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Combining error correction and constraints is needed

Motivation

• Constrained codes are often employed in communication and storage

systems in order to mitigate the occurrence of data-dependent errors.

• In many channels some patterns are more prone to error than others,

and we avoid them by using constrained codes.

• This reduces the number of errors, however the transmitted data

may still be corrupted by data-independent errors, requiring

additional error-correcting codes.
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This is relevant for DNA storage

Examples of constraints

• Homopolymer runs

• GC content

• Local weight constraints

Examples of error types

• Substitution

• Insertions/Deletions

• Burst errors

Banerjee et al. ISIT ’22, Cai et al. T-IT ’21, Cai et al. ISIT ’21, Lu et al.

IEEE Access ’21, Nguyen et al. T-IT ’21, Press et al. PNAS ’20, Weber

et al. IEEE Comm. Lett. ’20, (and others).
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How do we combine the two?

• Construct an error-correcting code all of whose codewords obey the

constraints.

• Only a handful of ad-hoc examples are known.

• A non-constructive (hard to compute) lower bound on the rate

(Marcus and Roth, T-IT ’92).

• Separate the error-correcting code and the constrained code, and

combine them using a concatenation scheme (e.g., concatenation, or

reverse concatenation).

• Many issues need to be resolved (see book draft by Marcus, Roth,

and Siegel).

• In the known schemes, the error-correction capabilities are quite

limited: the state-of-the-art method (Gabrys, Siegel and Yaakobi

ISIT ’18) allows for a correction of O(
√
n) errors (where n is the

block length).
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Quantized-Constraint

Concatenation (QCC)



QCC is different

Conventionally: (concatenation, reverse concatenation)

• A constrained word represents the data to be transmitted and

protected against errors.

• The process of embedding the information in the constrained media

is reversible.

But in QCC:

• We consider the embedding process of information in the

constrained media as an irreversible quantization process rather then

a coding procedure.

• The constrained word is considered as a corrupted version of the

input message, obtained by a quantization procedure.
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Let’s get mathematical

Setting

• We fix a constrained system X over an alphabet Σ, a block length n,

and the set of constrained words Bn(X ) of length n.

• Assume that r ∈ N is a number such that for any word y ∈ Σn there

exists a constrained word x ∈ Bn(X ) such that d(x , y) ⩽ r .

• Let C ⊆ Σn be an error-correcting code, capable of correcting t > r

errors. Assume that we have an ECC encoder and an ECC decoder

for C .

u ECC

Encoder

c ∈ C
Quantizer

x ∈ Bn Channel
x ′ ECC

Decoder

u′
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Quantized-Constraint Concatenation – The big picture

u ECC

Encoder

c ∈ C
Quantizer

x ∈ Bn Channel
x ′ ECC

Decoder

u′

The Procedure

• Encoding: Given an information word u, use an encoder for an

error-correcting code to map it to a codeword c ∈ C .

• Quantization: Given c ∈ C , find a constrained word x ∈ Bn(X )

such that d(c , x) ⩽ r , and transmit x .

• Channel: At the channel output, x ′ ∈ Σn, a corrupted version of x ,

is observed.

• Decoding: Use the decoder for C on x ′ and obtain u′.
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Performance analysis

u ECC

Encoder

c ∈ C
Quantizer

x ∈ Bn Channel
x ′ ECC

Decoder

u′

Error-Correcting Capabilities

• If the channel does not introduce more than t − r errors, i.e.,

d(x , x ′) ⩽ t − r , then d(c , x ′) ⩽ t.

• Since C can correct t errors, we have u = u′, namely, it is possible

to correct t − r channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal

number r to satisfy that for any y ∈ Σn there is x ∈ Bn(X ) with

d(x , y) ⩽ r . This is exactly the covering radius of Bn(X ):

Correcting Θ(n) Errors

Assume that R(Bn(X ))/n converges to some number ρ and assume

that (Cn)n∈N is a sequence of codes capable of correcting ⌈δn⌉ errors,

where δ > ρ. In that case, we can correct (δ − ρ)n = Θ(n) errors!
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Performance analysis

Correcting Θ(n) Errors

Assume that R(Bn(X ))/n converges to some number ρ and assume

that (Cn)n is a sequence of codes capable of correcting ⌈δn⌉ errors,

where δ > ρ. In that case, we can correct (δ − ρ)n = Θ(n) errors!

What About The Rate?

• The asymptotic rate of our scheme is determined by the rates of the

codes (Cn)n∈N.

• By the Gilbert-Varshamov bound, as long as ρ ⩽ δ < 1
2 (1−

1
q ) there

exists a sequence of codes with asymptotic rate of Hq(2δ) > 0.

Conclusion

If ρ < 1
2 (1−

1
q ) it is possible to correct Θ(n) errors with a

non-vanishing rate.
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The Covering Radius of a

Constrained System



The covering radius of A constrained system

Definition

Let X ,Y be constrained systems over Σ.

• For a fixed n, the covering radius of Bn(X ) relatively to Bn(Y ) is

defined as

R(Bn(X ),Bn(Y )) ≜ min

r ∈ N

∣∣∣∣∣∣Bn(Y ) ⊆
⋃

x∈Bn(X )

Ballr (x)

.

• The (combinatorial) covering radius of X relatively to Y is

R(X ,Y ) ≜ lim inf
n→∞

R(Bn(X ),Bn(Y ))

n
.

Remark

Typically, Y = ΣZ, hence, Bn(Y ) = Σn for all n and R(Bn(X ),Bn(Y ))

is the usual covering radius of Bn(X ).

9



The covering radius of A constrained system

Definition

Let X ,Y be constrained systems over Σ.

• For a fixed n, the covering radius of Bn(X ) relatively to Bn(Y ) is

defined as

R(Bn(X ),Bn(Y )) ≜ min

r ∈ N

∣∣∣∣∣∣Bn(Y ) ⊆
⋃

x∈Bn(X )

Ballr (x)

.

• The (combinatorial) covering radius of X relatively to Y is

R(X ,Y ) ≜ lim inf
n→∞

R(Bn(X ),Bn(Y ))

n
.

Remark

Typically, Y = ΣZ, hence, Bn(Y ) = Σn for all n and R(Bn(X ),Bn(Y ))

is the usual covering radius of Bn(X ).

9



The covering radius of A constrained system

Definition

Let X ,Y be constrained systems over Σ.

• For a fixed n, the covering radius of Bn(X ) relatively to Bn(Y ) is

defined as

R(Bn(X ),Bn(Y )) ≜ min

r ∈ N

∣∣∣∣∣∣Bn(Y ) ⊆
⋃

x∈Bn(X )

Ballr (x)

.

• The (combinatorial) covering radius of X relatively to Y is

R(X ,Y ) ≜ lim inf
n→∞

R(Bn(X ),Bn(Y ))

n
.

Remark

Typically, Y = ΣZ, hence, Bn(Y ) = Σn for all n and R(Bn(X ),Bn(Y ))

is the usual covering radius of Bn(X ).

9



The covering radius of A constrained system

Definition

Let X ,Y be constrained systems over Σ.

• For a fixed n, the covering radius of Bn(X ) relatively to Bn(Y ) is

defined as

R(Bn(X ),Bn(Y )) ≜ min

r ∈ N

∣∣∣∣∣∣Bn(Y ) ⊆
⋃

x∈Bn(X )

Ballr (x)

.

• The (combinatorial) covering radius of X relatively to Y is

R(X ,Y ) ≜ lim inf
n→∞

R(Bn(X ),Bn(Y ))

n
.

Remark

Typically, Y = ΣZ, hence, Bn(Y ) = Σn for all n and R(Bn(X ),Bn(Y ))

is the usual covering radius of Bn(X ).
9



The case of (0, k)− RLL

Example

Let X0,k be the system of all binary words that do not contain k + 1

consecutive zeros, and let Y = {0, 1}Z be the system of all binary

words.

What is R(X0,k ,Y )?

Solution

Let us evaluate R(Bn(X0,k), {0, 1}n):

• For any (y1, . . . , yn) = y ∈ {0, 1}n, consider x obtained by setting

the values in the coordinates k + 1, 2(k + 1), . . . to 1. Clearly x

does not contain a run of k + 1 zeros, and d(x , y) ⩽ ⌊ n
k+1⌋. This

proves that R(Bn(X0,k), {0, 1}n) ⩽ ⌊ n
k+1⌋.

• On the other hand if take y = 0, then d(x , 0) ⩾ ⌊ n
k+1⌋ for all

x ∈ Bn(X0,k). This proves that R(Bn(X0,k), {0, 1}n) ⩾ ⌊ n
k+1⌋.

Taking limits: R(X0,k ,Y ) = lim inf
n→∞

R(Bn(X0,k), {0, 1}n)
n

=
1

k + 1
.
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An intriguing phenomenon

Example

• For k = 1 we have R(X0,1, {0, 1}Z) = 1
2 .

• Consider the system Xrep = {0, 1}. A simple calculation shows that

R(Xrep, {0, 1}Z) is also 1
2 .

• We have two systems, one which has strictly positive capacity

(Cap(X0,1) ≈ 0.694) and the other with zero capacity

(Cap(Xrep) = 0), with the same covering radius!

• We recall that a large covering radius means bad error-correction

capabilities.

• The covering radius of X0,1 is determined by rare patterns like 0.

We need an alternative definition for the covering radius which ignores

such rare patterns.
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The Essential Covering Radius



The essential covering radius

A Trade-off Between Quantization-Error and Rate

Question: What happens to the covering radius if we allow to drop an

ε ∈ (0, 1) fraction of the words in Bn(Y ) to be covered?

• We can drop bad patterns and therefore reduce the covering radius.

• On the other hand, in the context of QCC, where Bn(Y ) = Σn, we

lose rate — the rate of our coding scheme decreases by − log(1−ε)
n .

Definition

Let X and Y be constrained systems, µ be an invariant ergodic

measure on Y . For ε ∈ (0, 1) we define Rε(Bn(X ),Bn(Y ), µn) by:

min

r ∈ N

∣∣∣∣∣∣µn

Bn(Y ) ∩

 ⋃
x∈Bn(X )

Ballr (x)

 ⩾ 1− ε

.
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The essential covering radius

Remark

In the typical case, where Y is the trivial (non) constrained system,

taking µ to be the i.i.d uniform measure, Rε(Bn(X ),Bn(Y ), µn) is the

minimal radius for covering a fraction of (1− ε) of Σn.

An Asymptotic Definition

For a fixed ε ∈ (0, 1) define

Rε(X ,Y , µ) ≜ lim inf
n→∞

Rε(Bn(X ),Bn(Y ), µn)

n
.

Taking the uncovered-fraction of Y to 0 we define the essential

covering radius of X with respect to (Y , µ) as

R0(X ,Y , µ) ≜ lim
ε→0

Rε(X ,Y , µ).
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Do we get improved results?

The Case of (0, k)-RLL

We revisit the case where Y = {0, 1}Z is non-constrained and X0,k is

the (0, k)-RLL system. Let µ be the Ber( 12 ) i.i.d measure on Y .

Question: is the essential covering radius is strictly smaller then the

combinatorial covering radius in that case?

Theorem

R0(X0,k ,Y , µ) =
1

2(2k+1 − 1)
≪ 1

k + 1
= R(X0,k ,Y ).

In The Context of QCC

For a sequence of ECCs capable of correcting δn errors:

• Using the combinatorial covering radius – it is possible to correct up

to (δ − 1
k+1 )n errors.

• Using the essential covering radius – with vanishing loss of rate, it is

possible to correct (δ − 1
2(2k+1−1)

)n errors!
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Results

The Combinatorial Covering Radius

• We prove that under the assumption of primitive X or Y , the lim inf

in the definition is a limit.

• We show a relation between covering radius and capacity:

R(X ,Y ) ⩾ H−1
|Σ|(h(Y )− h(X )).

The Essential Covering Radius

• We find an equivalent characterization of the essential covering

radius using ergodic theory.

• The ergodic-theoretic definition is useful for establishing bounds on

the essential covering radii of constrained systems.
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What’s next?

The covering radius of a constrained system is a new and interesting

parameter due to its applications for error-correcting constrained codes,

but also as a mathematical figure of merit.

Possible Directions for The Future

• The algorithmic aspect of QCC - developing quantization algorithms.

• Studying the covering radii of well-known constrained systems.

• Providing general bounds and methods to study the covering radius

for studying constrained systems.
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Thank you for your attention!
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