Sparsity and Privacy in Distributed Matrix Multiplication

Rawad Bitar

Joint work with

Maximilian Egger, Marvin Xhemrishi and Antonia Wachter-Zeh
School of Information Computation and Technology
Technical University of Munich, Germany

March 8, 2024
DFG
Deutsche
Forschungsgemeinschaft
German Research Foundation

Tremendous Amount of Data Generated and Analyzed

Figure: Data Created per Minute (2021) ${ }^{1}$

Figure: History of Worldwide Data (2021) ${ }^{2}$

Our main concerns:

Privacy and Efficiency in distributed learning

[^0]

This talk
Main Node - Workers

Decentralized Learning

Federated Learning

Main Challenges in Distributed Learning

Worker 2 Worker 3

- Stragglers: Slow or unresponsive workers
- Heterogeneity: Different time-varying computing power of the workers
- Privacy: Workers collude to gain knowledge of main node's data
- Security: Workers are malicious and try to jam the computation
- Efficiency: Reduce overall run-time and compute time of the workers

Main Challenges in Distributed Learning

Worker 2 Worker 3

- Stragglers: Slow or unresponsive workers
- Heterogeneity: Different time-varying computing power of the workers
- Privacy: Workers collude to gain knowledge of main node's data
- Security: Workers are malicious and try to jam the computation
- Efficiency: Reduce overall run-time and compute time of the workers

In this talk

Efficiency (sparsity), privacy and stragglers.

System Model: Computation, Sparsity and Privacy

- Data: Sparse private matrices in \mathbb{F}_{q}

$$
\operatorname{Pr}\left(A_{i, j}=a\right)= \begin{cases}s_{\mathrm{A}} & \text { for } a=0 \\ \frac{1-s_{\mathrm{A}}}{q-1} & \text { otherwise }\end{cases}
$$

- Privacy: IT privacy of A and B
- No collusion: Each worker eavesdrops alone
- Stragglers: Slow or unresponsive workers
- Efficiency: sparsity of matrices assigned to the workers

System Model: Computation, Sparsity and Privacy

- Data: Sparse private matrices in \mathbb{F}_{q}

$$
\operatorname{Pr}\left(A_{i, j}=a\right)= \begin{cases}s_{\mathrm{A}} & \text { for } a=0 \\ \frac{1-s_{\mathrm{A}}}{q-1} & \text { otherwise }\end{cases}
$$

- Privacy: IT privacy of A and B
- No collusion: Each worker eavesdrops alone
- Stragglers: Slow or unresponsive workers
- Efficiency: sparsity of matrices assigned to the workers

> Desired coding scheme
> Encode A and B satisfying
> \diamond Privacy constraints
> \diamond Best sparsity in the codewords
> \diamond Straggler tolerance

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy
Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Outline

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:

- Observation is statistically independent from the private data, i.e., $I($ private data; observation $)=0$
Assumptions:
+ Adversary with unbounded computation power
- Limited number of collusions

Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:

- Observation is statistically independent from the private data, i.e., $\mathrm{I}($ private data; observation $)=0$
Assumptions:
+ Adversary with unbounded computation power
- Limited number of collusions

Variations of Information-Theoretic privacy

- Perfect: I(private data; observation) $=0$ Usual privacy measure
- Strong: I(private data; observation) $=\varepsilon \xrightarrow{\text { when the data is large }} 0$
- Weak: $\mathrm{I}($ private data; observation $)=\varepsilon>0$

Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:

- Observation is statistically independent from the private data, i.e.,
$I($ private data; observation $)=0$
Assumptions:
+ Adversary with unbounded computation power
- Limited number of collusions

Encoding

- Draw random matrices R and S
- $\mathrm{A} \rightarrow f_{\mathrm{A}}(x)=\mathrm{A}+x \mathrm{R}$
- $\mathrm{B} \rightarrow g_{\mathrm{B}}(x)=\mathrm{B}+x \mathrm{~S}$
- Assign $f_{\mathrm{A}}\left(\alpha_{i}\right)$ and $g_{\mathrm{B}}\left(\alpha_{i}\right)$ to worker i Privacy guarantee
- Depends on how R and S are drawn

Variations of Information-Theoretic privacy

- Perfect: I(private data; observation) $=0$ Usual privacy measure
- Strong: I(private data; observation) $=\varepsilon \xrightarrow{\text { when the data is large }} 0$
- Weak: $\mathrm{I}($ private data; observation $)=\varepsilon>0$

$$
A \in \mathbb{F}_{q}^{s \times r} \longrightarrow \begin{aligned}
& \text { Secret Sharing } \\
& (n, k, z)=(n, 2,1)
\end{aligned}
$$

Private matrix

Private matrix

Randomness

- In several applications, e.g., medical imaging, data is represented by sparse matrices (non-uniform)

Problem of perfect privacy

Output shares have uniform distribution \Rightarrow Higher computation complexity.

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Trading Off Sparsity vs. Privacy

- Insisting on perfect privacy does not allow sparsity

Lemma: fundamental tradeoff [BEWX24]

For $k=2$ and $z=1$, perfect privacy can be achieved if and only if the entries of R are i.i.d uniformly at random.

[^1]
Trading Off Sparsity vs. Privacy

- Insisting on perfect privacy does not allow sparsity

Lemma: fundamental tradeoff [BEWX24]

For $k=2$ and $z=1$, perfect privacy can be achieved if and only if the entries of R are i.i.d uniformly at random.

Figure: Relative leakage $\bar{\varepsilon}=\frac{I(A+x R ; A)}{H(A)}$ as function of desired sparsity.

[^2]
Main Idea

Design R dependently on A , i.e., design a conditional PMF $\mathrm{P}_{\mathrm{R} \mid \mathrm{A}}\left(R_{i j}=r \mid A_{i j}=a\right)$.
\Rightarrow This allows for sparsity, but leaks information about A.

Challenge

Given a desired sparsity of the shares, design R to get the smallest leakage.

Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and $A+R$. Design R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}= \begin{cases}p_{1}, & r=0 \\
\frac{1-p_{1}}{q-1}, & r \neq 0,\end{cases} \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{2}, & r=0 \\
p_{3}, & r=-a \\
\frac{1-p_{2}-p_{3}}{q-2}, & r \notin\{0,-a\} .\end{cases}
\end{aligned}
$$

[^3]
Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and $A+R$. Design R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}= \begin{cases}p_{1}, & r=0 \\
\frac{1-p_{1}}{q-1}, & r \neq 0,\end{cases} \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{2}, & r=0 \\
p_{3}, & r=-a \\
\frac{1-p_{2}-p_{3}}{q-2}, & r \notin\{0,-a\} .\end{cases}
\end{aligned}
$$

[^4]
Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and $A+R$. Design R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{ll}
p_{1}, & r=0 \\
\frac{1-p_{1}}{q-1}, & r \neq 0, \\
\text { (Sparisty of } \mathrm{R} \text {) } \\
\operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{2}, & r=0 \\
p_{3}, & r=-a \\
\frac{1-p_{2}-p_{3}}{q-2}, & r \notin\{0,-a\} .\end{cases}
\end{array} . \begin{array}{l}
\text { non-zero values in } \mathrm{R} \text {) }
\end{array}\right.
\end{aligned}
$$

[^5]
Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and $\mathrm{A}+\mathrm{R}$. Design R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{lll}
p_{1}, & r=0 & \text { (Sparisty of } \mathrm{R} \text {) } \\
\frac{1-p_{1}}{q-1}, & r \neq 0, & \text { (iid non-zero values in } \mathrm{R} \text {) }
\end{array}\right. \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{2}, & r=0 \quad \text { (keeping non-zero values in } \mathrm{A}+\mathrm{R} \text {) } \\
p_{3}, & r=-a \\
\frac{1-p_{2}-p_{3}}{q-2}, & r \notin\{0,-a\} .\end{cases}
\end{aligned}
$$

[^6]
Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and $\mathrm{A}+\mathrm{R}$. Design R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{lll}
p_{1}, & r=0 & \text { (Sparisty of } \mathrm{R} \text {) } \\
\frac{1-p_{1}}{q-1}, & r \neq 0, & \text { (iid non-zero values in } \mathrm{R} \text {) }
\end{array}\right. \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{2}, & r=0 \quad \text { (keeping non-zero values in } \mathrm{A}+\mathrm{R} \text {) } \\
p_{3}, & r=-a \quad \text { (Sparsity in } \mathrm{A}+\mathrm{R} \text {) } \\
\frac{1-p_{2}-p_{3}}{q-2}, & r \notin\{0,-a\} .\end{cases}
\end{aligned}
$$

[^7]
Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and $A+R$. Design R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{lll}
p_{1}, & r=0 & \text { (Sparisty of } \mathrm{R} \text {) } \\
\frac{1-p_{1}}{q-1}, & r \neq 0, & \text { (iid non-zero values in } \mathrm{R} \text {) }
\end{array}\right. \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{2}, & r=0 \quad \text { (keeping non-zero values in } \mathrm{A}+\mathrm{R} \text {) } \\
p_{3}, & r=-a \quad \text { (Sparsity in } \mathrm{A}+\mathrm{R} \text {) } \\
\frac{1-p_{2}-p_{3}}{q-2}, & r \notin\{0,-a\} . \quad \text { (iid non-zero values in } \mathrm{A}+\mathrm{R} \text {) }\end{cases}
\end{aligned}
$$

[^8]
Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and $A+R$. Design R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{lll}
p_{1}, & r=0 & \text { (Sparisty of } \mathrm{R} \text {) } \\
\frac{1-p_{1}}{q-1}, & r \neq 0, & \text { (iid non-zero values in } \mathrm{R} \text {) }
\end{array}\right. \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{2}, & r=0 \quad \text { (keeping non-zero values in } \mathrm{A}+\mathrm{R} \text {) } \\
p_{3}, & r=-a \quad \text { (Sparsity in } \mathrm{A}+\mathrm{R} \text {) } \\
\frac{1-p_{2}-p_{3}}{q-2}, & r \notin\{0,-a\} . \quad \text { (iid non-zero values in } \mathrm{A}+\mathrm{R} \text {) }\end{cases}
\end{aligned}
$$

Proposition: Sparsity as function of the PMF

$$
\begin{aligned}
s_{R} & =p_{1} s+p_{2}(1-s), \\
s_{A+R} & =p_{1} s+p_{3}(1-s)
\end{aligned}
$$

[^9]
Minimizing the Leakage

Minimizing Entry-Wise Leakage

Let \mathcal{P} be the set of all q^{2} values of $\mathrm{P}_{\mathrm{R} \mid \mathrm{A}}$, then the optimal leakage is

$$
\begin{aligned}
\mathrm{L}_{\mathrm{opt}} & =\min _{\mathcal{P}} \mathrm{I}_{q}(\mathrm{R} ; \mathrm{A})+\mathrm{I}_{q}(\mathrm{~A}+\mathrm{R} ; \mathrm{A}) \\
& =\min _{\mathcal{P}} \mathrm{D}_{\mathrm{KL}}\left(\mathrm{P}_{\mathrm{A}, \mathrm{R}} \| \mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{R}}\right)+\mathrm{D}_{\mathrm{KL}}\left(\mathrm{P}_{\mathrm{A}, \mathrm{~A}+\mathrm{R}} \| \mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}+\mathrm{R}}\right),
\end{aligned}
$$

and is subject to valid PMF and desired sparsities.

Minimizing the Leakage

Minimizing Entry-Wise Leakage

Let \mathcal{P} be the set of all q^{2} values of $\mathrm{P}_{\mathrm{R} \mid \mathrm{A}}$, then the optimal leakage is

$$
\begin{aligned}
\mathrm{L}_{\text {opt }} & =\min _{\mathcal{P}} \mathrm{I}_{q}(\mathrm{R} ; \mathrm{A})+\mathrm{I}_{q}(\mathrm{~A}+\mathrm{R} ; \mathrm{A}) \\
& =\min _{\mathcal{P}} \mathrm{D}_{\mathrm{KL}}\left(\mathrm{P}_{\mathrm{A}, \mathrm{R}} \| \mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{R}}\right)+\mathrm{D}_{\mathrm{KL}}\left(\mathrm{P}_{\mathrm{A}, \mathrm{~A}+\mathrm{R}} \| \mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}+\mathrm{R}}\right),
\end{aligned}
$$

and is subject to valid PMF and desired sparsities.

- Constrained Convex Optimization

\rightarrow For desired s_{R} and $s_{\mathrm{A}+\mathrm{R}}$, we solve convex optimization $\min _{\mathcal{P}} \mathrm{L}\left(p_{1}, p_{2}, p_{3}\right)$ analytically.
\rightarrow Solution is given by root finding of degree three polynomial.
\rightarrow For small q, numerical results are the same as optimizing over q^{2} values of $\mathrm{P}_{\mathrm{R} \mid \mathrm{A}}$.

Minimizing the Leakage

Minimizing Entry-Wise Leakage

Let \mathcal{P} be the set of all q^{2} values of $\mathrm{P}_{\mathrm{R} \mid \mathrm{A}}$, then the optimal leakage is

$$
\begin{aligned}
\mathrm{L}_{\text {opt }} & =\min _{\mathcal{P}} \mathrm{I}_{q}(\mathrm{R} ; \mathrm{A})+\mathrm{I}_{q}(\mathrm{~A}+\mathrm{R} ; \mathrm{A}) \\
& =\min _{\mathcal{P}} \mathrm{D}_{K L}\left(\mathrm{P}_{\mathrm{A}, \mathrm{R}} \| \mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{R}}\right)+\mathrm{D}_{K L}\left(\mathrm{P}_{\mathrm{A}, \mathrm{~A}+\mathrm{R}} \| \mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}+\mathrm{R}}\right),
\end{aligned}
$$

and is subject to valid PMF and desired sparsities.

- Constrained Convex Optimization

\rightarrow For desired s_{R} and $s_{\mathrm{A}+\mathrm{R}}$, we solve convex optimization $\min _{\mathcal{P}} \mathrm{L}\left(p_{1}, p_{2}, p_{3}\right)$ analytically.
\rightarrow Solution is given by root finding of degree three polynomial.
\rightarrow For small q, numerical results are the same as optimizing over q^{2} values of $\mathrm{P}_{\mathrm{R} \mid \mathrm{A}}$.
\Rightarrow Results in optimal privacy guarantees, i.e., minimal leakage.

Setting of Partly-Trusted/Untrusted Workers

Worker 0 Worker 1 Worker 2 Worker 3
$A+R$
$A+R$
R
R

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

Setting of Partly-Trusted/Untrusted Workers

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

Setting of Partly-Trusted/Untrusted Workers

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

- Choose $p_{1}=p_{2}=p_{3}=p$ such that $I_{q}(\mathrm{~A}+\mathrm{R} ; \mathrm{A})=0$
- Sparsity of the shares become

$$
s_{R}=p \frac{(s q-1)}{q-1}+\frac{(1-s)}{q-1}, \quad \text { and } \quad s_{A+R}=p
$$

- Choose p to satisfy the desired sparsity constraint

Sparse ($n, 2,1$) Secret Sharing

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_{\mathrm{A}}(x)=\mathrm{A}+x \mathrm{R}$. Choose n distinct non-zero symbols $\alpha_{1}, \ldots, \alpha_{n}$ from \mathbb{F}_{q}. Share i is the evaluation $f\left(\alpha_{i}\right)$. Design the entries of R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}= \begin{cases}p_{1}, & r=0 \\
\frac{1-p_{1}}{q-1}, & r \neq 0,\end{cases} \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{s}, & r \in\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n]} \\
\frac{1-p_{s}}{q-1}, & r \notin\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n]} .\end{cases}
\end{aligned}
$$

[^10]
Sparse ($n, 2,1$) Secret Sharing

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_{\mathrm{A}}(x)=\mathrm{A}+x \mathrm{R}$. Choose n distinct non-zero symbols $\alpha_{1}, \ldots, \alpha_{n}$ from \mathbb{F}_{q}. Share i is the evaluation $f\left(\alpha_{i}\right)$. Design the entries of R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}= \begin{cases}p_{1}, & r=0 \quad(\text { sparsity of } R) \\
\frac{1-p_{1}}{q-1}, & r \neq 0,\end{cases} \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{s}, & r \in\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n]} \\
\frac{1-p_{s}}{q-1}, & r \notin\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n] .} .\end{cases}
\end{aligned}
$$

[^11]
Sparse ($n, 2,1$) Secret Sharing

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_{\mathrm{A}}(x)=\mathrm{A}+x \mathrm{R}$. Choose n distinct non-zero symbols $\alpha_{1}, \ldots, \alpha_{n}$ from \mathbb{F}_{q}. Share i is the evaluation $f\left(\alpha_{i}\right)$. Design the entries of R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{lll}
p_{1}, & r=0 & \text { (sparsity of } R \text {) } \\
\frac{1-p_{1}}{q-1}, & r \neq 0, & \text { (iid non-zero values in } R \text {) }
\end{array}\right. \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{s}, & r \in\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n]} \\
\frac{1-p_{s}}{q-1}, & r \notin\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n] .} .\end{cases}
\end{aligned}
$$

[^12]
Sparse ($n, 2,1$) Secret Sharing

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_{\mathrm{A}}(x)=\mathrm{A}+x \mathrm{R}$. Choose n distinct non-zero symbols $\alpha_{1}, \ldots, \alpha_{n}$ from \mathbb{F}_{q}. Share i is the evaluation $f\left(\alpha_{i}\right)$. Design the entries of R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{lll}
p_{1}, & r=0 & (\text { sparsity of } R) \\
\frac{1-p_{1}}{q-1}, & r \neq 0, & \quad \text { (iid non-zero values in } R \text {) }
\end{array}\right. \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}= \begin{cases}p_{s}, & r \in\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n]} \quad\left(\text { zero in } A+\alpha_{i} R\right) \\
\frac{1-p_{s}}{q-1}, & r \notin\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n]} .\end{cases}
\end{aligned}
$$

[^13]
Sparse ($n, 2,1$) Secret Sharing

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_{\mathrm{A}}(x)=\mathrm{A}+x \mathrm{R}$. Choose n distinct non-zero symbols $\alpha_{1}, \ldots, \alpha_{n}$ from \mathbb{F}_{q}. Share i is the evaluation $f\left(\alpha_{i}\right)$. Design the entries of R as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=0\right\}=\left\{\begin{array}{lll}
p_{1}, & r=0 & \text { (sparsity of } R \text {) } \\
\frac{1-p_{1}}{q-1}, & r \neq 0, & \text { (iid non-zero values in } R \text {) }
\end{array}\right. \\
& \operatorname{Pr}\left\{R_{i j}=r \mid A_{i j}=a\right\}=\left\{\begin{array}{lll}
p_{s}, & r \in\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n]} & \text { (zero in } A+\alpha_{i} R \text {) } \\
\frac{1-p_{s}}{q-1}, & r \notin\left\{-\frac{a}{\alpha_{i}}\right\}_{i \in[n] .} & \text { (iid non-zeros in } A+\alpha_{i} R \text {) }
\end{array}\right.
\end{aligned}
$$

[^14]
Sparsity of our Sparse Secret Sharing

Lemma: Sparsity of the shares [EXWB24]

Given a matrix A with sparsity s_{A}, the sparsity $s_{\text {share }}$ of the shares is expressed as

$$
s_{\text {share }}=p_{1} s_{\mathrm{A}}+p_{s}\left(1-s_{\mathrm{A}}\right)
$$

[^15]
Sparsity of our Sparse Secret Sharing

Lemma: Sparsity of the shares [EXWB24]

Given a matrix A with sparsity s_{A}, the sparsity $s_{\text {share }}$ of the shares is expressed as

$$
s_{\text {share }}=p_{1} s_{A}+p_{s}\left(1-s_{A}\right)
$$

\checkmark Sparsity increases with p_{1} and p_{s}, e.g., $p_{1}=1, p_{s}=1$ maximum sparsity
\times So does the information leakage $\mathrm{I}(\mathrm{A}+x \mathrm{R}$; A$)$, e.g., $p_{1}=1, p_{s}=1 \Rightarrow R$ is a multiple of -A

[^16]
Minimizing the Leakage of Sparse Secret Sharing

Theorem: Shares with minimum leakage

Given a desired sparsity $s_{\text {shares }}$, the leakage $\mathrm{I}(\mathrm{A}+x \mathrm{R} ; \mathrm{A})$ of the n shares is minimized by setting $p_{s}=p_{s}^{\star}$ as the real root of the polynomial $\sum_{j=0}^{n+1} b_{j} p_{s}^{j}$ in p_{s} that satisfies $0 \leq p_{s}\left(1-s_{\mathrm{A}}\right) \leq \min \left\{s_{\text {shares }}, \frac{1}{n}\right\}$, for $s_{1} \triangleq s_{\text {share }} /(1-s)$, $s_{2} \triangleq\left(s_{\mathrm{A}}-s_{\text {shares }}\right) /\left(1-s_{\mathrm{A}}\right)$ and $c \triangleq(q-1) /(q-n)^{n}$ and

$$
\begin{aligned}
b_{n+1} & =-1-c(-n)^{n} \\
b_{n} & =c\left(s_{1}(-n)^{n}-n(-n)^{n-1}\right)-s_{2} \\
b_{i} & =c\left(\begin{array}{c}
\left.s_{1}\binom{n}{i}(-n)^{i}-\binom{n}{i-1}(-n)^{i-1}\right), \forall i \in[n-1] \\
b_{0}
\end{array}=c s_{1} .\right.
\end{aligned}
$$

Then, p_{1} is computed as

$$
p_{1}^{\star}=\frac{s_{\text {shares }}-p_{s}^{\star}\left(1-s_{\mathrm{A}}\right)}{s_{\mathrm{A}}} .
$$

Proof Idea

To prove that the values p_{s}^{\star} and p_{1}^{\star} minimize the leakage, we do the following

- Assume sparsity is given and is same for all shares
- Prove that the leakage is a convex function of the conditional PMF $\mathrm{P}_{\mathrm{R} \mid \mathrm{A}}\left(R_{i j}=r \mid A_{i j}=a\right)$
- Find the leakage as function of p_{s} and p_{1} for our construction
- Solve the non-linear convex optimization problem using Lagrange multipliers

Reducing the Computation Load

Group 0	Group 1	Group 2	Group 3
$f_{0}(x), g_{0}(x)$	$f_{1}(x), g_{1}(x)$	$f_{2}(x), g_{2}(x)$	$f_{3}(x), g_{3}(x)$

- Divide the matrices A and B into m smaller chunks such that $\frac{n}{m}=\sigma+3$
- Compute and assign evaluations of $f_{i}(x)$ and $g_{i}(x)$ to workers of group i, each encoding a chunk of A and B

[^17]
Reducing the Computation Load

Group 0	Group 1	Group 2	Group 3
$f_{0}(x), g_{0}(x)$	$f_{1}(x), g_{1}(x)$	$f_{2}(x), g_{2}(x)$	$f_{3}(x), g_{3}(x)$

- Divide the matrices A and B into m smaller chunks such that $\frac{n}{m}=\sigma+3$
- Compute and assign evaluations of $f_{i}(x)$ and $g_{i}(x)$ to workers of group i, each encoding a chunk of A and B

Figure: Sparsity values above which our scheme is beneficial over [DFHJCG19] polynomial codes.

[^18]
Outline

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Leakage vs Scheme Parameters

Figure: Relative leakage $\bar{\varepsilon}=\frac{I(A+x R ; A)}{H(A)}$ as function of desired sparsity, number of shares n and field size q.

Leakage vs Scheme Parameters

Figure: Relative leakage $\bar{\varepsilon}=\frac{I(A+x R ; A)}{H(A)}$ as function of desired sparsity, number of shares n and field size q.

- Leakage increases with n
- Leakage decreases with q
- Leakage increase with n is less emphasized for large q

Leakage vs Scheme Parameters

Figure: Relative leakage $\bar{\varepsilon}=\frac{I(A+x R ; A)}{H(A)}$ as function of desired sparsity, number of shares n and field size q.

- Leakage increases with n
- Leakage decreases with q
- Leakage increase with n is less emphasized for large q

Leakage vs Scheme Parameters

Figure: Relative leakage $\bar{\varepsilon}=\frac{I(A+x R ; A)}{H(A)}$ as function of desired sparsity, number of shares n and field size q.

- Leakage increases with n
- Leakage decreases with q
- Leakage increase with n is less emphasized for large q

Why Same Sparsity for all Shares?

Figure: Optimal element-wise total leakage over different $s_{\text {avg }}$ with varying s_{δ} for $q=256$ and $s=0.95$.

Lemma: Optimal sparsity for two shares [XEB22]

Sparse secret sharing with shares R and $A+R$ give the minimal total leakage when $s_{\delta} \triangleq s_{A+R}-s_{R}=0$.

[^19]
Matrices with Correlated Entries

(a) Matrix A with $s \approx 0.94$

(b) Share $f\left(\alpha_{i}\right)$ of A with sparsity $s_{\text {share }} \approx 0.85$

Figure: A depiction of the impact of correlated entries on the privacy guarantee.

- Naively encoding matrices with correlated entries using our sparse secret sharing may leak more information than desired

Matrices with Correlated Entries

(a) Matrix A with $s \approx 0.94$

(b) Share $f\left(\alpha_{i}\right)$ of A with sparsity $s_{\text {share }} \approx 0.85$

(c) Matrix A^{\prime} after permutation

(d) Share $f\left(\alpha_{i}\right)$ of A^{\prime} with sparsity $s_{\text {shares }} \approx 0.85$

Figure: A depiction of the impact of correlated entries on the privacy guarantee.

- Naively encoding matrices with correlated entries using our sparse secret sharing may leak more information than desired
- Our approach is to randomly permute the entries

Outline

```
Sparsity and Perfect IT Privacy
Trade-Off Between Sparsity and Privacy
    Sparse One-Time Pad
    Sparse Shamir Secret Sharing
```

Numerical Observations

Conclusion

Summary and Future Directions

Summary

- Private and sparse matrix-matrix multiplication with no collusions
- Fundamental trade-off between sparsity and privacy
- Optimal solution under i.i.d entries of A for multiple shares with same sparsity
- Privacy improves with q and small n
- Extra care is needed for matrices with correlated entries

Summary and Future Directions

Summary

- Private and sparse matrix-matrix multiplication with no collusions
- Fundamental trade-off between sparsity and privacy
- Optimal solution under i.i.d entries of A for multiple shares with same sparsity
- Privacy improves with q and small n
- Extra care is needed for matrices with correlated entries

Future Directions

- Improve the rate of sparsity-preserving secret sharing schemes, i.e., $k>2$
- Sparse secret sharing with collusions, i.e., $z>1$
- Beyond i.i.d entries of the matrices

- Focus on post-quantum cryptography and privacy-preserving machine learning.
- Dates: April 8 - 10, 2024.
- Takes place after the Munich Workshop on Shannon Coding Techniques.

The workshop will focus on coding theory and algorithms for DNA-based data storage. It will consist of invited and contributed talks, as well as poster presentations, from researchers and experts. The workshop is organized as a satellite workshop of the 2024 IEEE International Symposium on Information Theory (ISIT2024).

- Jointly organized with Dave Landsman from the DNA Data Storage Alliance.
- Contribution deadline: April 15, 2024.
- Designed to foster collaboration.

Questions?

Further Questions?

Rawad Bitar
Technical University of Munich
rawad.bitar@tum.de
Figure: https://arxiv.org/abs/2306. 15134

[^0]: ${ }^{1}$ https://dailyinfographic.com/how-much-data-is-generated-every-minute
 ${ }^{2}$ https://www.statista.com/statistics/871513/worldwide-data-created/

[^1]: ${ }^{1}$ [BEWX24] R. Bitar, M. Egger, A. Wachter-Zeh, and M. Xhemrishi, "Sparsity and privacy in secret sharing: A fundamental trade-off," accepted in IEEE
 Transactions on Information Forensics and Security, 2024

[^2]: ${ }^{1}$ [BEWX24] R. Bitar, M. Egger, A. Wachter-Zeh, and M. Xhemrishi, "Sparsity and privacy in secret sharing: A fundamental trade-off," accepted in IEEE Transactions on Information Forensics and Security, 2024

[^3]: ${ }^{1}$ [XEB21] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022

[^4]: ${ }^{1}$ [XEB21] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022

[^5]: ${ }^{1}$ [XEB21] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022

[^6]: ${ }^{1}$ [XEB21] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022

[^7]: ${ }^{1}$ [XEB21] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022

[^8]: ${ }^{1}$ [XEB21] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022

[^9]: ${ }^{1}$ [XEB21] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022

[^10]: ${ }^{1}$ [EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, "Sparse and private distributed matrix multiplication with straggler tolerance," in IEEE International Symposium on Information Theory (ISIT), 2024

[^11]: ${ }^{1}$ [EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, "Sparse and private distributed matrix multiplication with straggler tolerance," in IEEE International Symposium on Information Theory (ISIT), 2024

[^12]: ${ }^{1}$ [EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, "Sparse and private distributed matrix multiplication with straggler tolerance," in IEEE International Symposium on Information Theory (ISIT), 2024

[^13]: ${ }^{1}$ [EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, "Sparse and private distributed matrix multiplication with straggler tolerance," in IEEE International Symposium on Information Theory (ISIT), 2024

[^14]: ${ }^{1}$ [EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, "Sparse and private distributed matrix multiplication with straggler tolerance," in IEEE International Symposium on Information Theory (ISIT), 2024

[^15]: ${ }^{1}$ [EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, "Sparse and private distributed matrix multiplication with straggler tolerance," in IEEE International Symposium on Information Theory (ISIT), 2024

[^16]: ${ }^{1}$ [EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, "Sparse and private distributed matrix multiplication with straggler tolerance," in IEEE International Symposium on Information Theory (ISIT), 2024

[^17]: ${ }^{1}$ [DFHJCG19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, "On the optimal recovery threshold of coded matrix multiplication," IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278-301, 2019

[^18]: ${ }^{1}$ [DFHJCG19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, "On the optimal recovery threshold of coded matrix multiplication," IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278-301, 2019

[^19]: ${ }^{1}$ [XEB22] M. Xhemrishi, M. Egger, and R. Bitar, "Efficient private storage of sparse machine learning data," in IEEE Information Theory Workshop (ITW), Invited paper, 2022
 Rawad Bitar (TUM)

