Application-Driven Coding Theory Workshop, Simons Institute, Berkeley

ПП

Sparsity and Privacy in Distributed Matrix Multiplication

Rawad Bitar

Joint work with

Maximilian Egger, Marvin Xhemrishi and Antonia Wachter-Zeh

School of Information Computation and Technology Technical University of Munich, Germany

March 8, 2024

DFG Deutsche Forschungsgemeinschaft German Research Foundation

Tremendous Amount of Data Generated and Analyzed

Figure: History of Worldwide Data (2021) 2

Figure: Data Created per Minute (2021)¹

Our main concerns: Privacy and Efficiency in distributed learning

²https://www.statista.com/statistics/871513/worldwide-data-created/

 $^{^{1}} https://daily infographic.com/how-much-data-is-generated-every-minute$

Distributed Learning Model

This talk

Main Node – Workers

Decentralized Learning

Federated Learning

Main Challenges in Distributed Learning

- Stragglers: Slow or unresponsive workers
- Heterogeneity: *Different time-varying* computing power of the workers
- **Privacy:** Workers *collude* to gain knowledge of main node's data
- **Security:** Workers are *malicious* and try to jam the computation
- Efficiency: Reduce *overall run-time* and *compute time* of the workers

Main Challenges in Distributed Learning

In this talk

Efficiency (sparsity), privacy and stragglers.

- Stragglers: Slow or unresponsive workers
- Heterogeneity: *Different time-varying* computing power of the workers
- **Privacy:** Workers *collude* to gain knowledge of main node's data
- **Security:** Workers are *malicious* and try to jam the computation
- Efficiency: Reduce *overall run-time* and *compute time* of the workers

System Model: Computation, Sparsity and Privacy

• **Data:** Sparse private matrices in \mathbb{F}_q

$$\Pr(A_{i,j} = a) = egin{cases} s_{\mathsf{A}} & ext{for } a = 0, \ rac{1-s_{\mathsf{A}}}{q-1} & ext{otherwise} \end{cases}$$

- Privacy: IT privacy of A and B
- No collusion: Each worker eavesdrops alone
- **Stragglers:** Slow or unresponsive workers
- Efficiency: *sparsity* of matrices assigned to the workers

System Model: Computation, Sparsity and Privacy

$$\Pr(A_{i,j} = a) = egin{cases} s_{\mathsf{A}} & ext{for } a = 0, \ rac{1-s_{\mathsf{A}}}{q-1} & ext{otherwise} \end{cases}$$

- Privacy: IT privacy of A and B
- No collusion: Each worker eavesdrops alone
- Stragglers: Slow or unresponsive workers
- Efficiency: *sparsity* of matrices assigned to the workers

Desired coding scheme

Encode A and B satisfying

- \diamond Privacy constraints
- $\diamond~$ Best sparsity in the codewords
- \diamond Straggler tolerance

Outline

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Outline

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:

 Observation is statistically independent from the private data, i.e.,
 I(private data; charged)

I(private data; observation) = 0

Assumptions:

- + Adversary with unbounded computation power
- Limited number of collusions

6

Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:

• Observation is statistically independent from the private data, i.e.,

I(private data; observation) = 0

Assumptions:

- + Adversary with unbounded computation power
- Limited number of collusions

Variations of Information-Theoretic privacy

- Perfect: I(private data; observation) = 0 Usual privacy measure
- Strong: I(private data; observation) = $\varepsilon \xrightarrow{\text{when the data is large}} 0$
- Weak: I(private data; observation) = $\varepsilon > 0$

Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:

• Observation is statistically independent from the private data, i.e.,

I(private data; observation) = 0

Assumptions:

- + Adversary with unbounded computation power
- Limited number of collusions

Encoding

- Draw random matrices R and S
- $A \rightarrow f_A(x) = A + xR$
- $B \rightarrow g_B(x) = B + xS$
- Assign $f_A(\alpha_i)$ and $g_B(\alpha_i)$ to worker iPrivacy guarantee
 - Depends on how R and S are drawn

Variations of Information-Theoretic privacy

- Perfect: I(private data; observation) = 0 Usual privacy measure
- Strong: I(private data; observation) = $\varepsilon \xrightarrow{\text{when the data is large}} 0$
- Weak: I(private data; observation) = $\varepsilon > 0$

Private matrix

Private matrix

• In several applications, e.g., medical imaging, data is represented by sparse matrices (non-uniform)

Problem of perfect privacy

Output shares have uniform distribution \Rightarrow Higher computation complexity.

Outline

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Trading Off Sparsity vs. Privacy

• Insisting on *perfect* privacy does not allow sparsity

Lemma: fundamental tradeoff [BEWX24]

For k = 2 and z = 1, perfect privacy can be achieved if and only if the entries of R are i.i.d uniformly at random.

¹[BEWX24] **R. Bitar**, M. Egger, A. Wachter-Zeh, and M. Xhemrishi, "Sparsity and privacy in secret sharing: A fundamental trade-off," *accepted in IEEE Transactions on Information Forensics and Security*, 2024 Rawad Bitar (TUM)

Trading Off Sparsity vs. Privacy

• Insisting on *perfect* privacy does not allow sparsity

Lemma: fundamental tradeoff [BEWX24]

For k = 2 and z = 1, perfect privacy can be achieved if and only if the entries of R are i.i.d uniformly at random.

¹[BEWX24] **R. Bitar**, M. Egger, A. Wachter-Zeh, and M. Xhemrishi, "Sparsity and privacy in secret sharing: A fundamental trade-off," *accepted in IEEE Transactions on Information Forensics and Security*, 2024 Rawad Bitar (TUM)

Relax to Weak Privacy

Main Idea

Design R *dependently* on A, i.e., design a conditional PMF $P_{R|A}(R_{ij} = r|A_{ij} = a)$. \Rightarrow This allows for sparsity, but leaks information about A.

Challenge

Given a desired sparsity of the shares, design R to get the smallest leakage.

Constuction: Sparse One-time Pad [XEB21]

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0\\ \frac{1 - p_1}{q - 1}, & r \neq 0, \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_2, & r = 0\\ p_3, & r = -a\\ \frac{1 - p_2 - p_3}{q - 2}, & r \notin \{0, -a\}. \end{cases}$$

¹[XEB21] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

Constuction: Sparse One-time Pad [XEB21]

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (Sparisty \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_2, & r = 0 \\ p_3, & r = -a \\ \frac{1 - p_2 - p_3}{q - 2}, & r \notin \{0, -a\}. \end{cases}$$

¹[XEB21] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

Constuction: Sparse One-time Pad [XEB21]

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (Sparisty \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_2, & r = 0 \\ p_3, & r = -a \\ \frac{1 - p_2 - p_3}{q - 2}, & r \notin \{0, -a\}. \end{cases}$$

¹[XEB21] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

Constuction: Sparse One-time Pad [XEB21]

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (Sparisty \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_2, & r = 0 \quad (keeping \text{ non-zero values in } A + R) \\ p_3, & r = -a \\ \frac{1 - p_2 - p_3}{q - 2}, & r \notin \{0, -a\}. \end{cases}$$

¹[XEB21] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

Constuction: Sparse One-time Pad [XEB21]

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (Sparisty \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_2, & r = 0 \quad (keeping \text{ non-zero values in } A + R) \\ p_3, & r = -a \quad (Sparsity \text{ in } A + R) \\ \frac{1 - p_2 - p_3}{q - 2}, & r \notin \{0, -a\}. \end{cases}$$

¹[XEB21] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

Constuction: Sparse One-time Pad [XEB21]

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (Sparisty \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_2, & r = 0 \quad (keeping \text{ non-zero values in } A + R) \\ p_3, & r = -a \quad (Sparsity \text{ in } A + R) \\ \frac{1 - p_2 - p_3}{q - 2}, & r \notin \{0, -a\}. \quad (iid \text{ non-zero values in } A + R) \end{cases}$$

¹[XEB21] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A + R. Design R as follows:

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (Sparisty \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_2, & r = 0 \quad (keeping \text{ non-zero values in } A + R) \\ p_3, & r = -a \quad (Sparsity \text{ in } A + R) \\ \frac{1 - p_2 - p_3}{q - 2}, & r \notin \{0, -a\}. \quad (iid \text{ non-zero values in } A + R) \end{cases}$$

Proposition: Sparsity as function of the PMF

 $s_{\mathsf{R}} = p_1 s + p_2 (1-s), \ s_{\mathsf{A}+\mathsf{R}} = p_1 s + p_3 (1-s).$

¹[XEB21] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

ТП

Minimizing the Leakage

Minimizing Entry-Wise Leakage

Let ${\mathcal P}$ be the set of all q^2 values of $\mathrm{P}_{\mathsf{R}|\mathsf{A}}$, then the optimal leakage is

$$\begin{split} \mathrm{L}_{\mathsf{opt}} &= \min_{\mathcal{P}} \mathrm{I}_{q}\left(\mathsf{R};\mathsf{A}\right) + \mathrm{I}_{q}\left(\mathsf{A} + \mathsf{R};\mathsf{A}\right) \\ &= \min_{\mathcal{P}} \mathsf{D}_{\mathsf{KL}}\left(\mathrm{P}_{\mathsf{A},\mathsf{R}} \| \mathrm{P}_{\mathsf{A}} \mathrm{P}_{\mathsf{R}}\right) + \mathsf{D}_{\mathsf{KL}}\left(\mathrm{P}_{\mathsf{A},\mathsf{A}+\mathsf{R}} \| \mathrm{P}_{\mathsf{A}} \mathrm{P}_{\mathsf{A}+\mathsf{R}}\right) \end{split}$$

and is subject to valid PMF and desired sparsities.

Minimizing the Leakage

LIII

Minimizing Entry-Wise Leakage

Let ${\mathcal P}$ be the set of all q^2 values of $\mathrm{P}_{\mathsf{R}|\mathsf{A}}$, then the optimal leakage is

$$\begin{split} \mathrm{L}_{\mathrm{opt}} &= \min_{\mathcal{P}} \mathrm{I}_{q}\left(\mathsf{R};\mathsf{A}\right) + \mathrm{I}_{q}\left(\mathsf{A} + \mathsf{R};\mathsf{A}\right) \\ &= \min_{\mathcal{P}} \mathsf{D}_{\mathsf{KL}}\left(\mathrm{P}_{\mathsf{A},\mathsf{R}} \| \mathrm{P}_{\mathsf{A}} \mathrm{P}_{\mathsf{R}}\right) + \mathsf{D}_{\mathsf{KL}}\left(\mathrm{P}_{\mathsf{A},\mathsf{A}+\mathsf{R}} \| \mathrm{P}_{\mathsf{A}} \mathrm{P}_{\mathsf{A}+\mathsf{R}}\right), \end{split}$$

and is subject to valid PMF and desired sparsities.

• Constrained Convex Optimization

- ightarrow For desired $s_{
 m R}$ and $s_{
 m A+R}$, we solve convex optimization $\min_{\mathcal{D}} {
 m L}(p_1,p_2,p_3)$ analytically.
- $\rightarrow\,$ Solution is given by root finding of degree three polynomial.
- ightarrow For small q, numerical results are the same as optimizing over q^2 values of $\mathrm{P}_{\mathsf{R}|\mathsf{A}}.$

Minimizing the Leakage

Minimizing Entry-Wise Leakage

Let ${\mathcal P}$ be the set of all q^2 values of $\mathrm{P}_{\mathsf{R}|\mathsf{A}}$, then the optimal leakage is

$$\begin{split} \mathrm{L}_{\mathsf{opt}} &= \min_{\mathcal{P}} \mathrm{I}_q\left(\mathsf{R};\mathsf{A}\right) + \mathrm{I}_q\left(\mathsf{A} + \mathsf{R};\mathsf{A}\right) \\ &= \min_{\mathcal{P}} \mathsf{D}_{\mathsf{KL}}\left(\mathrm{P}_{\mathsf{A},\mathsf{R}} \| \mathrm{P}_{\mathsf{A}} \mathrm{P}_{\mathsf{R}}\right) + \mathsf{D}_{\mathsf{KL}}\left(\mathrm{P}_{\mathsf{A},\mathsf{A}+\mathsf{R}} \| \mathrm{P}_{\mathsf{A}} \mathrm{P}_{\mathsf{A}+\mathsf{R}}\right), \end{split}$$

and is subject to valid PMF and desired sparsities.

• Constrained Convex Optimization

- ightarrow For desired $s_{
 m R}$ and $s_{
 m A+R}$, we solve convex optimization $\min_{\mathcal{D}} {
 m L}(p_1,p_2,p_3)$ analytically.
- $\rightarrow\,$ Solution is given by root finding of degree three polynomial.
- ightarrow For small q, numerical results are the same as optimizing over q^2 values of $\mathrm{P}_{\mathsf{R}|\mathsf{A}}.$

 \Rightarrow Results in optimal privacy guarantees, i.e., minimal leakage.

Setting of Partly-Trusted/Untrusted Workers

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

Setting of Partly-Trusted/Untrusted Workers

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

Setting of Partly-Trusted/Untrusted Workers

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

- Choose $p_1 = p_2 = p_3 = p$ such that $I_q(A + R; A) = 0$
- Sparsity of the shares become

$$s_{\mathsf{R}} = p rac{(sq-1)}{q-1} + rac{(1-s)}{q-1}, \quad ext{ and } \quad s_{\mathsf{A}+\mathsf{R}} = p \,.$$

• Choose *p* to satisfy the desired sparsity constraint

ТП

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_A(x) = A + xR$. Choose *n* distinct non-zero symbols $\alpha_1, \ldots, \alpha_n$ from \mathbb{F}_q . Share *i* is the evaluation $f(\alpha_i)$. Design the entries of R as follows:

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0\\ \frac{1 - p_1}{q - 1}, & r \neq 0, \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_s, & r \in \{-\frac{a}{\alpha_i}\}_{i \in [n]}\\ \frac{1 - p_s}{q - 1}, & r \notin \{-\frac{a}{\alpha_i}\}_{i \in [n]} \end{cases}$$

¹[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. **Bitar**, "Sparse and private distributed matrix multiplication with straggler tolerance," in *IEEE International Symposium on Information Theory (ISIT)*, 2024

ПΠ

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_A(x) = A + xR$. Choose *n* distinct non-zero symbols $\alpha_1, \ldots, \alpha_n$ from \mathbb{F}_q . Share *i* is the evaluation $f(\alpha_i)$. Design the entries of R as follows:

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (sparsity \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_s, & r \in \{-\frac{a}{\alpha_i}\}_{i \in [n]} \\ \frac{1 - p_s}{q - 1}, & r \notin \{-\frac{a}{\alpha_i}\}_{i \in [n]}. \end{cases}$$

¹[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. **Bitar**, "Sparse and private distributed matrix multiplication with straggler tolerance," in *IEEE International Symposium on Information Theory (ISIT)*, 2024

ТП

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_A(x) = A + xR$. Choose *n* distinct non-zero symbols $\alpha_1, \ldots, \alpha_n$ from \mathbb{F}_q . Share *i* is the evaluation $f(\alpha_i)$. Design the entries of R as follows:

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (sparsity \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_s, & r \in \{-\frac{a}{\alpha_i}\}_{i \in [n]} \\ \frac{1 - p_s}{q - 1}, & r \notin \{-\frac{a}{\alpha_i}\}_{i \in [n]}. \end{cases}$$

¹[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. **Bitar**, "Sparse and private distributed matrix multiplication with straggler tolerance," in *IEEE International Symposium on Information Theory (ISIT)*, 2024

ПП

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_A(x) = A + xR$. Choose *n* distinct non-zero symbols $\alpha_1, \ldots, \alpha_n$ from \mathbb{F}_q . Share *i* is the evaluation $f(\alpha_i)$. Design the entries of R as follows:

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (sparsity \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_s, & r \in \{-\frac{a}{\alpha_i}\}_{i \in [n]} \quad (zero \text{ in } A + \alpha_i R) \\ \frac{1 - p_s}{q - 1}, & r \notin \{-\frac{a}{\alpha_i}\}_{i \in [n]}. \end{cases}$$

¹[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. **Bitar**, "Sparse and private distributed matrix multiplication with straggler tolerance," in *IEEE International Symposium on Information Theory (ISIT)*, 2024

ЛЛ

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial $f_A(x) = A + xR$. Choose *n* distinct non-zero symbols $\alpha_1, \ldots, \alpha_n$ from \mathbb{F}_q . Share *i* is the evaluation $f(\alpha_i)$. Design the entries of R as follows:

$$\Pr\{R_{ij} = r | A_{ij} = 0\} = \begin{cases} p_1, & r = 0 \quad (sparsity \text{ of } R) \\ \frac{1 - p_1}{q - 1}, & r \neq 0, \quad (iid \text{ non-zero values in } R) \end{cases}$$
$$\Pr\{R_{ij} = r | A_{ij} = a\} = \begin{cases} p_s, & r \in \{-\frac{a}{\alpha_i}\}_{i \in [n]} \quad (zero \text{ in } A + \alpha_i R) \\ \frac{1 - p_s}{q - 1}, & r \notin \{-\frac{a}{\alpha_i}\}_{i \in [n]}. \quad (iid \text{ non-zeros in } A + \alpha_i R) \end{cases}$$

¹[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. **Bitar**, "Sparse and private distributed matrix multiplication with straggler tolerance," in *IEEE International Symposium on Information Theory (ISIT)*, 2024

Sparsity of our Sparse Secret Sharing

Lemma: Sparsity of the shares [EXWB24]

Given a matrix A with sparsity s_A , the sparsity s_{share} of the shares is expressed as $s_{share} = p_1 s_A + p_s (1 - s_A).$

¹[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. **Bitar**, "Sparse and private distributed matrix multiplication with straggler tolerance," in *IEEE International Symposium on Information Theory (ISIT)*, 2024

Sparsity of our Sparse Secret Sharing

Lemma: Sparsity of the shares [EXWB24]

Given a matrix A with sparsity s_A , the sparsity s_{share} of the shares is expressed as $s_{share} = p_1 s_A + p_s (1 - s_A).$

- ✓ Sparsity *increases* with p_1 and p_s , e.g., $p_1 = 1, p_s = 1$ maximum sparsity
- × So does the *information leakage* I(A + xR; A), e.g., $p_1 = 1, p_s = 1 \Rightarrow R$ is a multiple of -A

¹[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. **Bitar**, "Sparse and private distributed matrix multiplication with straggler tolerance," in *IEEE International Symposium on Information Theory (ISIT)*, 2024

Minimizing the Leakage of Sparse Secret Sharing

Theorem: Shares with minimum leakage

Given a desired sparsity s_{shares} , the leakage I(A + xR; A) of the *n* shares is *minimized* by setting $p_s = p_s^*$ as the real root of the polynomial $\sum_{j=0}^{n+1} b_j p_s^j$ in p_s that satisfies $0 \le p_s(1-s_A) \le \min\{s_{\text{shares}}, \frac{1}{n}\}$, for $s_1 \triangleq s_{\text{share}}/(1-s)$, $s_2 \triangleq (s_A - s_{\text{shares}})/(1-s_A)$ and $c \triangleq (q-1)/(q-n)^n$ and $b_{n+1} = -1 - c(-n)^n$ $b_n = c(s_1(-n)^n - n(-n)^{n-1}) - s_2$ $b_i = c\left(s_1\binom{n}{i}(-n)^i - \binom{n}{i-1}(-n)^{i-1}\right), \forall i \in [n-1]$ $b_0 = cs_1$.

Then, p_1 is computed as

$$p_1^\star = rac{s_{ ext{shares}} - p_s^\star (1 - s_{ ext{A}})}{s_{ ext{A}}}$$

To prove that the values p_s^{\star} and p_1^{\star} minimize the leakage, we do the following

- Assume sparsity is given and is *same* for all shares
- Prove that the leakage is a convex function of the conditional PMF $P_{R|A}(R_{ij} = r|A_{ij} = a)$
- Find the leakage as function of p_s and p_1 for our construction
- Solve the non-linear convex optimization problem using Lagrange multipliers

Reducing the Computation Load

 Group 0
 Group 1
 Group 2
 Group 3

 $f_0(x), g_0(x)$ $f_1(x), g_1(x)$ $f_2(x), g_2(x)$ $f_3(x), g_3(x)$

- Divide the matrices A and B into *m* smaller chunks such that $\frac{n}{m} = \sigma + 3$
- Compute and assign evaluations of $f_i(x)$ and $g_i(x)$ to workers of group *i*, each encoding a chunk of A and B

¹[DFHJCG19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, "On the optimal recovery threshold of coded matrix multiplication," *IEEE Transactions on Information Theory*, vol. 66, no. 1, pp. 278–301, 2019 Rawad Bitar (TUM)

Reducing the Computation Load

 Group 0
 Group 1
 Group 2
 Group 3

 $f_0(x), g_0(x)$ $f_1(x), g_1(x)$ $f_2(x), g_2(x)$ $f_3(x), g_3(x)$

- Divide the matrices A and B into *m* smaller chunks such that $\frac{n}{m} = \sigma + 3$
- Compute and assign evaluations of $f_i(x)$ and $g_i(x)$ to workers of group *i*, each encoding a chunk of A and B

Figure: Sparsity values above which our scheme is beneficial over [DFHJCG19] polynomial codes.

¹[DFHJCG19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, "On the optimal recovery threshold of coded matrix multiplication," *IEEE Transactions on Information Theory*, vol. 66, no. 1, pp. 278–301, 2019 Rawad Bitar (TUM)

Outline

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

ТΠ

Leakage vs Scheme Parameters

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0

0

 $5 \cdot 10^{-2}$

Relative Leakage per Share $ar{arepsilon}$

Figure: Relative leakage $\bar{\varepsilon} = \frac{I(A + xR; A)}{H(A)}$ as function of desired sparsity, number of shares *n* and field size *q*.

Leakage vs Scheme Parameters

Figure: Relative leakage $\bar{\varepsilon} = \frac{I(A + xR; A)}{H(A)}$ as function of desired sparsity, number of shares *n* and field size *q*.

- Leakage increases with *n*
- Leakage decreases with q
- Leakage increase with n is less emphasized for large q

Leakage vs Scheme Parameters

- Leakage increases with *n*
- Leakage decreases with q
- Leakage increase with n is less emphasized for large q

Leakage vs Scheme Parameters

Figure: Relative leakage $\bar{\varepsilon} = \frac{I(A + xR; A)}{H(A)}$ as function of desired sparsity, number of shares *n* and field size *q*.

- Leakage increases with *n*
- Leakage decreases with q
- Leakage increase with n is less emphasized for large q

Why Same Sparsity for all Shares?

Figure: Optimal element-wise total leakage over different s_{avg} with varying s_{δ} for q = 256 and s = 0.95.

Lemma: Optimal sparsity for two shares [XEB22]

Sparse secret sharing with shares R and A + R give the minimal total leakage when $s_{\delta} \triangleq s_{A+R} - s_R = 0$.

¹[XEB22] M. Xhemrishi, M. Egger, and **R. Bitar**, "Efficient private storage of sparse machine learning data," in *IEEE Information Theory Workshop (ITW)*, *Invited paper*, 2022

Matrices with Correlated Entries

Figure: A depiction of the impact of correlated entries on the privacy guarantee.

• Naively encoding matrices with correlated entries using our sparse secret sharing may leak more information than desired

Matrices with Correlated Entries

(a) Matrix A with $s \approx 0.94$

(c) Matrix A' after permutation

(d) Share $f(\alpha_i)$ of A' with sparsity $s_{\text{shares}} \approx 0.85$

Figure: A depiction of the impact of correlated entries on the privacy guarantee.

- Naively encoding matrices with correlated entries using our sparse secret sharing may leak more information than desired
- Our approach is to randomly permute the entries

Outline

Sparsity and Perfect IT Privacy

Trade-Off Between Sparsity and Privacy

Sparse One-Time Pad

Sparse Shamir Secret Sharing

Numerical Observations

Conclusion

Summary and Future Directions

Summary

- Private and sparse matrix-matrix multiplication with no collusions
- Fundamental trade-off between sparsity and privacy
- Optimal solution under i.i.d entries of A for multiple shares with same sparsity
- Privacy improves with q and small n
- Extra care is needed for matrices with correlated entries

Summary and Future Directions

Summary

- Private and sparse matrix-matrix multiplication with no collusions
- Fundamental trade-off between sparsity and privacy
- Optimal solution under i.i.d entries of A for multiple shares with same sparsity
- Privacy improves with *q* and small *n*
- Extra care is needed for matrices with correlated entries

Future Directions

- Improve the rate of sparsity-preserving secret sharing schemes, i.e., k>2
- Sparse secret sharing with collusions, i.e., z > 1
- Beyond i.i.d entries of the matrices

Munich Workshop on Coding and Cryptography

- Focus on post-quantum cryptography and privacy-preserving machine learning.
- Dates: April 8 10, 2024.
- Takes place after the Munich Workshop on Shannon Coding Techniques.

ISIT Satellite Workshop on DNA-based Data Storage

- Jointly organized with Dave Landsman from the DNA Data Storage Alliance.
- Contribution deadline: April 15, 2024.
- Designed to foster collaboration.

Thank you for your attention!

Questions?

Figure: https://arxiv.org/abs/2306.15134

Further Questions?

Rawad Bitar Technical University of Munich rawad.bitar@tum.de