , in; ⇤] is t-column constructible from M2.

Theorem 10. A systematic (nI , kI ;nF , kF = �kI) convertible code with kI ⇥rI initial parity generator matrix PI

and kF ⇥ rF final parity generator matrix PF is MDS and access-optimal, if the following two conditions hold:
(1) if rI � rF then PF is rF -column block-constructible from PI , and (2) PI ,PF are superregular.

3This definition of superregularity is different from the definition introduced in [58], which is sometimes used in the context of convolutional
codes.
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Conversion process
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Requires high field size to ensure super-regularity

Access cost: general construction

4/7/24 39

!: primitive element

▢ Block-constructible
▢ Super-regular
✔
✔



Theorem (informal)
Low-field size constructions of access-optimal 
convertible codes for merge regime parameters when 
!! < !".

4/7/24 40

Access cost: construction



• $! = 4, *! = 3 	→ ($" = 8, *" = 2)
• Idea: use super-regular Hankel-form array

Access cost: low field-size construction

4/7/24 41

▢ Block-constructible
▢ Super-regular
✔
✔



Cost of code conversion for linear MDS codes

4/7/24 42

Merge regime Split regime

Access cost Conversion bandwidth

Merge regime

Split regime

General regime

Tight lower bounds (for merge only) + explicit constructions



Conversion bandwidth

•Lower access cost already gives lower conversion 
bandwidth as well

•Can we achieve further reduction in conversion 
bandwidth over access-optimal convertible codes?

4/7/24 43
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Bandwidth: lower bound

4/7/24 44

Variable capacity 
links



Bandwidth: lower bound

4/7/24 45

Theorem

⁄8" '!
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!! = 0.1&!
!! = 0.6&!
!! ≥ &!

Relative
savings

If !& ≤ !' ,
BW cost is 
#'!&(

If !& > !' ,
BW cost is

*!+!# − *!-!# +!
-" − 1

Same as 
access cost!

(: vector size



Building blocks of code conversion

  

Merge Split

General regime

Generalized merge Generalized split



General conversion
• Via generalized merges and generalized splits
• Example: /! = 6, +! = 5 ⇒ [/" = 13, +" = 12]

47

Initial 

Final 



General conversion
48

• Via generalized merges and generalized splits
• Example: /! = 6, +! = 5 ⇒ [/" = 13, +" = 12]

Initial 

Final 

Generalized Split 



General conversion
49

• Via generalized merges and generalized splits
• Example: /! = 6, +! = 5 ⇒ [/" = 13, +" = 12]

Initial 

Final 

Generalized 
Merges



Summary
• Code conversion problem

• Convertible codes: A general framework for study of code conversion

• Two metrics of conversion cost: Access and Bandwidth 

• Tight lower bounds for certain parameter regimes

• Explicit optimal constructions for certain parameter regimes

• High potential for real-world impact

• BITS Magazine article in the upcoming special issue on storage: "Code 

Conversions in Storage Systems”



Open problems
• Lower bounds and optimal constructions for general parameter regime

• Bounds on field size and practical (low field size) constructions for all 
parameters

• Optimizing for conversion simultaneously with other properties
- Repair (some recent work), update complexity

• Chain conversions and multiple target parameters (some recent work)

Thanks! Questions?


