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Tremendous Amount of Data Generated and Analyzed

Figure: Data Created per Minute (2021) 1 Figure: History of Worldwide Data (2021) 2

Our main concerns:
Privacy and Efficiency in distributed learning

1https://dailyinfographic.com/how-much-data-is-generated-every-minute
2https://www.statista.com/statistics/871513/worldwide-data-created/
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Distributed Learning Model

This talk

Main Node

. . .

Data

Worker 1

Worker 2 Worker 3

Worker n

Main Node – Workers

Data

Data

DataData

Data

Decentralized Learning

Data

Data

DataData

Data

Federated Learning

Rawad Bitar (TUM) 3



Main Challenges in Distributed Learning

Main Node

. . .

Data

Worker 1

Worker 2 Worker 3

Worker n

• Stragglers: Slow or unresponsive workers
• Heterogeneity: Different time-varying computing

power of the workers
• Privacy: Workers collude to gain knowledge of main

node’s data
• Security: Workers are malicious and try to jam the

computation
• Efficiency: Reduce overall run-time and compute

time of the workers

In this talk
Efficiency (sparsity), privacy and stragglers.
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System Model: Computation, Sparsity and Privacy

Main Node

. . .Worker 1

Worker 2 Worker 3

Worker n

A B

• Data: Sparse private matrices in Fq

Pr(Ai ,j = a) =

sA for a = 0,
1 − sA
q − 1

otherwise

• Privacy: IT privacy of A and B
• No collusion: Each worker eavesdrops alone
• Stragglers: Slow or unresponsive workers
• Efficiency: sparsity of matrices assigned to the workers

Desired coding scheme

Encode A and B satisfying
⋄ Privacy constraints
⋄ Best sparsity in the codewords
⋄ Straggler tolerance
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Encoding and Privacy Measure

Information-Theoretic Privacy

Definition:
• Observation is statistically independent

from the private data, i.e.,
I(private data; observation) = 0

Assumptions:
+ Adversary with unbounded computation

power
- Limited number of collusions

Encoding

• Draw random matrices R and S
• A → fA(x) = A + xR
• B → gB(x) = B + xS
• Assign fA(αi) and gB(αi) to worker i

Privacy guarantee
• Depends on how R and S are drawn

Variations of Information-Theoretic privacy

• Perfect: I(private data; observation) = 0 Usual privacy measure

• Strong: I(private data; observation) = ε
when the data is large−−−−−−−−−−−→ 0

• Weak: I(private data; observation) = ε > 0
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Implication of Perfect Privacy

A ∈ Fs×r
q

Secret Sharing
(n, k , z) = (n, 2, 1)

Private matrix

R ∼ U(Fs×r
q )

Randomness

A + R ∼ U(Fs×r
q )

A + 2R ∼ U(Fs×r
q )

...

A + nR ∼ U(Fs×r
q )

n Output shares

• In several applications, e.g., medical imaging, data is represented by sparse matrices (non-uniform)

Problem of perfect privacy
Output shares have uniform distribution ⇒ Higher computation complexity.
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Trading Off Sparsity vs. Privacy
• Insisting on perfect privacy does not allow sparsity

Lemma: fundamental tradeoff [BEWX24]

For k = 2 and z = 1, perfect privacy can be achieved if and only if the entries of R are i.i.d uniformly at
random.
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Figure: Relative leakage ε̄ =
I(A + xR;A)

H(A)
as function of desired sparsity.

1[BEWX24] R. Bitar, M. Egger, A. Wachter-Zeh, and M. Xhemrishi, “Sparsity and privacy in secret sharing: A fundamental trade-off,” accepted in IEEE
Transactions on Information Forensics and Security, 2024
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Relax to Weak Privacy

Main Idea

Design R dependently on A, i.e., design a conditional PMF PR|A(Rij = r |Aij = a).
⇒ This allows for sparsity, but leaks information about A.

Challenge

Given a desired sparsity of the shares, design R to get the smallest leakage.
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Sparse One-time Pad

Constuction: Sparse One-time Pad [XEB21]

Use the shares as R and A + R. Design R as follows:

Pr{Rij = r |Aij = 0}=

p1, r = 0

(Sparisty of R)

1 − p1

q − 1
, r ̸= 0,

(iid non-zero values in R)

Pr{Rij = r |Aij = a}=


p2, r = 0

(keeping non-zero values in A + R)

p3, r = −a

(Sparsity in A + R)

1 − p2 − p3

q − 2
, r ̸∈ {0,−a}.

(iid non-zero values in A + R)

Proposition: Sparsity as function of the PMF

sR = p1s + p2(1 − s),

sA+R = p1s + p3(1 − s).

1[XEB21] M. Xhemrishi, M. Egger, and R. Bitar, “Efficient private storage of sparse machine learning data,” in IEEE Information Theory Workshop (ITW),
Invited paper, 2022
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Minimizing the Leakage

Minimizing Entry-Wise Leakage

Let P be the set of all q2 values of PR|A, then the optimal leakage is

Lopt = min
P

Iq (R;A) + Iq (A + R;A)

= min
P

DKL (PA,R∥PAPR) + DKL (PA,A+R∥PAPA+R) ,

and is subject to valid PMF and desired sparsities.

• Constrained Convex Optimization
→ For desired sR and sA+R, we solve convex optimization min

P
L(p1, p2, p3) analytically.

→ Solution is given by root finding of degree three polynomial.
→ For small q, numerical results are the same as optimizing over q2 values of PR|A.

⇒ Results in optimal privacy guarantees, i.e., minimal leakage.
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Setting of Partly-Trusted/Untrusted Workers

A + R A + R R R

Worker 0 Worker 1 Worker 2 Worker 3

Figure: Two non-communicating clusters. One completely untrusted, one partially trusted.

• Choose p1 = p2 = p3 = p such that Iq (A + R;A) = 0
• Sparsity of the shares become

sR = p
(sq − 1)
q − 1

+
(1 − s)

q − 1
, and sA+R = p .

• Choose p to satisfy the desired sparsity constraint
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Sparse (n, 2, 1) Secret Sharing

Constuction: Sparse Secret Sharing [EXWB24]

Use the encoding polynomial fA(x) = A + xR. Choose n distinct non-zero symbols α1, . . . , αn from Fq. Share
i is the evaluation f (αi). Design the entries of R as follows:

Pr{Rij = r |Aij = 0}=

p1, r = 0

(sparsity of R)

1 − p1

q − 1
, r ̸= 0,

(iid non-zero values in R)

Pr{Rij = r |Aij = a}=


ps , r ∈ {− a

αi
}i∈[n]

(zero in A+ αiR)

1 − ps
q − 1

, r ̸∈ {− a

αi
}i∈[n].

(iid non-zeros in A+ αiR)

1[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, “Sparse and private distributed matrix multiplication with straggler tolerance,” in IEEE
International Symposium on Information Theory (ISIT), 2024
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Sparsity of our Sparse Secret Sharing

Lemma: Sparsity of the shares [EXWB24]

Given a matrix A with sparsity sA, the sparsity sshare of the shares is expressed as
sshare = p1sA + ps(1 − sA).

✓ Sparsity increases with p1 and ps , e.g., p1 = 1, ps = 1 maximum sparsity
× So does the information leakage I(A + xR;A), e.g., p1 = 1, ps = 1 ⇒ R is a multiple of − A

1[EXWB24] M. Egger, M. Xhemrishi, A. Wachter-Zeh, and R. Bitar, “Sparse and private distributed matrix multiplication with straggler tolerance,” in IEEE
International Symposium on Information Theory (ISIT), 2024
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Minimizing the Leakage of Sparse Secret Sharing

Theorem: Shares with minimum leakage

Given a desired sparsity sshares, the leakage I(A + xR;A) of the n shares is minimized by setting ps = p⋆s as the

real root of the polynomial
n+1∑
j=0

bjp
j
s in ps that satisfies 0 ≤ ps(1− sA) ≤ min{sshares,

1
n
}, for s1 ≜ sshare/(1− s),

s2 ≜ (sA − sshares)/(1 − sA) and c ≜ (q − 1)/(q − n)n and

bn+1 = −1 − c(−n)n

bn = c
(
s1(−n)n − n(−n)n−1)− s2

bi = c

(
s1

(
n

i

)
(−n)i −

(
n

i − 1

)
(−n)i−1

)
,∀i ∈ [n − 1]

b0 = cs1.

Then, p1 is computed as

p⋆1 =
sshares − p⋆s (1 − sA)

sA
.

Rawad Bitar (TUM) 15



Proof Idea

To prove that the values p⋆s and p⋆1 minimize the leakage, we do the following

• Assume sparsity is given and is same for all shares
• Prove that the leakage is a convex function of the conditional PMF PR|A(Rij = r |Aij = a)

• Find the leakage as function of ps and p1 for our construction
• Solve the non-linear convex optimization problem using Lagrange multipliers

Rawad Bitar (TUM) 16



Reducing the Computation Load

f0(x), g0(x) f1(x), g1(x) f2(x), g2(x) f3(x), g3(x)

Group 0 Group 1 Group 2 Group 3

• Divide the matrices A and B into m smaller chunks such that
n

m
= σ + 3

• Compute and assign evaluations of fi(x) and gi(x) to workers of group i , each encoding a chunk of A and B
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Figure: Sparsity values above which our scheme is beneficial over [DFHJCG19] polynomial codes.

1[DFHJCG19] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 278–301, 2019
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Leakage vs Scheme Parameters
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Figure: Relative leakage ε̄ =
I(A + xR;A)

H(A)
as function of desired sparsity, number of shares n and field size q.

• Leakage increases with n

• Leakage decreases with q

• Leakage increase with n is less emphasized for large q
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Why Same Sparsity for all Shares?

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

Average sparsity savg

To
ta

ll
ea

ka
ge

sδ = 0
sδ = 0.03

Figure: Optimal element-wise total leakage over different savg with varying sδ for q = 256 and s = 0.95.

Lemma: Optimal sparsity for two shares [XEB22]

Sparse secret sharing with shares R and A + R give the minimal total leakage when sδ ≜ sA+R − sR = 0.

1[XEB22] M. Xhemrishi, M. Egger, and R. Bitar, “Efficient private storage of sparse machine learning data,” in IEEE Information Theory Workshop (ITW),
Invited paper, 2022
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Matrices with Correlated Entries

(a) Matrix A with s ≈ 0.94 (b) Share f (αi) of A with
sparsity sshare ≈ 0.85

(c) Matrix A′ after
permutation

(d) Share f (αi) of A′ with
sparsity sshares ≈ 0.85

Figure: A depiction of the impact of correlated entries on the privacy guarantee.

• Naively encoding matrices with correlated entries using our sparse secret sharing may leak more information than
desired

• Our approach is to randomly permute the entries
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Summary and Future Directions

Summary

• Private and sparse matrix-matrix multiplication with no collusions
• Fundamental trade-off between sparsity and privacy
• Optimal solution under i.i.d entries of A for multiple shares with same sparsity
• Privacy improves with q and small n
• Extra care is needed for matrices with correlated entries

Future Directions

• Improve the rate of sparsity-preserving secret sharing schemes, i.e., k > 2
• Sparse secret sharing with collusions, i.e., z > 1
• Beyond i.i.d entries of the matrices
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Munich Workshop on Coding and Cryptography

Call for Contributions

  
Topic Areas

The workshop will cover several aspects of coding theory, with a special emphasis on topics related to post-quantum 
cryptography and privacy-preserving machine learning.

Important Dates

March 01st, 2024 Talk & Poster submission

March 08th, 2024 Notification

March 15th, 2024 Registration deadline

Contributed Talks & Posters

If you are interested in contributing a talk or poster, please submit an abstract of 200-250 words of your research, 
including a title and a list of authors with affiliations before March 1st, 2024. Submissions are possible via the 
website. Submission of research, that has been published at other conferences or journals is allowed and encouraged.

Organization

Co-Chairs:
Rawad Bitar
Sebastian Bitzer

Confirmed Speakers
Nicolas Aragon (Université de Limoges)

Magali Bardet (Université de Rouen)

Alejandro Cohen (Technion)

Flavio du Pin Calmon (Harvard)

Rafael D’Oliveira (Clemson University)

Salim El Rouayheb (Rutgers University)

Qian Guo (Lund University)

Anna-Lena Horlemann-Trautmann (Univ. of St. Gallen)

Elena Kirshanova (Technology Innovation Institute)

Pierre Loidreau (University of Rennes 1 & DGA)

Hessam Mahdavifar (University of Michigan)

Alexander May (Ruhr University Bochum)

Netanel Raviv (Washington University in St. Louis)

Paolo Santini (Università Politecnica delle Marche)

Anand Sarwate (Rutgers University)

Monika Trimoska (Eindhoven University of Tech.)

Sennur Ulukus (University of Maryland)

Co-Chairs:
Christoph Hofmeister
Antonia Wachter-Zeh

Munich Workshop on Coding and Cryptography 2024
April 8th to 10th, 2024

E-Mail: mwcc2024@ice.cit.tum.de

© Andreas Heddergott / TUM

Visit the workshop website at
mwcc2024.ice.cit.tum.de

• Focus on post-quantum cryptography and privacy-preserving machine learning.
• Dates: April 8 – 10, 2024.
• Takes place after the Munich Workshop on Shannon Coding Techniques.
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ISIT Satellite Workshop on DNA-based Data Storage

IMPORTANT DATES

The workshop will focus on coding theory and algorithms for DNA-based data storage.
It will consist of invited and contributed talks, as well as poster presentations, from
researchers and experts. The workshop is organized as a satellite workshop of the 2024
IEEE International Symposium on Information Theory (ISIT2024).

SUNDAY, JULY 7, 2024 ATHENS, GREECE

Coding Theory and Algorithms for
DNA-based Data Storage

Call for Contributions

CONTRIBUTED TALKS AND POSTERS

If you are interested in contributing a talk or
poster, please submit an abstract of at most 300
words of your research, including a title and a list
of authors with affiliations via the contribution
submission portal:
https://forms.office.com/e/yhiLQZnLpM

Daniel Bedau
James Diggans
Robert Grass
Olgica Milenkovic
Zohar Yakhini

Rawad Bitar
David Landsman
Antonia Wachter-Zeh
Eitan Yaakobi

More Information:

E-Mail: isit-dna-workshop@ice.cit.tum.de

Submission deadline: April 15, 2024
Notification date: May 1, 2024
ISIT early registration deadline: May 6, 2024
Workshop date: July 7, 2024

ORGANIZERSCONFIRMED SPEAKERS

https://go.tum.de/179751

(Technion)

(Western Digital/DNA Data Storage Alliance)

(Technical University of Munich)

(Technical University of Munich)(ETH Zurich)

(Technion/Reichman University)

(Western Digital)

(University of Illinois Urbana-Champaign)

(Twist Bioscience)

Sequence reconstruction and codes correcting edit errors
Emerging sequencing technologies
Coding for native DNA-based data storage systems
Information aspects of high throughput synthetic biology
Machine learning approaches for data reconstruction in DNA-based storage systems

TOPICS OF INTEREST

• Jointly organized with Dave Landsman from the DNA Data Storage Alliance.
• Contribution deadline: April 15, 2024.
• Designed to foster collaboration.
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Thank you for your attention!

Questions?

Figure: https://arxiv.org/abs/2306.15134

Further Questions?

Rawad Bitar
Technical University of Munich

rawad.bitar@tum.de
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