

Toward Efficient Genomic Compression using Channel Codes for Joint Alignment and Reconstruction

Yuval Cassuto Joint w/ Yotam Gershon

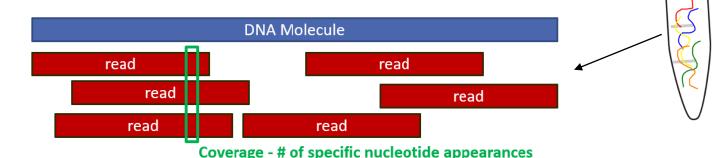
Technion – Electrical and Computer Engineering Simons Workshop on Application-Driven Coding Theory March 5, 2024

Genomic Data in Medicine and Science

- Virus detection and identification (e.g. Covid-19)
- Prenatal genetic diagnosis
- Species evolution studies
- Many more...
- Personalized medicine

Key features of DNA information

- 1. The nature of the info
 - Vast similarities between individuals
 - 99.99% to our neighbor
 - 97% to a chimpanzee
- 2. The format of the info
 - Sequencing short reads



Phosphate

backbone

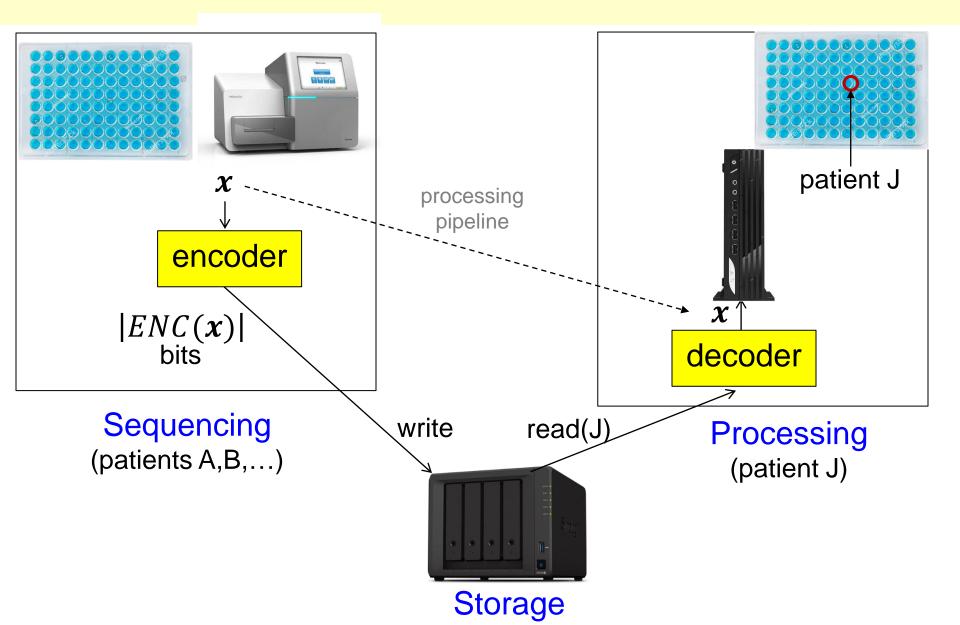
DNA

Encoding DNA: communication



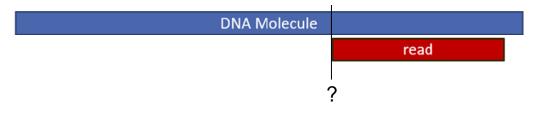
- DNA sampled in clinic but stored and processed in cloud
- Huge amount of data, compression is essential
 - A single uncompressed genome: ~GB
 - Much bigger due to high read coverage (e.g. x50)

Encoding DNA: storage



The challenge of read compression

- Compressing reads individually is too weak, but
- 2. Encoder does not know read locations within sequence



Genomic read compression: Known methods

<u>1. Reference-free</u>

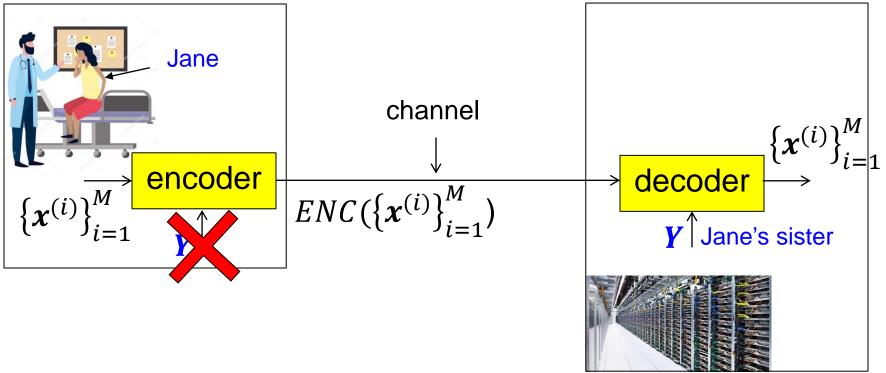
Exploit similarities among the compressed reads

2. Reference-based

Exploit similarities between the reads and a reference sequence

In both methods: Extremely high encoding complexity!

The proposed approach: Decoder-only reference



- Y contains segments "similar" to x (few differences: substitutions, deletions, insertions)
- Only decoder has **Y**
 - Limited resources in clinic
 - Privacy

Problem Formulation

<u>Goal</u>: encode $\{x^{(i)}\}_{i=1}^{M}$ from X s.t a decoder with access to Y will perfectly reconstruct them with high probability.

<u>Definition</u>: A (M, n, \mathcal{R}, P_s) -code is a pair of encoder-decoder $(\mathcal{E}, \mathcal{D})$ for a set $\{x^{(i)}\}_{i=1}^{M}$ of length-*n* reads, such that:

- 1. The encoded size is $\left| \mathcal{E} \left(\left\{ \boldsymbol{x}^{(i)} \right\}_{i=1}^{M} \right) \right| = nM \cdot \mathcal{R}$ (fixed rate)
- 2. The decoding-success probability satisfies

$$\Pr\left\{\mathcal{D}\left[\mathcal{E}\left(\left\{\boldsymbol{x}^{(i)}\right\}_{i=1}^{M}\right), \boldsymbol{Y}\right] = \left\{\boldsymbol{x}^{(i)}\right\}_{i=1}^{M}\right\} \ge \boldsymbol{P}_{s}$$

A practical code construction

batch of reads

$$\{\boldsymbol{x}^{(i)}\}_{i=1}^{M} \longrightarrow \boldsymbol{\chi} \longrightarrow \text{encoder} \xrightarrow{ENC(\boldsymbol{\chi})} = H \cdot \boldsymbol{\chi}$$

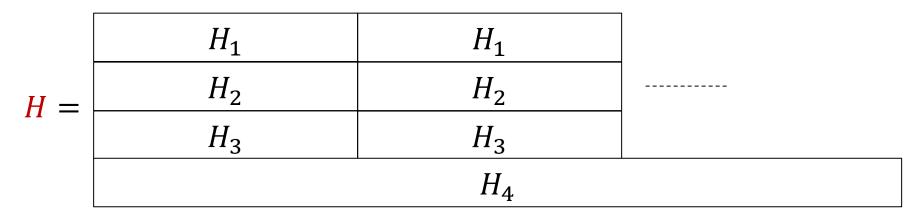
Multi-layer code construction:

- 1. Read alignment $H_1 \cdot x^{(i)}$
- 2. Read reconstruction $H_2 \cdot x^{(i)}$
- 3. Read validation $H_3 \cdot x^{(i)}$

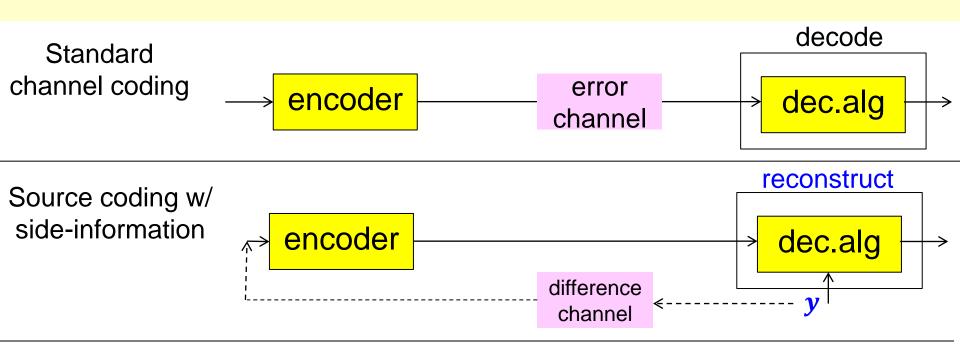
4. Error/failure correction $H_4 \cdot \chi$

Analysis:

How to find layer parameters to reach success probability P_s with minimal rate.

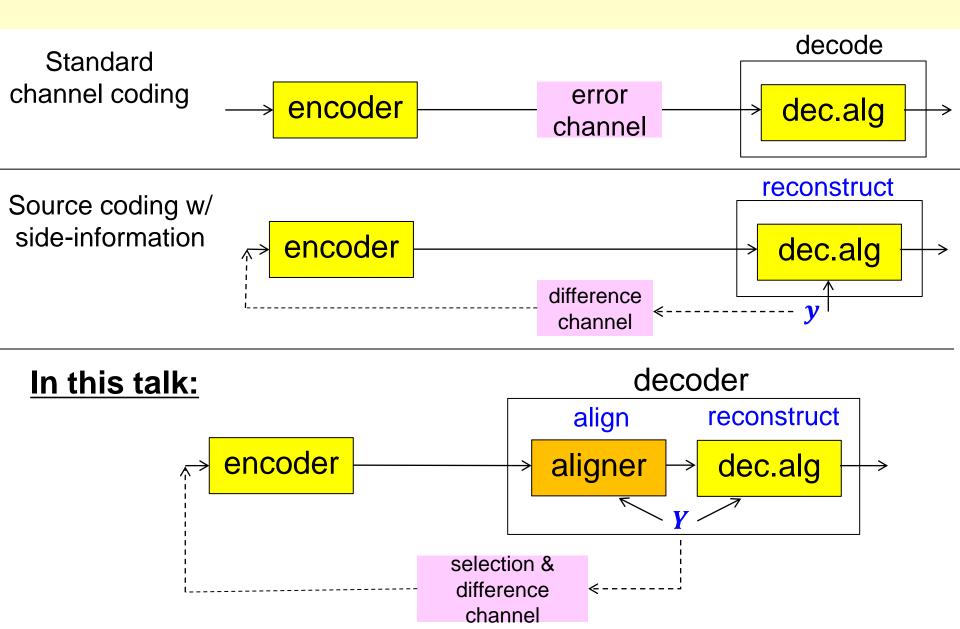


Joint Alignment and Reconstruction



In this talk:

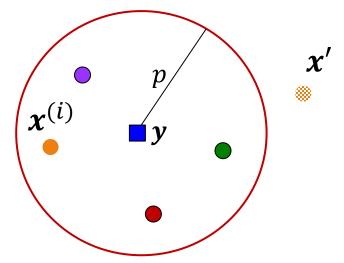
Joint Alignment and Reconstruction



Reconstruct from side information

Inputs:

1) y2) $synd(x^{(i)}) = s$ (coset / color)

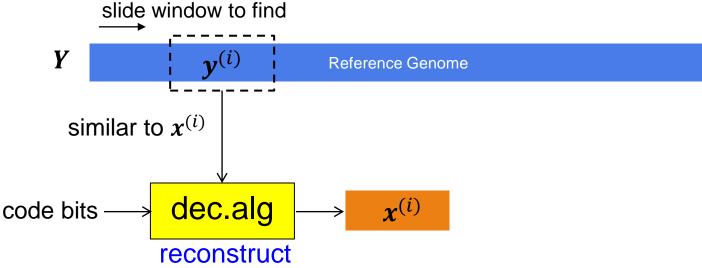


<u>Output</u>: (Unique) word with color s in ball around y.

[Orlitsky, Viswanathan '03] (1-Way Comm.), [Pradhan, Ramchandran '03] (DISCUS)

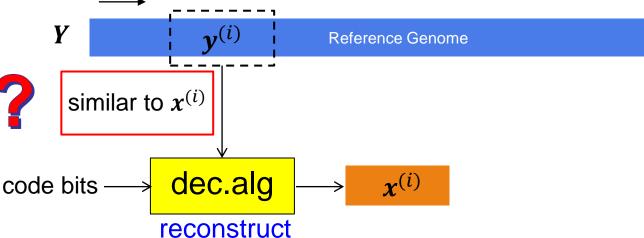
Align & Reconstruct @ Decoder

To reconstruct $\mathbf{x}^{(i)}$ slide wind



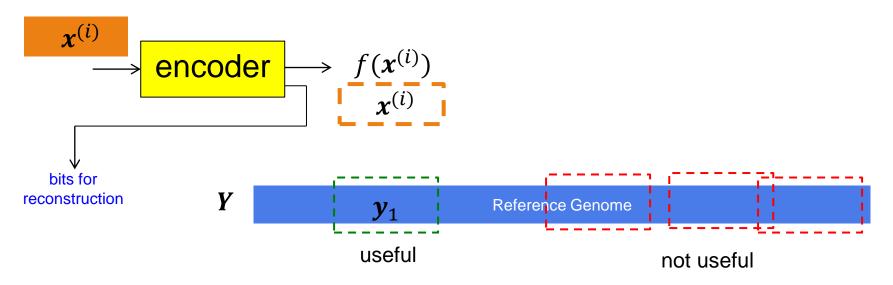
Align & Reconstruct @ Decoder

To reconstruct $x^{(i)}$ slide window to find Y $y^{(i)}$ similar to $x^{(i)}$



Decoder Alignment Problem

Decoder aligns $x^{(i)}$ to Y using $f(x^{(i)})$



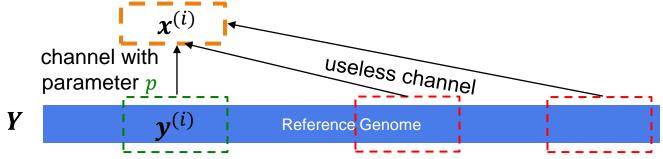
The alignment problem:

Find segments \boldsymbol{y} that are **likely** <u>useful</u> for reconstructing $\boldsymbol{x}^{(i)}$

Decoder Alignment Model

Assumption:

Each $x^{(i)}$ is the output of $y^{(i)}$ from a difference channel with parameter p.



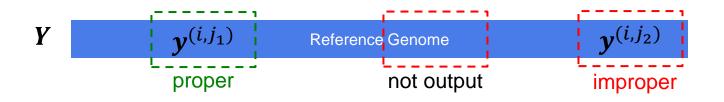
The alignment problem now: Find $y^{(i)}$ with high probability, and reject most useless segments.

Proper and Improper Alignments

Alignment operation:

Given $f(x^{(i)})$, output alignment positions $y^{(i,1)}$, $y^{(i,2)}$, ..., $y^{(i,K_i)}$

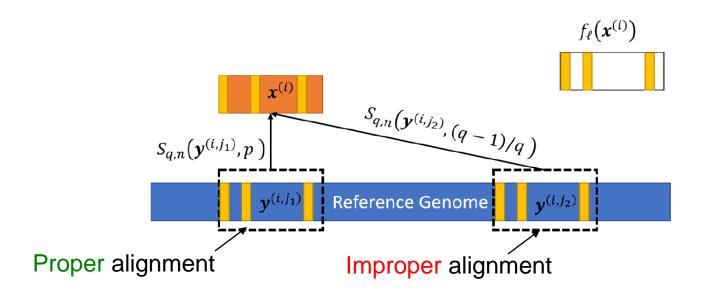
$$x^{(i)}$$



- Proper alignment: the $y^{(i,j_1)}$ that equals $y^{(i)}$ (if found)
- Improper alignments: the remaining K_i positions $oldsymbol{y}^{(i,j)}$

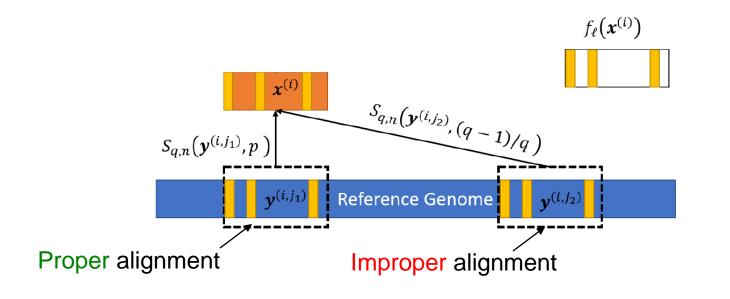
Decoder Alignment – substitution differences

- Substitution differences $\Rightarrow q$ -ary symmetric channels
 - Parameter p for proper alignment
 - Parameter (q 1)/q (useless) for improper alignments
- Take $f_{\ell}(\boldsymbol{x}^{(i)})$ as length- ℓ sample of $\boldsymbol{x}^{(i)}$
- Output set of candidates $Y^{(i)} = \left\{ y^{(i,j)} | d_H \left(f_{\ell}(x^{(i)}), f_{\ell}(y^{(i,j)}) \right) \le T \right\}_{i=1}^{\kappa_i}$



Decoder Alignment – substitution differences

- Substitution differences $\Rightarrow q$ -ary symmetric channels
 - Parameter p for proper alignment
 - Parameter (q 1)/q (useless) for improper alignments
- Take $f_{\ell}(\pmb{x}^{(i)})$ as length- ℓ sample of $\pmb{x}^{(i)}$
- Output set of candidates $Y^{(i)} = \left\{ y^{(i,j)} | d_H \left(f_\ell(x^{(i)}), f_\ell(y^{(i,j)}) \right) \le T \right\}_{i=1}^{\kappa_i}$



Tradeoff between finding proper and avoiding improper alignments

Difference Model with Deletions

- <u>Model</u>: *single deletion multiple substitutions (SDMS)* per read *y* 000000
 - \downarrow SDMS Ex. 1 del, 2 subs.
- Justification: deletions are rare compared to substitutions
- <u>Q</u>: How to align under SDMS errors?

X

Alignment Metrics

$$q = 2$$

full segments *x*, *y*

- $d_H(x, y)$ <u>not good</u> anymore. Ex. $d_H(1010, 0101) = 4$.
- Levenshtein distance (Levenshtein, 1965)
 - Disadvantages: prohibitive complexity (dynamic programming)
- Shifted-Hamming distance (Xin et al, 2015) –

$$d_{SH}(\boldsymbol{x},\boldsymbol{y}) = \sum_{i=1}^{n} \bigwedge_{j=0}^{j-1} x_i \oplus y_{i+j}$$

- Matching each index with r adjacent indexes (for r deletions)
- Advantage: linear complexity
- Disadvantage: high rate of false alignment

A New Alignment Distance

 $x \in \Sigma^n$, $y \in \Sigma^{n+1}$

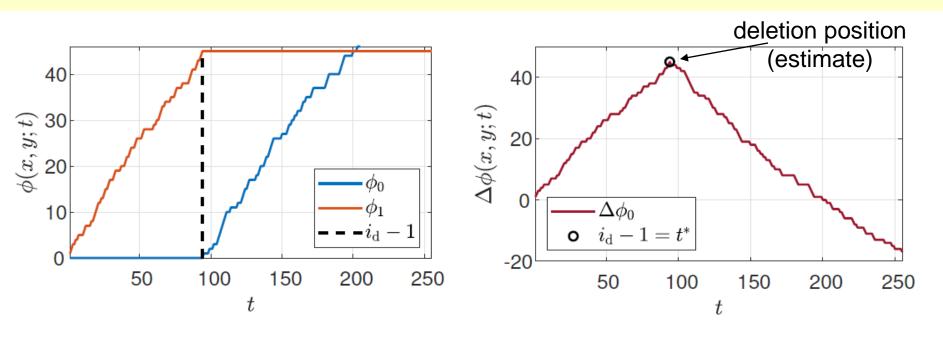
<u>Definition</u>: cumulative Hamming distance

$$\phi_j(\mathbf{x}, \mathbf{y}; t) \triangleq \sum_{i=1}^t x_i \bigoplus y_{i+j}$$

- <u>Definition</u>: differential cumulative Hamming distance $\Delta \phi_j(\mathbf{x}, \mathbf{y}; t) = \phi_{j+1}(\mathbf{x}, \mathbf{y}; t) - \phi_j(\mathbf{x}, \mathbf{y}; t)$
- <u>Definition</u>: shift-compensating distance (r=1) $d_{s.c}(x, y) = \phi_1(x, y; n) - \max_{0 \le t \le n} \{\Delta \phi_0(x, y; t)\}$

$$= \phi_1(x, y; n) - [\phi_1(x, y; t^*) - \phi_0(x, y; t^*)]$$

S.C Distance: Graphical Example



- $\phi_0(t)$ counts substitutions until index t, and random matches thereafter
- $\phi_1(t)$ counts random matches until index t, and substitutions thereafter
- $d_{s.c}$ counts substitutions while compensating for the partial shift due to deletion

Exact Distance Distribution

<u>Theorem</u>:

Define R.V D_n : S.C distance between random $x \in \Sigma^n$, $y \in \Sigma^{n+1}$ Then,

$$P(D_n = r) = \frac{1}{4^n} \sum_{m=0}^{n-r} \sum_{t=m}^n \sum_{k=0}^{n-m} \sum_{w=0}^k \sum_{l=0}^{t-1} A_1(t, w, m, l) \sum_{v=0}^{n-t-} A_2(v, t, k - w, r - l)$$

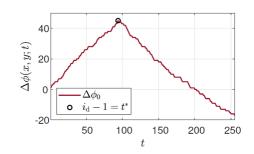
where $A_1(\cdot,\cdot,\cdot,\cdot)$ and $A_2(\cdot,\cdot,\cdot,\cdot)$ are closed-form combinatorial expressions.

Distribution of S.C Distance: Proof idea

Suppose **unrelated** vectors $x \in \Sigma^n$, $y \in \Sigma^{n+1}$ (independent Bernoulli 1/2)

•
$$\Delta \phi_0(t) = \sum_{i=0}^t \Delta_i$$
, $\Delta_0 = 0$, $\Delta_i \in \{0, \pm 1\}$ w.p $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

• Hence: $\Delta \phi_0(t)$ = symmetric random walk with null steps

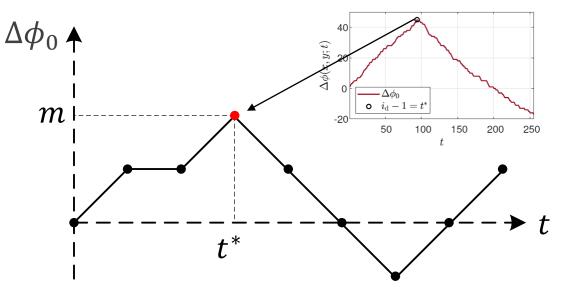


Distribution of S.C Distance: Proof idea

Suppose **unrelated** vectors $x \in \Sigma^n$, $y \in \Sigma^{n+1}$ (independent Bernoulli 1/2)

•
$$\Delta \phi_0(t) = \sum_{i=0}^t \Delta_i$$
, $\Delta_0 = 0$, $\Delta_i \in \{0, \pm 1\}$ w.p $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- Hence: $\Delta \phi_0(t)$ = symmetric random walk with null steps
- Given t^* , m: count R.Ws that attain global max m at time t^*



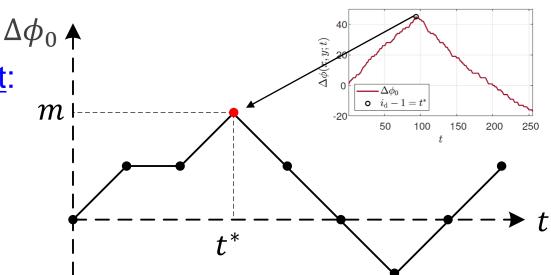
Distribution of S.C Distance: Proof idea

Suppose **unrelated** vectors $x \in \Sigma^n$, $y \in \Sigma^{n+1}$ (independent Bernoulli 1/2)

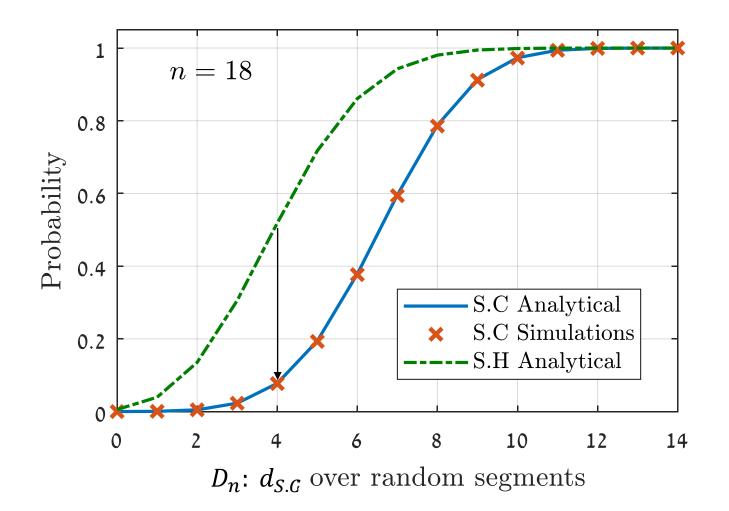
•
$$\Delta \phi_0(t) = \sum_{i=0}^t \Delta_i$$
, $\Delta_0 = 0$, $\Delta_i \in \{0, \pm 1\}$ w.p $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

- Hence: $\Delta \phi_0(t)$ = symmetric random walk with null steps
- Given t^* , m: count R.Ws that attain global max m at time t^*

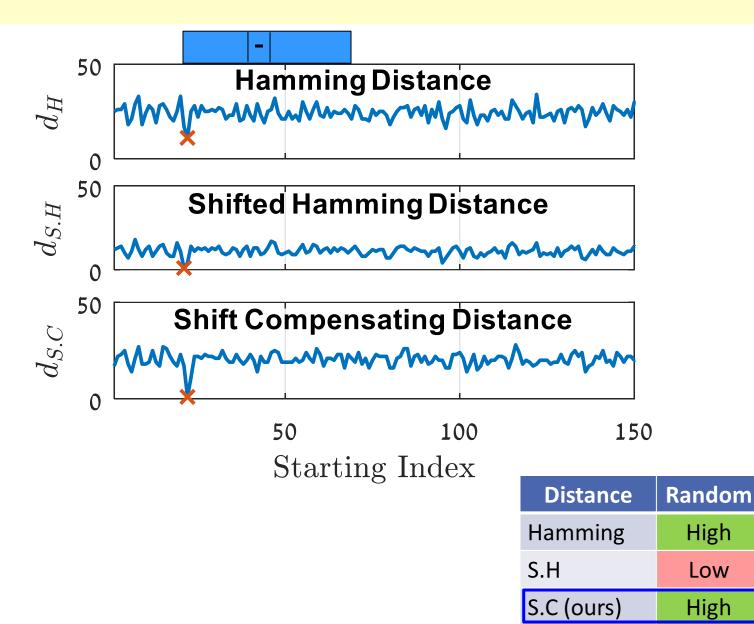
Additional proof ingredient:Counting how many x, ympairs map to each (m, t)random walk.



S.C-Distance Advantage



S.C Alignment Advantage



True

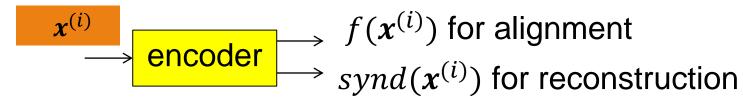
High

Low

Low

Sharing bits between alignment and reconstruction

So far, separate encoded bits for alignment and reconstruction:



Potential savings:

Use same bits for both alignment and reconstruction.

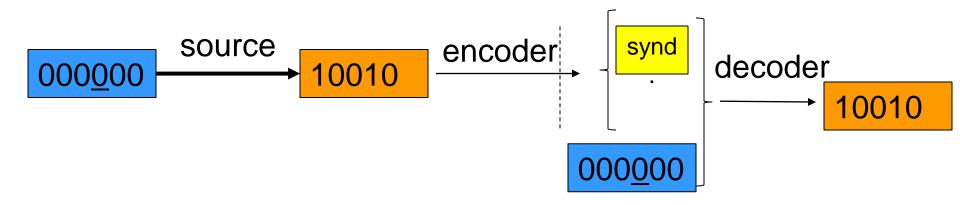
Reconstruction from SDMS Errors

• In channel coding: need SDMS-correcting code

Reconstruction from SDMS Errors

• In channel coding: need SDMS-correcting code

• In source coding:

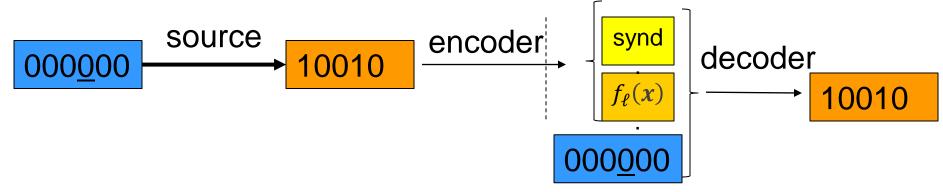


Reconstruction from SDMS Errors

• In channel coding: need SDMS-correcting code

• In source coding:

Observation: $f_{\ell}(x)$ gives information on deletion position

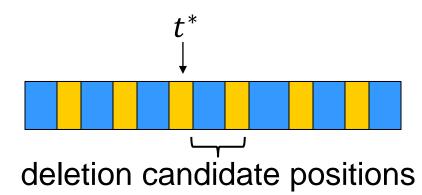


Estimate deletion interval from $d_{s.c}(f_{\ell}(\mathbf{x}^{(i)}), \mathbf{y}^{(i,j)})$

Can calculate S.C distance on $f_{\ell}(\cdot)$ instead of full segments

Then, recall from S.C distance: $t^* = \underset{0 \le t \le \ell}{\operatorname{argmax}} \{\Delta \phi'_0(f_\ell(\mathbf{x}), \mathbf{y}); t)\}$

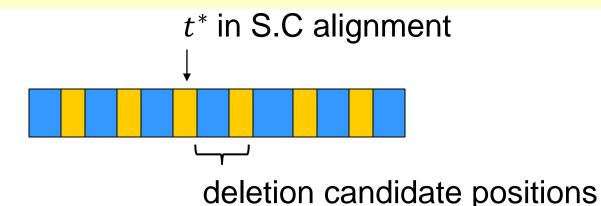
y :	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9
x :	X 1	X 2	X 3	X 4	X 6	X 7	X 8	X 9	-
			С	andio	dates	5			
z ⁽¹⁾ :	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9	-
z ⁽²⁾ :	X 1	X 3	X 4	X 5	X 6	X 7	X 8	X 9	-
z ⁽³⁾ :	X 1	X ₂	X 4	X 5	X 6	X 7	X 8	X 9	-
z ⁽⁴⁾ :	X 1	X 2	X 3	X 5	X 6	X 7	X 8	X 9	-
z ⁽⁵⁾ :	X 1	X 2	X 3	X 4	X 6	X 7	X 8	X 9	-
z ⁽⁶⁾ :	X 1	X ₂	X 3	X 4	X 5	X 7	X 8	X 9	-
z ⁽⁷⁾ :	X 1	X ₂	X 3	X 4	X 5	X 6	X 8	X 9	-
z ⁽⁸⁾ :	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 9	-
<u> </u>									



small ambiguity in deletion position

few added substitutions

SDMS Reconstruction Algorithm



x'

X

Reconstruction algorithm:

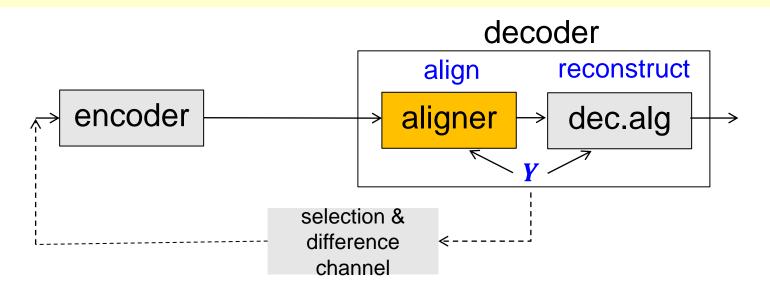
- 1. Invoke substitutions decoder over each word in y's deletion-candidate list
- 2. Apply a **majority** rule on decoder outputs

	y :	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9		
	x :	X 1	X 2	X 3	X 4	X 6	X 7	X 8	X 9	-		
	Candidates											
	z ⁽¹⁾ :	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9	-		
۲	z ⁽²⁾ :	X 1	X 3	X 4	X 5	X 6	X 7	X 8	X 9	-		
	z ⁽³⁾ :	X 1	X 2	X 4	X 5	X 6	X 7	X 8	X 9	-		
	z ⁽⁴⁾ :	X 1	X 2	X 3	X 5	X 6	X 7	X 8	X 9	-		
	z ⁽⁵⁾ :	X 1	X 2	X 3	X 4	X 6	X 7	X 8	X 9	-		
	z ⁽⁶⁾ :	X 1	X 2	X 3	X 4	X 5	X 7	X 8	X 9	-		
	z ⁽⁷⁾ :	X 1	X 2	X 3	X 4	X 5	X 6	X 8	X 9	-		
	z ⁽⁸⁾ :	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 9	-		
	z ⁽⁹⁾ :	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	-		

Contribution summary

- 1. A new problem: joint alignment + reconstruction
- 2. Efficient and flexible coding scheme
- 3. Alignment algorithms with proven detection capabilities

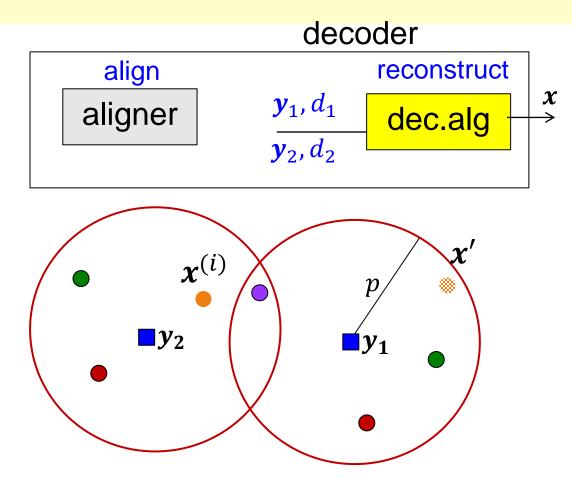
Open directions: alignment



S.C distance can be extended to any number of deletions/insertions

- No longer linear time
- But linear-time approximation works well in practice
- Theory?

Open directions : reconstruction



Reconstruct a read jointly from multiple alignments

- Develop soft/iterative decoders

To read more

- "Genomic compression with read alignment at the decoder", JSAIT special issue in memory of Alexander Vardy, 2023.
- "Genomic compression with decoder alignment under single deletion and multiple substitutions", YG&YC, ISIT2022
- "Distributed source coding of fragmented genomic sequencing data", YG&YC, ISIT2021