Quantum Rotors

Homological Quantum Rotor Codes

Constructions

Physical Realizations

Conclusion

Homological Quantum Rotor Codes: Logical Qubits form Torsion

arXiv:2303.13723 accepted in *Communications in Mathematical Physics*

Christophe VUILLOT, Alessandro CIANI, Barbara TERHAL

Inria Nancy

February 16, 2024

Christophe VUILLOT

Homological Quantum Rotor Codes

Construction 000000 000 Physical Realization

Conclusion

Why Quantum Rotors?

Constructio

hysical Realizations

Conclusion

Why Quantum Rotors?

Hardware

Quantum systems in the lab often are not qubits

- \Rightarrow Design error correction closer to hardware
- \Rightarrow In SC circuits Josephson junction = quantum rotor

Constructio

hysical Realizations 0 Conclusion

Why Quantum Rotors?

Hardware

Quantum systems in the lab often are not qubits

- \Rightarrow Design error correction closer to hardware
- \Rightarrow In SC circuits Josephson junction = quantum rotor

Continuous Variable Error Correction

Exploring error correction of infinite dimensional systems

Constructio

hysical Realizations

Conclusion

Why Quantum Rotors?

Hardware

Quantum systems in the lab often are not qubits

- \Rightarrow Design error correction closer to hardware
- \Rightarrow In SC circuits Josephson junction = quantum rotor

Continuous Variable Error Correction

Exploring error correction of infinite dimensional systems

Homology

Quantum codes have a close relation to homology

 $\Rightarrow\,$ Homology with integer coefficients is a rich playground

Construction

Physical Realizatio

Conclusion

Hardware

Protected superconducting qubits¹ are closely related to quantum rotor codes

¹Kitaev, "Protected qubit based on a superconducting current mirror", 2006 Brooks, Kitaev, Preskill, "Protected gates for superconducting qubits", PRA, 2013

Construction

hysical Realizations

Conclusion

Continuous Variable Error Correction

Doing measurements/operations agreeing with the group structure

Construction

Physical Realizations

Conclusion

Continuous Variable Error Correction

Doing measurements/operations agreeing with the group structure Quantum Oscillators $(x, p \in \mathbb{R}^2)$

- Oscillators into oscillators against discrete errors²(good)
- Oscillators into oscillators against gaussian noise³ (no good)

²Lloyd, Slotine, "Analog quantum error correction", PRL, 1998

 $^{^3}$ Vuillot et al "Quantum error correction with the toric GKP code", PRA, 2019

Constructions

hysical Realizations

Conclusion

Continuous Variable Error Correction

Doing measurements/operations agreeing with the group structure Quantum Oscillators $(x, p \in \mathbb{R}^2)$

- Oscillators into oscillators against discrete errors²(good)
- Oscillators into oscillators against gaussian noise³ (no good)

Quantum Rotors ($\ell, \theta \in \mathbb{Z} \times \mathbb{T}$)

- Rotors versions of toric/Haah codes⁴
- *U*(1) covariant reference frame codes⁵

²Lloyd, Slotine, "Analog quantum error correction", PRL, 1998

 $^{^{3}}$ Vuillot et al "Quantum error correction with the toric GKP code", PRA, 2019

⁴Albert et al "General phase spaces: From discrete variables to rotor and continuum limits", JPA, 2017

⁵Hayden et al "Error Correction of Quantum Reference Frame Information," PRX Quantum, 2021

Construction

Physical Realization

Conclusion 00

Modular Error Correction

Doing modular measurements, not agreeing with the group structure

Physical Realization

Conclusion

Modular Error Correction

Doing modular measurements, not agreeing with the group structure

Oscillators into oscillators ⁶

⁶Noh et al "Encoding an oscillator into many oscillators" PRL 2020 Hänggli et al "Oscillator-to-Oscillator Codes Do Not Have a Threshold", IEEEtit, 2022

Conclusion

Modular Error Correction

Doing modular measurements, not agreeing with the group structure

- Oscillators into oscillators ⁶
- Qubits into oscillators⁷

⁶Noh et al "Encoding an oscillator into many oscillators" PRL 2020 Hänggli et al "Oscillator-to-Oscillator Codes Do Not Have a Threshold", IEEEtit, 2022 ⁷GKP, "Encoding a qubit in an oscillator," PRA, 2001

Conclusion

Modular Error Correction

Doing modular measurements, not agreeing with the group structure

- Oscillators into oscillators ⁶
- Qubits into oscillators⁷
- Qubits into molecules (including rotors)⁸

⁶Noh et al "Encoding an oscillator into many oscillators" PRL 2020

Hänggli et al "Oscillator-to-Oscillator Codes Do Not Have a Threshold", IEEEtit, 2022

⁷GKP, "Encoding a qubit in an oscillator," PRA, 2001

⁸Albert et al "Robust encoding of a qubit in a molecule," PRX, 2020

Construction

hysical Realizations

Conclusion

Homological Quantum Rotor Codes

- The physical system is a collection of quantum rotors
- "CV" error correction, no modular measurements
- Encodes qubits and quantum rotors

Construction: 000000 000 Physical Realization

Conclusion

Outline

Quantum Rotors

Motivation Definitions

Homological Quantum Rotor Codes

Stabilizers and Chain Complexes Noise Models and Distances

Constructions

Manifolds Products of Chain Complexes

Physical Realizations

 $0 - \pi$ Qubit Kitaev's Current-Mirror/Möbius Strip Qubit

Construction

Physical Realization

Conclusion

Hilbert Space $\mathcal{H}_{\mathbb{Z}}$

Orthonormal Basis

 $\forall \ell \in \mathbb{Z}, \quad |\ell\rangle \in \mathcal{H}_{\mathbb{Z}}$

Construction

Physical Realizations

Conclusion 00

Hilbert Space $\mathcal{H}_{\mathbb{Z}}$

Orthonormal Basis

 $\forall \ell \in \mathbb{Z}, \quad |\ell\rangle \in \mathcal{H}_{\mathbb{Z}}$

States

$$|\psi
angle = \sum_{\ell\in\mathbb{Z}} lpha_\ell \, |\ell
angle \,, \quad \sum_{\ell\in\mathbb{Z}} |lpha_\ell|^2 = 1$$

Construction

Physical Realization

Conclusion

Dual Representation

States

$$\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}, \quad \ket{\psi} = \int_{ heta \in \mathbb{T}} \mathrm{d} heta \, \psi(heta) \ket{ heta}, \quad \int_{ heta \in \mathbb{T}} \mathrm{d} heta \, \ket{\psi(heta)}^2 = 1$$

Construction

Physical Realization

Conclusion

Dual Representation

States

$$\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}, \quad \ket{\psi} = \int_{ heta \in \mathbb{T}} \mathrm{d} heta \, \psi(heta) \ket{ heta}, \quad \int_{ heta \in \mathbb{T}} \mathrm{d} heta \, \ket{\psi(heta)}^2 = 1$$

Fourier Series

$$egin{aligned} & \forall \ket{\psi} \in \mathcal{H}_{\mathbb{Z}}, orall heta \in \mathbb{T}, \quad \psi(heta) = rac{1}{\sqrt{2\pi}} \sum_{\ell \in \mathbb{Z}} lpha_\ell \mathrm{e}^{i heta \ell} \end{aligned}$$

Construction

Physical Realization

Conclusion

Dual Representation

States

$$\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}, \quad |\psi
angle = \int_{ heta \in \mathbb{T}} \mathrm{d} heta \, \psi(heta) \, | heta
angle \,, \quad \int_{ heta \in \mathbb{T}} \mathrm{d} heta \, |\psi(heta)|^2 = 1$$

Fourier Series

$$\langle \forall | \psi \rangle \in \mathcal{H}_{\mathbb{Z}}, \forall \theta \in \mathbb{T}, \quad \psi(\theta) = \frac{1}{\sqrt{2\pi}} \sum_{\ell \in \mathbb{Z}} \alpha_{\ell} \mathrm{e}^{i\theta\ell} = \langle \theta | \psi \rangle$$

Construction

Physical Realization

Conclusion

Dual Representation

States

$$\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}, \quad |\psi
angle = \int_{ heta\in\mathbb{T}} \mathrm{d} heta \, \psi(heta) \, | heta
angle \,, \quad \int_{ heta\in\mathbb{T}} \mathrm{d} heta \, |\psi(heta)|^2 = 1$$

Fourier Series

$$\langle \forall | \psi
angle \in \mathcal{H}_{\mathbb{Z}}, \forall heta \in \mathbb{T}, \quad \psi(heta) = rac{1}{\sqrt{2\pi}} \sum_{\ell \in \mathbb{Z}} lpha_{\ell} \mathrm{e}^{i heta \ell} = \langle heta | \psi
angle$$

Phase States

$$\forall heta \in \mathbb{T}, \quad | heta
angle = rac{1}{\sqrt{2\pi}} \sum_{\ell \in \mathbb{Z}} \mathrm{e}^{-i heta \ell} \left| \ell
ight
angle$$

Construction

Physical Realization

Conclusion

Generalized Pauli Operators

Pauli X: Jumps

$$egin{aligned} &orall m \in \mathbb{Z}, \quad X(m) \left| \ell
ight
angle &= \left| \ell + m
ight
angle \ &X(m) \left| heta
ight
angle &= \mathrm{e}^{i heta m} \left| heta
ight
angle \end{aligned}$$

Construction

Physical Realizations

Conclusion

Generalized Pauli Operators

Pauli X: Jumps

 $egin{aligned} &orall m \in \mathbb{Z}, \quad X(m) \left| \ell
ight
angle &= \left| \ell + m
ight
angle \ &X(m) \left| heta
ight
angle &= \mathrm{e}^{i heta m} \left| heta
ight
angle \end{aligned}$

Pauli Z: Phases $\forall \phi \in \mathbb{T}, \quad Z(\phi) | \ell \rangle = e^{i\phi\ell} | \ell \rangle$ $Z(\phi) | \theta \rangle = | \theta - \phi \rangle$

Construction

Physical Realizations

Conclusion

Generalized Pauli Operators

Pauli X: Jumps

$$egin{aligned} &orall m \in \mathbb{Z}, \quad X(m) \left| \ell
ight
angle &= \left| \ell + m
ight
angle \ &X(m) \left| heta
ight
angle &= \mathrm{e}^{i heta m} \left| heta
ight
angle \end{aligned}$$

Pauli Z: Phases $\forall \phi \in \mathbb{T}, \quad Z(\phi) | \ell \rangle = e^{i\phi\ell} | \ell \rangle$ $Z(\phi) | \theta \rangle = | \theta - \phi \rangle$

Relations

- 1 = X(0) = Z(0)
- $X(m_1)X(m_2) = X(m_1 + m_2)$
- $Z(\phi_1)Z(\phi_2) = Z(\phi_1 + \phi_2)$

Construction

Physical Realizations

Conclusion

Generalized Pauli Operators

Pauli X: Jumps

$$egin{aligned} &orall m \in \mathbb{Z}, \quad X(m) \left| \ell
ight
angle &= \left| \ell + m
ight
angle \ &X(m) \left| heta
ight
angle &= \mathrm{e}^{i heta m} \left| heta
ight
angle \end{aligned}$$

Pauli Z: Phases $\forall \phi \in \mathbb{T}, \quad Z(\phi) | \ell \rangle = e^{i\phi\ell} | \ell \rangle$ $Z(\phi) | \theta \rangle = | \theta - \phi \rangle$

Relations

- 1 = X(0) = Z(0)
- $X(m_1)X(m_2) = X(m_1 + m_2)$
- $Z(\phi_1)Z(\phi_2) = Z(\phi_1 + \phi_2)$
- $X(m)Z(\phi) = e^{-i\phi m}Z(\phi)X(m)$

Construction

Physical Realizations

Conclusion

Several Rotors

We consider *n* rotors $(\mathcal{H}_{\mathbb{Z}}^{\otimes n})$

Construction

Physical Realizations

Conclusion

Several Rotors

We consider *n* rotors $(\mathcal{H}_{\mathbb{Z}}^{\otimes n})$

 $j \in [n], m \in \mathbb{Z}, \quad X_j(m) = \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes X(m) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$

 $j \in [n], \phi \in \mathbb{T}, \quad Z_j(\phi) = \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes Z(\phi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$

Constructio

Physical Realization

Conclusion

Several Rotors

We consider *n* rotors $(\mathcal{H}_{\mathbb{Z}}^{\otimes n})$

$$j \in [n], m \in \mathbb{Z}, \quad X_j(m) = \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes X(m) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$$

 $j \in [n], \phi \in \mathbb{T}, \quad Z_j(\phi) = \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes Z(\phi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$

Multi-Rotor Pauli Operators

$$oldsymbol{m} \in \mathbb{Z}^n, \quad X(oldsymbol{m}) = \prod_{j=1}^n X_j(m_j)$$
 $\phi \in \mathbb{T}^n, \quad Z(\phi) = \prod_{j=1}^n Z_j(\phi_j)$

Construction

Physical Realizations

Conclusion

Several Rotors

We consider *n* rotors $(\mathcal{H}_{\mathbb{Z}}^{\otimes n})$

$$j \in [n], m \in \mathbb{Z}, \quad X_j(m) = \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes X(m) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$$

 $j \in [n], \phi \in \mathbb{T}, \quad Z_j(\phi) = \mathbb{1} \otimes \cdots \otimes \mathbb{1} \otimes Z(\phi) \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}$

Multi-Rotor Pauli Operators

$$oldsymbol{m} \in \mathbb{Z}^n, \quad X(oldsymbol{m}) = \prod_{j=1}^n X_j(m_j)$$
 $\phi \in \mathbb{T}^n, \quad Z(\phi) = \prod_{j=1}^n Z_j(\phi_j)$

$$X(\boldsymbol{m})Z(\boldsymbol{\phi}) = \mathrm{e}^{-i\boldsymbol{\phi}\cdot\boldsymbol{m}^{\mathsf{T}}}Z(\boldsymbol{\phi})X(\boldsymbol{m})$$

Constructio

Physical Realization

Conclusion

Quantum Rotor Code

Definition Given $H_X \in \mathbb{Z}^{r_X \times n}$ and $H_Z \in \mathbb{Z}^{r_Z \times n}$, such that

$$H_X H_Z^T = 0,$$

Constructio

Physical Realization

Conclusion

Quantum Rotor Code

Definition

Given $H_X \in \mathbb{Z}^{r_X \times n}$ and $H_Z \in \mathbb{Z}^{r_Z \times n}$, such that

$$H_X H_Z^T = 0,$$

define stabilizer generators and the stabilizer group

•
$$\forall s \in \mathbb{Z}^{r_{x}}, \ S_{X}(s) = X(sH_{X})$$

Constructio

Physical Realization

Conclusion

Quantum Rotor Code

Definition

Given $H_X \in \mathbb{Z}^{r_X \times n}$ and $H_Z \in \mathbb{Z}^{r_Z \times n}$, such that

$$H_X H_Z^T = 0,$$

define stabilizer generators and the stabilizer group

•
$$\forall s \in \mathbb{Z}^{r_x}, \ S_X(s) = X(sH_X)$$

•
$$\forall \phi \in \mathbb{T}^{r_z}, \ S_Z(\phi) = Z(\phi H_Z)$$

Constructio

Physical Realizations

Conclusion

Quantum Rotor Code

Definition

Given $H_X \in \mathbb{Z}^{r_X \times n}$ and $H_Z \in \mathbb{Z}^{r_Z \times n}$, such that

$$H_X H_Z^T = 0,$$

define stabilizer generators and the stabilizer group

•
$$\forall s \in \mathbb{Z}^{r_{x}}, \ S_{X}(s) = X(sH_{X})$$

•
$$\forall \phi \in \mathbb{T}^{r_z}, \ S_Z(\phi) = Z(\phi H_Z)$$

•
$$\mathcal{S} = \langle S_Z(\phi) S_X(s) \mid \forall \phi \in \mathbb{T}^{r_z}, \, \forall s \in \mathbb{Z}^{r_x} \rangle.$$

Constructio

Physical Realizations

Conclusion

Quantum Rotor Code

Definition

Given $H_X \in \mathbb{Z}^{r_X \times n}$ and $H_Z \in \mathbb{Z}^{r_Z \times n}$, such that

$$H_X H_Z^T = 0,$$

define stabilizer generators and the stabilizer group

•
$$\forall s \in \mathbb{Z}^{r_{x}}, \ S_{X}(s) = X(sH_{X})$$

•
$$\forall \phi \in \mathbb{T}^{r_z}, \ S_Z(\phi) = Z(\phi H_Z)$$

•
$$\mathcal{S} = \langle S_Z(\phi) S_X(s) \mid \forall \phi \in \mathbb{T}^{r_z}, \, \forall s \in \mathbb{Z}^{r_x} \rangle.$$

The corresponding quantum rotor code is defined as

$$\mathcal{C}^{\mathrm{rot}}(H_X, H_Z) = \{ |\psi\rangle | \forall P \in \mathcal{S}, \ P |\psi\rangle = |\psi\rangle \}$$

Construction

Physical Realizations

Conclusion

Commutation and Small Example

Stabilizers Commute

$$S_X(\mathbf{s})S_Z(\phi) = e^{-i\phi H_Z H_X^T \mathbf{s}^T} S_Z(\phi)S_X(\mathbf{s})$$

Construction

Physical Realizations

Conclusion

Commutation and Small Example

Stabilizers Commute

$$S_X(\boldsymbol{s})S_Z(\phi) = \mathrm{e}^{-i\phi H_Z \mathcal{H}_X^{\mathsf{T}} \boldsymbol{s}^{\mathsf{T}}} S_Z(\phi)S_X(\boldsymbol{s})$$

4-Rotors Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

Construction

Physical Realizations

Conclusion

Commutation and Small Example

Stabilizers Commute

$$S_X(\boldsymbol{s})S_Z(\phi) = \mathrm{e}^{-i\phi H_Z H_X^{\mathsf{T}} \boldsymbol{s}^{\mathsf{T}}} S_Z(\phi)S_X(\boldsymbol{s})$$

4-Rotors Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{split} \mathcal{S} &= \left\langle X_1(m) X_2^{\dagger}(m), \; X_3(m) X_4^{\dagger}(m), \; X_1^{\dagger}(m) X_2^{\dagger}(m) X_3(m) X_4(m), \right. \\ &\left. Z_1(\phi) Z_2(\phi) Z_3(\phi) Z_4(\phi) \right\rangle_{m \in \mathbb{Z}, \phi \in \mathbb{T}} \end{split}$$

Homological Quantum Rotor Codes

Construction:

Physical Realizations

Conclusion 00

Code States

 $|\overline{\psi}\rangle \in \mathcal{C}^{\mathrm{rot}}(H_X, H_Z)$

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion

Code States

 $|\overline{\psi}\rangle \in \mathcal{C}^{\mathrm{rot}}(H_X, H_Z)$ Z Constraints

$$\begin{aligned} \forall \boldsymbol{\phi}, \ | \overline{\boldsymbol{\psi}} \rangle &= S_{Z}(\boldsymbol{\phi}) \, | \overline{\boldsymbol{\psi}} \rangle \\ \Rightarrow &\sum_{\boldsymbol{\ell} \in \mathbb{Z}^{n}} \alpha_{\boldsymbol{\ell}} \, | \boldsymbol{\ell} \rangle = \sum_{\boldsymbol{\ell} \in \mathbb{Z}^{n}} \mathrm{e}^{i \boldsymbol{\phi} H_{Z} \cdot \boldsymbol{\ell}^{\mathsf{T}}} \alpha_{\boldsymbol{\ell}} \, | \boldsymbol{\ell} \rangle \\ \Rightarrow &\forall \boldsymbol{\ell}, \ \alpha_{\boldsymbol{\ell}} \neq \mathbf{0} \Rightarrow \boldsymbol{\ell} \in \mathrm{ker} \, (H_{Z}). \end{aligned}$$

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion

Code States

 $|\overline{\psi}\rangle \in \mathcal{C}^{\mathrm{rot}}(H_X, H_Z)$ Z Constraints

$$\begin{aligned} \forall \boldsymbol{\phi}, \ | \overline{\boldsymbol{\psi}} \rangle &= S_{Z}(\boldsymbol{\phi}) \, | \overline{\boldsymbol{\psi}} \rangle \\ \Rightarrow &\sum_{\boldsymbol{\ell} \in \mathbb{Z}^{n}} \alpha_{\boldsymbol{\ell}} \, | \boldsymbol{\ell} \rangle = \sum_{\boldsymbol{\ell} \in \mathbb{Z}^{n}} \mathrm{e}^{i \boldsymbol{\phi} \boldsymbol{H}_{Z} \cdot \boldsymbol{\ell}^{\mathsf{T}}} \alpha_{\boldsymbol{\ell}} \, | \boldsymbol{\ell} \rangle \\ \Rightarrow &\forall \boldsymbol{\ell}, \ \alpha_{\boldsymbol{\ell}} \neq \mathbf{0} \Rightarrow \boldsymbol{\ell} \in \mathrm{ker} \, (\boldsymbol{H}_{Z}). \end{aligned}$$

X Constraints

$$\begin{aligned} \forall \boldsymbol{s}, \ |\overline{\psi}\rangle &= S_{\boldsymbol{X}}(\boldsymbol{s}) \ |\overline{\psi}\rangle \\ \Rightarrow &\sum_{\boldsymbol{\ell} \in \mathbb{Z}^n} \alpha_{\boldsymbol{\ell}} \ |\boldsymbol{\ell}\rangle = \sum_{\boldsymbol{\ell} \in \mathbb{Z}^n} \alpha_{\boldsymbol{\ell}} \ |\boldsymbol{\ell} + \boldsymbol{s} H_{\boldsymbol{X}}\rangle \\ \Rightarrow &\forall \boldsymbol{\ell}, \boldsymbol{s}, \ \alpha_{\boldsymbol{\ell}} = \alpha_{\boldsymbol{\ell} - \boldsymbol{s} H_{\boldsymbol{X}}} \Rightarrow \ker\left(H_{\boldsymbol{Z}}\right) / \operatorname{im}\left(H_{\boldsymbol{X}}\right). \end{aligned}$$

Homological Quantum Rotor Codes

Construction

Physical Realizatio

Conclusion 00

Homology

Chain Complex

\mathcal{C} :	<i>C</i> ₂	$\xrightarrow{\partial}$	C_1	$\xrightarrow{\sigma}$	C_0	with $\sigma \circ \partial = 0$
-----------------	-----------------------	--------------------------	-------	------------------------	-------	----------------------------------

Homological Quantum Rotor Codes

Construction

Physical Realizati

Conclusion

Homology

Chain Complex

Homological Quantum Rotor Codes

Constructio

Physical Realizatio

Conclusion

Homology

Chain Complex

Homological Quantum Rotor Codes

Constructio

Physical Realization

Conclusion

Homology

Chain Complex C: C_2 C_1 Cn with $\sigma \circ \partial = 0$ H_{Z}^{T} H_X Ш Ш Ш \mathbb{Z}^{r_x} \mathbb{Z}^n *¶rz* Ш Ш П stabilizers syndrome operators

Homology Group = X Logical Operators $H_1(\mathcal{C}, \mathbb{Z}) = \ker \sigma / \operatorname{im} \partial = \ker (H_Z) / \operatorname{im} (H_X)$ $= F \oplus T$ $= \mathbb{Z}^k \oplus (\mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_M}) = \mathcal{L}_X$

Homological Quantum Rotor Codes

Constructio

Physical Realizatio

Conclusion

Homology

Chain Complex C: with $\sigma \circ \partial = 0$ C_2 C_1 C_0 H_{z}^{T} H_X 11 Ш Ш \mathbb{Z}^{r_x} \mathbb{Z}^n *¶rz* Ш Ш П stabilizers syndrome operators

Homology Group = X Logical Operators

$$H_1(\mathcal{C}, \mathbb{Z}) = \ker \sigma / \mathrm{im} \partial = \ker (H_Z) / \mathrm{im} (H_X)$$
$$= F \oplus T$$
$$= \mathbb{Z}^k \oplus (\mathbb{Z}_{d_1} \oplus \cdots \oplus \mathbb{Z}_{d_{k'}}) = \mathcal{L}_X$$

 $\forall \boldsymbol{m} \in \mathcal{L}_X, \ \overline{X}(\boldsymbol{m}) = X(\boldsymbol{m}L_X + \boldsymbol{s}H_X), \quad L_X \in \mathbb{Z}^{(k+k') \times n}$

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion

Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

 $\mathsf{Christophe}\ \mathsf{VullLOT}$

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion

Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$oldsymbol{x} = egin{pmatrix} 0 & -1 & +1 & 0 \end{pmatrix} \in \ker \left(H_Z
ight) \
otin \inf \left(H_X
ight) \
otin \inf \left(H_X
ight)$$

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion

Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$oldsymbol{x} = egin{pmatrix} 0 & -1 & +1 & 0 \end{pmatrix} \in \ker{(H_Z)} \
otin{pmatrix}
otin (H_X) \
otin ($$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} = \begin{pmatrix} 0 & -2 & +2 & 0 \end{pmatrix} \in \operatorname{im}\left(\mathcal{H}_X
ight)$$

Homological Quantum Rotor Codes

Construction

Physical Realization

Conclusion

Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$oldsymbol{x} = egin{pmatrix} 0 & -1 & +1 & 0 \end{pmatrix} \in \ker{(H_Z)} \
otin{pmatrix}
otin (H_X) \
otin ($$

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} \begin{pmatrix} +1 & -1 & 0 & 0\\ 0 & 0 & +1 & -1\\ -1 & -1 & +1 & +1 \end{pmatrix} = \begin{pmatrix} 0 & -2 & +2 & 0 \end{pmatrix} \in \operatorname{im}(H_X)$$

 $eH_X = dw, w \notin im(H_X) \Rightarrow \mathbb{Z}_d \subset \mathcal{L}_X$

Homological Quantum Rotor Codes

Constructio

Physical Realizations

Conclusion

Cohomology with ${\mathbb T}$ Coefficients

 $\mathcal{C}: \mathcal{C}_2 \xrightarrow{\partial} \mathcal{C}_1 \xrightarrow{\sigma} \mathcal{C}_0$

Constructio

Physical Realization: 00 Conclusion

Cohomology with ${\mathbb T}$ Coefficients

$$\mathcal{C}: C_2 \xrightarrow{\partial} C_1 \xrightarrow{\sigma} C_0$$

Dual Chain Complex

$$\mathcal{C}^*: C_2^* \xleftarrow{\partial^*} C_1^* \xleftarrow{\sigma^*} C_0^*$$

Constructio

Physical Realizations

Conclusion

Cohomology with ${\mathbb T}$ Coefficients

$$\mathcal{C}: C_2 \xrightarrow{\partial} C_1 \xrightarrow{\sigma} C_0$$

Dual Chain Complex

$$\mathcal{C}^*: C_2^* \xleftarrow{\partial^*} C_1^* \xleftarrow{\sigma^*} C_0^*$$

where

$$egin{array}{rcl} C_j^* &=& \operatorname{Hom}(C_j, \mathbb{T}) \ \partial_j^* &:& C_{j-1}^* &\longrightarrow & C_j^* \ & \phi &\mapsto & \phi \circ \partial \end{array}$$

Constructio

Physical Realizations

Conclusion

Cohomology with ${\mathbb T}$ Coefficients

$$\mathcal{C}: C_2 \xrightarrow{\partial} C_1 \xrightarrow{\sigma} C_0$$

Dual Chain Complex

$$\mathcal{C}^*: C_2^* \xleftarrow{\partial^*} C_1^* \xleftarrow{\sigma^*} C_0^*$$

where

$$egin{array}{rcl} C_j^* &=& \operatorname{Hom}(C_j,\mathbb{T}) \ \partial_j^* &:& C_{j-1}^* &\longrightarrow & C_j^* \ & \phi &\mapsto & \phi \circ \partial \end{array}$$

$$\operatorname{Hom}(\mathbb{Z},\mathbb{T})\simeq\mathbb{T},\quad \partial^*=H_X^T,\quad \sigma^*=H_Z$$

uantum Rotors 00000 000	Homological Quantu	ım Rotor Codes	Construction 000000 000	ons Phy 00 0	sical Realizations	Conclusio 00
Cochain	Complex	Ou	r Case			
\mathcal{C}^* :	: C ₂ *	$\stackrel{\partial^*}{\leftarrow} H^T_X$	C_1	$\stackrel{\sigma^*}{\leftarrow} H_Z$	C_0*	
	T ^r x II syndrome		T ⁿ II		T ^r z II stabilizers	

Cohomology Group = Z Logical Operators $H^{1}(\mathcal{C}, \mathbb{T}) = \ker \partial^{*} / \operatorname{im} \sigma^{*} = \ker (H_{X}) / \operatorname{im} (H_{Z})$ $= \mathbb{T}^{k} \oplus \left(\mathbb{Z}_{d_{1}}^{*} \oplus \cdots \oplus \mathbb{Z}_{d_{k'}}^{*} \right)$ $= \mathcal{L}_{Z}$

Cohomology Group = Z Logical Operators

$$H^{1}(\mathcal{C}, \mathbb{T}) = \ker \partial^{*} / \operatorname{im} \sigma^{*} = \ker (H_{X}) / \operatorname{im} (H_{Z})$$
$$= \mathbb{T}^{k} \oplus \left(\mathbb{Z}_{d_{1}}^{*} \oplus \cdots \oplus \mathbb{Z}_{d_{k'}}^{*} \right)$$
$$= \mathcal{L}_{Z}$$

 $\forall \phi \in \mathcal{L}_Z, \ \overline{Z}(\phi) = Z(\phi L_Z + \nu H_Z), \quad L_Z \in \mathbb{Z}^{(k+k') \times n}$

Homological Quantum Rotor Codes

Construction

Physical Realizations

1 1)

Conclusion

Example

$$H_X = egin{pmatrix} +1 & -1 & 0 & 0 \ 0 & 0 & +1 & -1 \ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = egin{pmatrix} 1 & 1 \ H_Z = egin{pmatrix} 1 & 1 \ 1 & 1 \ H_Z = egin{pmatrix} 1 & 1 \ 1 & 1 \ H_Z = egin{pmatrix} 1 & 1 \ 1 & 1 \ H_Z = egin{pmatrix} 1 & 1 \ 1 & 1 \ H_Z = egin{pmatrix} 1 & 1 \ H_Z = egin{pmatrix$$

 $\mathsf{Christophe}\ \mathsf{V}\mathtt{UILLOT}$

Homological Quantum Rotor Codes

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion

Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$oldsymbol{z} = \phi egin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} \in \ker egin{pmatrix} H_X \end{pmatrix} ext{ iff } \phi = \pi$$

 $\mathsf{Christophe}\ \mathsf{V}\mathtt{UILLOT}$

Homological Quantum Rotor Codes

Construction

Physical Realization

Conclusion

Example

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$oldsymbol{z} = \phi egin{pmatrix} 1 & 1 & 0 & 0 \end{pmatrix} \in \ker egin{pmatrix} H_X \end{pmatrix} ext{ iff } \phi = \pi$$

A Logical Qubit $\overline{X} = X((0 \ -1 \ +1 \ 0)), \qquad \overline{Z} = Z(\pi (1 \ 1 \ 0 \ 0))$

Christophe VUILLOT

Homological Quantum Rotor Codes

Constructio

Physical Realizations

Conclusion

Noise Models

Pauli Noise

$$\forall m \in \mathbb{Z}, \ \mathbb{P}\left(X(m)\right) = N_X \exp\left(-\beta_X V_X(m)\right), \\ \forall \phi \in \mathbb{T}, \ \mathbb{P}\left(Z(\phi)\right) = N_Z \exp\left(-\beta_Z V_Z(\phi)\right).$$

Constructio

Physical Realization

Conclusion

Noise Models

Pauli Noise

$$\forall m \in \mathbb{Z}, \ \mathbb{P}\left(X(m)\right) = N_X \exp\left(-\beta_X V_X(m)\right), \\ \forall \phi \in \mathbb{T}, \ \mathbb{P}\left(Z(\phi)\right) = N_Z \exp\left(-\beta_Z V_Z(\phi)\right).$$

Possible Choice

$$V_{Z}(\phi) = \sin^{2}\left(\frac{\phi}{2}\right) \qquad \qquad \beta_{Z} = \frac{1}{\sigma^{2}}$$
$$V_{X}(m) = |m| \qquad \qquad \beta_{X} = -\log p$$

Constructio

Physical Realizations

Conclusion

Noise Models

Pauli Noise

$$\forall m \in \mathbb{Z}, \ \mathbb{P}\left(X(m)\right) = N_X \exp\left(-\beta_X V_X(m)\right), \\ \forall \phi \in \mathbb{T}, \ \mathbb{P}\left(Z(\phi)\right) = N_Z \exp\left(-\beta_Z V_Z(\phi)\right).$$

Possible Choice

$$V_{Z}(\phi) = \sin^{2}\left(\frac{\phi}{2}\right) \qquad \qquad \beta_{Z} = \frac{1}{\sigma^{2}}$$
$$V_{X}(m) = |m| \qquad \qquad \beta_{X} = -\log p$$

Weight Function

$$W_Z(\phi) = \sum_{j=1}^n V_Z(\phi_j) = \sum_{j=1}^n \sin^2\left(rac{\phi_j}{2}
ight)$$
 $W_X(oldsymbol{m}) = \sum_{j=1}^n V_X(m_j) = ||oldsymbol{m}||_1$

 $Christophe \ {\rm VullLOT}$

Homological Quantum Rotor Codes

Physical Realizations

Conclusion

Distances

X Distance

$$d_X = \min_{\boldsymbol{m} \neq \boldsymbol{0}} \min_{\boldsymbol{s} \in \mathbb{Z}^{r_X}} W_X(\boldsymbol{m} L_X + \boldsymbol{s} H_X)$$

Physical Realizations

Conclusion 00

Distances

X Distance

$$d_X = \min_{\boldsymbol{m} \neq \boldsymbol{0}} \min_{\boldsymbol{s} \in \mathbb{Z}^{r_X}} W_X(\boldsymbol{m} L_X + \boldsymbol{s} H_X)$$

Z Distances

$$\delta_{Z} = \min_{\phi \neq 0} \min_{\nu \in \mathbb{T}^{r_{z}}} \frac{W_{Z}(\phi L_{Z} + \nu H_{Z})}{W_{Z}(\phi)}$$

Homological Quantum Rotor Codes

Construction

Physical Realization

Conclusion

X Bound

X Distance

Given a quantum rotor code $C^{\text{rot}}(H_X, H_Z)$, denote as d_X^p the X distance of the corresponding qupit code $C^p(H_X, H_Z)$, then

$$d_X \ge \max_{p \in P} d_X^p,$$

where *P* is the set of qupit dimensions for which there exists a logical *X* of minimal weight in C^{rot} non trivial in C^{p} .

Physical Realization

Conclusion 00

Spreading Z Operators

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$
$$\mathbf{z} = \begin{pmatrix} \pi & \pi & 0 & 0 \end{pmatrix}$$

Homological Quantum Rotor Codes

Constructio

hysical Realizations

Conclusion

Spreading Z Operators

$$H_X = \begin{pmatrix} +1 & -1 & 0 & 0 \\ 0 & 0 & +1 & -1 \\ -1 & -1 & +1 & +1 \end{pmatrix} \qquad H_Z = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$
$$\mathbf{z} = \begin{pmatrix} \pi & \pi & 0 & 0 \end{pmatrix}$$

$$\mathbf{z} = \begin{pmatrix} \pi & \pi & 0 & 0 \end{pmatrix} - \frac{\pi}{2} H_Z \\ = \begin{pmatrix} \frac{\pi}{2} & \frac{\pi}{2} & -\frac{\pi}{2} & -\frac{\pi}{2} \end{pmatrix}$$

Homological Quantum Rotor Codes

Construction 000000 000 hysical Realization

Conclusion

Z Bound and Disjointness

Given $\mathcal{C}^{\mathrm{rot}}(H_X, H_Z)$,

Christophe VUILLOT

Homological Quantum Rotor Codes

24/44

Physical Realization

Conclusion 00

Z Bound and Disjointness

Given $C^{\text{rot}}(H_X, H_Z)$, pick a set Δ_X of N_X disjoint logical \overline{X} representatives with only 0, +1, -1 values.

Physical Realizations

Conclusion 00

Z Bound and Disjointness

Given $C^{\text{rot}}(H_X, H_Z)$, pick a set Δ_X of N_X disjoint logical \overline{X} representatives with only 0, +1, -1 values. Define $D_X = \max_{\boldsymbol{m} \in \Delta_X} |\boldsymbol{m}|$.

Physical Realization

Conclusion

Z Bound and Disjointness

Given $C^{\text{rot}}(H_X, H_Z)$, pick a set Δ_X of N_X disjoint logical \overline{X} representatives with only 0, +1, -1 values. Define $D_X = \max_{\boldsymbol{m} \in \Delta_X} |\boldsymbol{m}|$. Then for sufficiently large D_X and d_X , one can lowerbound the distance of a particular conjugated logical $Z(\alpha), \ \overline{XZ}(\alpha) = e^{i\alpha}\overline{Z}(\alpha)\overline{X}$, as

$$\delta_Z \geq \frac{N_X D_X \sin^2\left(\frac{\alpha}{2D_X}\right)}{\sin^2(\frac{\alpha}{2})}.$$

Physical Realizations

Conclusion

Code Parameters

A homological quantum rotor code, $C^{\rm rot}(H_X, H_Z)$, is described by the parameters

$$\llbracket n, (k, d_1 \cdot d_2 \cdot \ldots \cdot d_{k'}), (d_X, \delta_Z) \rrbracket_{\mathrm{rot}},$$

if it is defined on n quantum rotors,

Constructio

Physical Realizations

Conclusion

Code Parameters

A homological quantum rotor code, $C^{\rm rot}(H_X, H_Z)$, is described by the parameters

$$\llbracket n, (k, d_1 \cdot d_2 \cdot \ldots \cdot d_{k'}), (d_X, \delta_Z) \rrbracket_{\mathrm{rot}},$$

if it is defined on n quantum rotors, encodes k logical rotors

Constructio

Physical Realizations

Conclusion

Code Parameters

A homological quantum rotor code, $C^{\rm rot}(H_X, H_Z)$, is described by the parameters

$$\llbracket n, (k, d_1 \cdot d_2 \cdot \ldots \cdot d_{k'}), (d_X, \delta_Z) \rrbracket_{\mathrm{rot}},$$

if it is defined on *n* quantum rotors, encodes *k* logical rotors and k' logical qudits of dimensions $d_1, \ldots, d_{k'}$

Constructio

Physical Realizations

Conclusion

Code Parameters

A homological quantum rotor code, $C^{\rm rot}(H_X, H_Z)$, is described by the parameters

$$\llbracket n, (k, d_1 \cdot d_2 \cdot \ldots \cdot d_{k'}), (d_X, \delta_Z) \rrbracket_{\mathrm{rot}},$$

if it is defined on *n* quantum rotors, encodes *k* logical rotors and k' logical qudits of dimensions $d_1, \ldots, d_{k'}$ and has *X*-distance d_X and *Z*-distance δ_Z .

Constructions

hysical Realizations

Conclusion

Codes from Cellular Homology in 2D

Constructions

hysical Realizations

Conclusion

Codes from Cellular Homology in 2D

Example: Projective Plane

 $\mathsf{Christophe}\ \mathsf{VullLOT}$

Constructions

Physical Realizations

Conclusion

Projective Plane (Co)Homology

	Homology			Cohomology		
Coefficients	C ₂ -	$\xrightarrow{\partial} C_1 \xrightarrow{\sigma}$	$\rightarrow C_0$	$C_2^* \leftarrow$	$\xrightarrow{\partial^*} C_1^* \xleftarrow{\sigma^*}$	- <i>C</i> ₀ *
Z	0	\mathbb{Z}_2	\mathbb{Z}	\mathbb{Z}_2	0	\mathbb{Z}
\mathbb{T}	\mathbb{Z}_2	0	\mathbb{T}	0	\mathbb{Z}_2	\mathbb{T}
\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2
\mathbb{Z}_3	0	0	\mathbb{Z}_3	0	0	\mathbb{Z}_3
\mathbb{R}	0	0	\mathbb{R}	0	0	\mathbb{R}

Homological Quantum Rotor Codes

Constructions

Physical Realizations

Conclusion

Thin Möbius Strip

 $\llbracket 2N,(0,2),(2,N) \rrbracket_{\rm rot}$

Christophe VUILLOT

Homological Quantum Rotor Codes

28/44

Homological Quantum Rotor Codes

Constructions

Physical Realizations

Conclusion

Homological Quantum Rotor Codes

Constructions

Physical Realizations

Conclusion

Real Projective Space

Homological Quantum Rotor Codes

Constructions

Physical Realizations

Conclusion

Real Projective Space

Homological Quantum Rotor Codes

Constructions

Physical Realizations

Conclusion

Real Projective Space

 $[[3N^3 - N^2, (0, 2), (N, N)]]_{\rm rot}$

Homological Quantum Rotor Codes

Constructions

Physical Realizations

Conclusion

Construction from Product of Chain Complexes

$$\mathcal{C}: \mathbb{Z}^{m_{\mathcal{C}}} \xrightarrow{\partial^{\mathcal{C}}} \mathbb{Z}^{n_{\mathcal{C}}} \qquad \mathcal{D}: \mathbb{Z}^{n_{\mathcal{D}}} \xrightarrow{\partial^{\mathcal{D}}} \mathbb{Z}^{m_{\mathcal{D}}}$$

Constructions

Physical Realizations

Conclusion

Construction from Product of Chain Complexes

$$\mathcal{C}: \mathbb{Z}^{m_{\mathcal{C}}} \xrightarrow{\partial^{\mathcal{C}}} \mathbb{Z}^{n_{\mathcal{C}}} \qquad \mathcal{D}: \mathbb{Z}^{n_{\mathcal{D}}} \xrightarrow{\partial^{\mathcal{D}}} \mathbb{Z}^{m_{\mathcal{D}}}$$

$$\mathcal{C} \otimes \mathcal{D}: \qquad \mathbb{Z}^{m_C n_D} \xrightarrow{H_X} \mathbb{Z}^{n_C n_D + m_C m_D} \xrightarrow{H_Z^T} \mathbb{Z}^{n_C m_D}$$

Constructions 000000

Construction from Product of Chain Complexes

$$\mathcal{C}: \mathbb{Z}^{m_{\mathcal{C}}} \xrightarrow{\partial^{\mathcal{C}}} \mathbb{Z}^{n_{\mathcal{C}}} \qquad \qquad \mathcal{D}: \mathbb{Z}^{n_{\mathcal{D}}} \xrightarrow{\partial^{\mathcal{D}}} \mathbb{Z}^{m_{\mathcal{D}}}$$

$$\mathcal{C} \otimes \mathcal{D} : \qquad \mathbb{Z}^{m_C n_D} \xrightarrow{H_X} \mathbb{Z}^{n_C n_D + m_C m_D} \xrightarrow{H_Z^T} \mathbb{Z}^{n_C m_D}$$

$$H_{X} = \left(\partial^{\mathcal{C}} \otimes \mathbb{1}_{n_{D}} \quad -\mathbb{1}_{m_{C}} \otimes \partial^{\mathcal{D}}\right) \qquad H_{Z} = \left(\mathbb{1}_{n_{C}} \otimes \partial^{\mathcal{D}^{T}} \quad \partial^{\mathcal{C}^{T}} \otimes \mathbb{1}_{m_{D}}\right)$$

1 IT

Constructions

Physical Realizations

Conclusion

Künneth Theorem

$$\mathcal{C}: \ \ C_1 \ \ \stackrel{\partial^{\mathcal{C}}}{\longrightarrow} \ \ C_0 \ \ \left| \begin{array}{cc} \mathcal{D}: \ \ D_1 \ \ \stackrel{\partial^{\mathcal{D}}}{\longrightarrow} \ \ D_0 \end{array} \right.$$

Homology Group

$$egin{aligned} &\mathcal{H}_1(\mathcal{C}\otimes\mathcal{D})\simeq&\mathcal{H}_1(\mathcal{C})\otimes\mathcal{H}_0(\mathcal{D})\ &\oplus\mathcal{H}_0(\mathcal{C})\otimes\mathcal{H}_1(\mathcal{D})\ &\oplus\operatorname{Tor}\left(\mathcal{H}_0(\mathcal{C}),\mathcal{H}_0(\mathcal{D})
ight) \end{aligned}$$

Free+Free

$$H_1(\mathcal{C}\otimes\mathcal{D})=\mathbb{Z}^{k_Ck_D}$$

Repetition code + good LDPC $\Rightarrow \llbracket n, (\sqrt[3]{n}, 0), (\sqrt[3]{n}, \sqrt[3]{n}) \rrbracket_{\rm rot}$

Constructions

Physical Realizations

Conclusion

Künneth Theorem

$$\mathcal{C}: \ \ C_1 \ \ \stackrel{\partial^{\mathcal{C}}}{\longrightarrow} \ \ C_0 \ \ \left| \begin{array}{cc} \mathcal{D}: \ \ D_1 \ \ \stackrel{\partial^{\mathcal{D}}}{\longrightarrow} \ \ D_0 \end{array} \right.$$

Homology Group

Torsion+Free

$${\it H}_1({\cal C}\otimes {\cal D})=\left(\mathbb{Z}_{d_1}\oplus \cdots \oplus \mathbb{Z}_{d_{k_C'}}
ight)^{k_D}$$

Sign-twisted repetition code + good LDPC $\Rightarrow [\![n, (0, 2^{\sqrt[3]{n}}), (\sqrt[3]{n}, \sqrt[3]{n})]\!]_{\text{rot}}$

Constructions

Physical Realizations

Conclusion

Künneth Theorem

$$\mathcal{C}: \quad \mathcal{C}_1 \quad \xrightarrow{\partial^{\mathcal{C}}} \quad \mathcal{C}_0 \quad \left| \begin{array}{ccc} \mathcal{D}: & D_1 & \xrightarrow{\partial^{\mathcal{D}}} & D_0 \end{array} \right.$$

Homology Group

$$egin{aligned} &\mathcal{H}_1(\mathcal{C}\otimes\mathcal{D})\simeq&\mathcal{H}_1(\mathcal{C})\otimes\mathcal{H}_0(\mathcal{D})\ &\oplus\mathcal{H}_0(\mathcal{C})\otimes\mathcal{H}_1(\mathcal{D})\ &\oplus\operatorname{Tor}\left(\mathcal{H}_0(\mathcal{C}),\mathcal{H}_0(\mathcal{D})
ight) \end{aligned}$$

Torsion+Torsion

$$H_1(\mathcal{C}\otimes\mathcal{D})=igoplus_{i\in[k'_C],\,j\in[k'_D]}\mathbb{Z}_{\mathsf{gcd}(d_i, ilde d_j)}$$

Physical Realizations

Conclusion 00

Matrix with Torsion

Pick $H \in \{0,1\}^{(n-k) \times n}$ full rank parity check matrix of binary code $C_{\rm b}$. Define

$$M=H^TH \pmod{2}\in\{0,1\}^{n imes n}.$$

Physical Realizations

Conclusion

Matrix with Torsion

Pick $H \in \{0,1\}^{(n-k) \times n}$ full rank parity check matrix of binary code $C_{\rm b}$. Define

$$M = H^T H \pmod{2} \in \{0,1\}^{n imes n}.$$

If ${\it M}$ is full rank (over $\mathbb{Z})$ then you only have torsion for codewords of $\mathcal{C}_{\rm b}$

$$\forall \mathbf{x} \in \mathcal{C}_{\mathrm{b}}, \ \mathbf{M}\mathbf{x} = 2\mathbf{w}, \quad \mathbf{w} \not\in \mathrm{im}(\mathbf{M})$$

Construction

Conclusion 00

Hamiltonian for the Code

Given $C^{\text{rot}}(H_X, H_Z)$ we can define the following Hamiltonian

$$egin{split} \mathcal{H}_{ ext{code}} = -\sum_{j=1}^{r_{X}} \cos\left(oldsymbol{h}_{j}^{X}\cdotoldsymbol{\hat{ heta}}
ight) + \sum\left(oldsymbol{h}_{j}^{Z}\cdotoldsymbol{\hat{ heta}}
ight)^{2} \end{split}$$

Construction

Conclusion 00

Hamiltonian for the Code

Given $\mathcal{C}^{\mathrm{rot}}(H_X, H_Z)$ we can define the following Hamiltonian

$$egin{split} \mathcal{H}_{ ext{code}} = -\sum_{j=1}^{r_{X}} \cos\left(oldsymbol{h}_{j}^{X}\cdotoldsymbol{\hat{ heta}}
ight) + \sum\left(oldsymbol{h}_{j}^{Z}\cdotoldsymbol{\hat{ heta}}
ight)^{2} \end{split}$$

The groundspace of H_{code} is the code. Can it be realized?

Construction

Physical Realizations

Conclusion 00

Superconducting Circuits

Circuit elements

- Josephson junction $ightarrow \cos(\hat{ heta}_1 \hat{ heta}_2)$
- Isolated large capacitance $ightarrow \sim \left(\hat{\ell}_1 + \hat{\ell}_2
 ight)^2$

Construction

Physical Realizations

Conclusion 00

Superconducting Circuits

Circuit elements

- Josephson junction $ightarrow \cos(\hat{ heta}_1 \hat{ heta}_2)$
- Isolated large capacitance $ightarrow \sim \left(\hat{\ell}_1 + \hat{\ell}_2
 ight)^2$

No-go for JJ based subsystem rotor codes

Rotor subsystem code with only $X_i X_j^{\dagger}$ -type X-gauge generators and any Z-gauge generators can **only encode logical rotors**.

Construction

Physical Realizations

Conclusion 00

Superconducting Circuits

Circuit elements

- Josephson junction $ightarrow \cos(\hat{ heta}_1 \hat{ heta}_2)$
- Isolated large capacitance $ightarrow \sim \left(\hat{\ell}_1 + \hat{\ell}_2
 ight)^2$

No-go for JJ based subsystem rotor codes

Rotor subsystem code with only $X_i X_j^{\dagger}$ -type X-gauge generators and any Z-gauge generators can **only encode logical rotors**.

 \Rightarrow Need a perturbative approach

Homological Quantum Rotor Codes

Construction

Conclusion 00

$0-\pi$ Qubit

Christophe VUILLOT

Homological Quantum Rotor Codes

Homological Quantum Rotor Codes

Construction

Conclusion 00

$0-\pi$ Qubit

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion 00

Kitaev's Current-Mirror/Möbius Strip Qubit

Homological Quantum Rotor Codes

Construction

Physical Realizations

Conclusion 00

Kitaev's Current-Mirror/Möbius Strip Qubit

Construction

hysical Realization

Conclusion

Summary

- Defined Homological Quantum Rotor Codes
- Logical rotors or logical qudits without modular constraints
- X-distance straightforward, Z-distance more tricky
- Can construct codes with at least $\sqrt[3]{n}$ -distance
- Describe 0- π type protected superconducting qubits

Construction

Physical Realization

Conclusion

Future Directions

- Superconducting circuits for any homological rotor code?
- Explore 3D codes (toric/Haah)
- Rotor code \rightarrow number-phase code \rightarrow multimode cat code?
- Systolic freedom and the relation with torsion?
- Active realizations?

Whiteboard 0

Spread-out Logicals for the Möbius Strip π

Details

Details •00 Whiteboard 0

Details

Whiteboard O

Hamming Code Examples

 $\mathsf{Christophe}\ \mathsf{V}\mathtt{UILLOT}$

Details 000 Whiteboard 0

Square Hamming Code Parity Check Matrix

$$H^{T}H \pmod{2} = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \quad H_{0} = \mathbb{Z}_{2}^{3} \oplus \mathbb{Z}_{4}$$
$$G_{C}^{\prime} = \begin{pmatrix} -1 & 0 & 0 & 1 & 0 & 1 & -1 \\ -1 & 0 & 0 & 0 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 & -1 \\ -1 & 1 & -1 & 1 & 1 & 1 & -1 \end{pmatrix} \quad E_{C}^{\prime} = \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Details 000

Christophe VUILLOT

Homological Quantum Rotor Codes