Quantized-Constraint Concatenation and The Covering Radius of Constrained Systems

Moshe Schwartz
McMaster University, Canada
Ben-Gurion University of the Negev, Israel

Joint work with:
Dor Elimelech and Tom Meyerovitch
Combining error correction and constraints is needed

Motivation

- **Constrained codes** are often employed in communication and storage systems in order to mitigate the occurrence of data-dependent errors.
Combining error correction and constraints is needed

Motivation

- **Constrained codes** are often employed in communication and storage systems in order to mitigate the occurrence of data-dependent errors.
- In many channels some patterns are more prone to error than others, and we avoid them by using constrained codes.
Combining error correction and constraints is needed

Motivation

- **Constrained codes** are often employed in communication and storage systems in order to mitigate the occurrence of data-dependent errors.
- In many channels some patterns are more prone to error than others, and we avoid them by using constrained codes.
- This reduces the number of errors, however the transmitted data may still be corrupted by data-independent errors, requiring additional error-correcting codes.
This is relevant for DNA storage

<table>
<thead>
<tr>
<th>Examples of constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Homopolymer runs</td>
</tr>
<tr>
<td>• GC content</td>
</tr>
<tr>
<td>• Local weight constraints</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples of error types</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Substitution</td>
</tr>
<tr>
<td>• Insertions/Deletions</td>
</tr>
<tr>
<td>• Burst errors</td>
</tr>
</tbody>
</table>

How do we combine the two?

- Construct an error-correcting code all of whose codewords obey the constraints.
How do we combine the two?

- Construct an error-correcting code all of whose codewords obey the constraints.
 - Only a handful of ad-hoc examples are known.
 - A non-constructive (hard to compute) lower bound on the rate (Marcus and Roth, T-IT '92).

- Separate the error-correcting code and the constrained code, and combine them using a concatenation scheme (e.g., concatenation, or reverse concatenation).

- Many issues need to be resolved (see book draft by Marcus, Roth, and Siegel).

- In the known schemes, the error-correction capabilities are quite limited: the state-of-the-art method (Gabrys, Siegel and Yaakobi ISIT '18) allows for a correction of $O(\sqrt{n})$ errors (where n is the block length).
How do we combine the two?

- Construct an error-correcting code all of whose codewords obey the constraints.
 - Only a handful of ad-hoc examples are known.
 - A non-constructive (hard to compute) lower bound on the rate (Marcus and Roth, T-IT '92).
- Separate the error-correcting code and the constrained code, and combine them using a concatenation scheme (e.g., concatenation, or reverse concatenation).

Many issues need to be resolved (see book draft by Marcus, Roth, and Siegel).

In the known schemes, the error-correction capabilities are quite limited: the state-of-the-art method (Gabrys, Siegel and Yaakobi ISIT '18) allows for a correction of $O(\sqrt{n})$ errors (where n is the block length).
How do we combine the two?

- Construct an error-correcting code all of whose codewords obey the constraints.
 - Only a handful of ad-hoc examples are known.
 - A non-constructive (hard to compute) lower bound on the rate (Marcus and Roth, T-IT ’92).
- Separate the error-correcting code and the constrained code, and combine them using a concatenation scheme (e.g., concatenation, or reverse concatenation).
 - Many issues need to be resolved (see book draft by Marcus, Roth, and Siegel).
 - In the known schemes, the error-correction capabilities are quite limited: the state-of-the-art method (Gabrys, Siegel and Yaakobi ISIT ’18) allows for a correction of $O(\sqrt{n})$ errors (where n is the block length).
Quantized-Constraint Concatenation (QCC)
QCC is different

Conventionally: (concatenation, reverse concatenation)

- A constrained word represents the data to be transmitted and protected against errors.
QCC is different

<table>
<thead>
<tr>
<th>Conventionally: (concatenation, reverse concatenation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A constrained word represents the data to be transmitted and protected against errors.</td>
</tr>
<tr>
<td>• The process of embedding the information in the constrained media is reversible.</td>
</tr>
</tbody>
</table>
QCC is different

<table>
<thead>
<tr>
<th>Conventionally: (concatenation, reverse concatenation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A constrained word represents the data to be transmitted and protected against errors.</td>
</tr>
<tr>
<td>• The process of embedding the information in the constrained media is reversible.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>But in QCC:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• We consider the embedding process of information in the constrained media as an irreversible quantization process rather than a coding procedure.</td>
</tr>
</tbody>
</table>
QCC is different

Conventionally: (concatenation, reverse concatenation)

- A constrained word represents the data to be transmitted and protected against errors.
- The process of embedding the information in the constrained media is reversible.

But in QCC:

- We consider the embedding process of information in the constrained media as an irreversible *quantization* process rather than a coding procedure.
- The constrained word is considered as a corrupted version of the input message, obtained by a quantization procedure.
Let’s get mathematical

<table>
<thead>
<tr>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>• We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words $\mathcal{B}_n(X)$ of length n.</td>
</tr>
</tbody>
</table>
Let’s get mathematical

Setting

- We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words $\mathcal{B}_n(X)$ of length n.

- Assume that $r \in \mathbb{N}$ is a number such that for any word $\bar{y} \in \Sigma^n$ there exists a constrained word $\bar{x} \in \mathcal{B}_n(X)$ such that $d(\bar{x}, \bar{y}) \leq r$.

- Let $C \subseteq \Sigma^n$ be an error-correcting code, capable of correcting $t > r$ errors. Assume that we have an ECC encoder and an ECC decoder.

\[
\begin{array}{cccc}
\text{Encoder} & c \in C & \text{Quantizer} & x \in \mathcal{B}_n(X) \\
\text{Channel} & x' \text{ECC} & \text{Decoder} & u' \text{ECC}
\end{array}
\]
Let’s get mathematical

Setting

- We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words $B_n(X)$ of length n.
- Assume that $r \in \mathbb{N}$ is a number such that for any word $\bar{y} \in \Sigma^n$ there exists a constrained word $\bar{x} \in B_n(X)$ such that $d(\bar{x}, \bar{y}) \leq r$.
- Let $C \subseteq \Sigma^n$ be an error-correcting code, capable of correcting $t > r$ errors. Assume that we have an ECC encoder and an ECC decoder for C.
Let’s get mathematical

Setting

- We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words $\mathcal{B}_n(X)$ of length n.
- Assume that $r \in \mathbb{N}$ is a number such that for any word $\overline{y} \in \Sigma^n$ there exists a constrained word $\overline{x} \in \mathcal{B}_n(X)$ such that $d(\overline{x}, \overline{y}) \leq r$.
- Let $C \subseteq \Sigma^n$ be an error-correcting code, capable of correcting $t > r$ errors. Assume that we have an ECC encoder and an ECC decoder for C.

```
\overline{u} \xrightarrow{\text{ECC Encoder}} \overline{c} \in C \xrightarrow{\text{Quantizer}} \overline{x} \in \mathcal{B}_n \xrightarrow{\text{Channel}} \overline{x}' \xrightarrow{\text{ECC Decoder}} \overline{u}'
```
Quantized-Constrain Concatenation – The big picture

The Procedure

• Encoding: Given an information word u, use an encoder for an error-correcting code to map it to a codeword $c \in C$.

• Quantization: Given $c \in C$, find a constrained word $x \in B_n (X)$ such that $d(c, x) \leq r$, and transmit x.

• Channel: At the channel output, $x' \in \Sigma_n$, a corrupted version of x, is observed.

• Decoding: Use the decoder for C on x' and obtain u'.

Diagram:

- \bar{u}
- ECC Encoder
- $\bar{c} \in C$
- Quantizer
- $\bar{x} \in B_n$
- Channel
- \bar{x}'
- ECC Decoder
- \bar{u}'
Quantized-Constraint Concatenation – The big picture

The Procedure

- **Encoding**: Given an information word \overline{u}, use an encoder for an error-correcting code to map it to a codeword $\overline{c} \in C$.
Quantized-Constraint Concatenation – The big picture

The Procedure

- **Encoding**: Given an information word u, use an encoder for an error-correcting code to map it to a codeword $c \in C$.

- **Quantization**: Given $c \in C$, find a constrained word $x \in B_n(X)$ such that $d(c, x) \leq r$, and transmit x.

The Procedure

- Encoding: Given an information word u, use an encoder for an error-correcting code to map it to a codeword $c \in C$.

- Quantization: Given $c \in C$, find a constrained word $x \in B_n(X)$ such that $d(c, x) \leq r$, and transmit x.

Quantized-Constraint Concatenation – The big picture

The Procedure

- **Encoding**: Given an information word \vec{u}, use an encoder for an error-correcting code to map it to a codeword $\vec{c} \in C$.

- **Quantization**: Given $\vec{c} \in C$, find a constrained word $\vec{x} \in B_n(X)$ such that $d(\vec{c}, \vec{x}) \leq r$, and transmit \vec{x}.

- **Channel**: At the channel output, $\vec{x}' \in \Sigma^n$, a corrupted version of \vec{x}, is observed.
Quantized-Constraint Concatenation – The big picture

The Procedure

- **Encoding**: Given an information word \bar{u}, use an encoder for an error-correcting code to map it to a codeword $\bar{c} \in C$.

- **Quantization**: Given $\bar{c} \in C$, find a constrained word $\bar{x} \in \mathcal{B}_n(X)$ such that $d(\bar{c}, \bar{x}) \leq r$, and transmit \bar{x}.

- **Channel**: At the channel output, $\bar{x}' \in \Sigma^n$, a corrupted version of \bar{x}, is observed.

- **Decoding**: Use the decoder for C on \bar{x}' and obtain \bar{u}'.

Performance analysis

\[\overline{u} \rightarrow \text{ECC Encoder} \rightarrow \overline{c} \in C \rightarrow \text{Quantizer} \rightarrow \overline{x} \in B_n \rightarrow \text{Channel} \rightarrow \overline{x}' \rightarrow \text{ECC Decoder} \rightarrow \overline{u}' \]

Error-Correcting Capabilities

- If the channel does not introduce more than \(t - r \) errors, i.e., \(d(x, x') \leq t - r \), then \(d(c, x') \leq t \).

- Since \(C \) can correct \(t \) errors, we have \(u = u' \), namely, it is possible to correct \(t - r \) channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number \(r \) to satisfy that for any \(y \in \Sigma^n \) there is \(x \in B_n(x) \) with \(d(x, y) \leq r \). This is exactly the covering radius of \(B_n(x) \):

Correcting \(\Theta(n) \) Errors

Assume that \(R(B_n(x)) / n \) converges to some number \(\rho \) and assume that \((C_n)_{n \in \mathbb{N}} \) is a sequence of codes capable of correcting \(\lceil \delta n \rceil \) errors, where \(\delta > \rho \). In that case, we can correct \((\delta - \rho) n = \Theta(n) \) errors!
Error-Correcting Capabilities

- If the channel does not introduce more than $t - r$ errors, i.e., $d(\bar{x}, \bar{x}') \leq t - r$, then $d(c, \bar{x}') \leq t$.
Performance analysis

Error-Correcting Capabilities

- If the channel does not introduce more than $t - r$ errors, i.e., $d(\overline{x}, \overline{x}') \leq t - r$, then $d(\overline{c}, \overline{x}') \leq t$.
- Since C can correct t errors, we have $\overline{u} = \overline{u}'$, namely, it is possible to correct $t - r$ channel errors.
Performance analysis

\[
\begin{array}{c}
\hat{u} \\
\text{ECC Encoder} \\
\bar{c} \in C \\
\text{Quantizer} \\
\bar{x} \in \mathcal{B}_n \\
\text{Channel} \\
\bar{x}' \\
\text{ECC Decoder} \\
\hat{u}'
\end{array}
\]

Error-Correcting Capabilities

- If the channel does not introduce more than \(t - r \) errors, i.e., \(d(\bar{x}, \bar{x}') \leq t - r \), then \(d(\bar{c}, \bar{x}') \leq t \).
- Since \(C \) can correct \(t \) errors, we have \(\bar{u} = \bar{u}' \), namely, it is possible to correct \(t - r \) channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number \(r \) to satisfy that for any \(\bar{y} \in \Sigma^n \) there is \(\bar{x} \in \mathcal{B}_n(X) \) with \(d(\bar{x}, \bar{y}) \leq r \).
Error-Correcting Capabilities

- If the channel does not introduce more than \(t - r \) errors, i.e., \(d(\bar{x}, \bar{x}') \leq t - r \), then \(d(\bar{c}, \bar{x}') \leq t \).
- Since \(C \) can correct \(t \) errors, we have \(\bar{u} = \bar{u}' \), namely, it is possible to correct \(t - r \) channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number \(r \) to satisfy that for any \(\bar{y} \in \Sigma^n \) there is \(\bar{x} \in B_n(X) \) with \(d(\bar{x}, \bar{y}) \leq r \). This is exactly the covering radius of \(B_n(X) \):
Performance analysis

Error-Correcting Capabilities

- If the channel does not introduce more than $t - r$ errors, i.e., $d(\bar{x}, \bar{x}') \leq t - r$, then $d(\bar{c}, \bar{x}') \leq t$.
- Since C can correct t errors, we have $\bar{u} = \bar{u}'$, namely, it is possible to correct $t - r$ channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number r to satisfy that for any $\bar{y} \in \Sigma^n$ there is $\bar{x} \in \mathcal{B}_n(X)$ with $d(\bar{x}, \bar{y}) \leq r$. This is exactly the covering radius of $\mathcal{B}_n(X)$:

Correcting $\Theta(n)$ Errors

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_{n \in \mathbb{N}}$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$.

7
Performance analysis

Error-Correcting Capabilities

- If the channel does not introduce more than \(t - r \) errors, i.e.,
 \[d(\bar{x}, \bar{x}') \leq t - r, \] then \(d(\bar{c}, \bar{x}') \leq t. \)
- Since \(C \) can correct \(t \) errors, we have \(\bar{u} = \bar{u}' \), namely, it is possible to correct \(t - r \) channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number \(r \) to satisfy that for any \(\bar{y} \in \Sigma^n \) there is \(\bar{x} \in B_n(X) \) with \(d(\bar{x}, \bar{y}) \leq r. \) This is exactly the covering radius of \(B_n(X): \)

Correcting \(\Theta(n) \) Errors

Assume that \(R(B_n(X))/n \) converges to some number \(\rho \) and assume that \((C_n)_{n \in \mathbb{N}} \) is a sequence of codes capable of correcting \(\lceil \delta n \rceil \) errors, where \(\delta > \rho. \) In that case, we can correct \((\delta - \rho)n = \Theta(n) \) errors!
Performance analysis

Correcting $\Theta(n)$ Errors

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_n$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$. In that case, we can correct $(\delta - \rho)n = \Theta(n)$ errors!

What About The Rate?

- The asymptotic rate of our scheme is determined by the rates of the codes $(C_n)_{n \in \mathbb{N}}$.
Performance analysis

Correcting \(\Theta(n) \) Errors

Assume that \(R(B_n(X))/n \) converges to some number \(\rho \) and assume that \((C_n)_n\) is a sequence of codes capable of correcting \(\lceil \delta n \rceil \) errors, where \(\delta > \rho \). In that case, we can correct \((\delta - \rho)n = \Theta(n) \) errors!

What About The Rate?

- The asymptotic rate of our scheme is determined by the rates of the codes \((C_n)_{n \in \mathbb{N}}\).
- By the Gilbert-Varshamov bound, as long as \(\rho \leq \delta < \frac{1}{2}(1 - \frac{1}{q}) \) there exists a sequence of codes with asymptotic rate of \(H_q(2\delta) > 0 \).
Correcting $\Theta(n)$ Errors

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_n$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$. In that case, we can correct $(\delta - \rho)n = \Theta(n)$ errors!

What About The Rate?

- The asymptotic rate of our scheme is determined by the rates of the codes $(C_n)_n \in \mathbb{N}$.
- By the Gilbert-Varshamov bound, as long as $\rho \leq \delta < \frac{1}{2}(1 - \frac{1}{q})$ there exists a sequence of codes with asymptotic rate of $H_q(2\delta) > 0$.

Conclusion

If $\rho < \frac{1}{2}(1 - \frac{1}{q})$ it is possible to correct $\Theta(n)$ errors with a non-vanishing rate.
The Covering Radius of a Constrained System
Definition

Let X, Y be constrained systems over Σ.

Remark

Typically, $Y = \Sigma_Z$, hence, $B_n(Y) = \Sigma_n$ for all n and $R(B_n(X), B_n(Y))$ is the usual covering radius of $B_n(X)$.

The covering radius of a constrained system

Definition

Let X, Y be constrained systems over Σ.

- For a fixed n, the covering radius of $\mathcal{B}_n(X)$ relatively to $\mathcal{B}_n(Y)$ is defined as

 \[
 R(\mathcal{B}_n(X), \mathcal{B}_n(Y)) \triangleq \min \left\{ r \in \mathbb{N} \mid \mathcal{B}_n(Y) \subseteq \bigcup_{\bar{x} \in \mathcal{B}_n(X)} \text{Ball}_r(\bar{x}) \right\}.
 \]

Remark

Typically, $Y = \Sigma^*$, hence, $\mathcal{B}_n(Y) = \Sigma^n$ for all n and $R(\mathcal{B}_n(X), \mathcal{B}_n(Y))$ is the usual covering radius of $\mathcal{B}_n(X)$.
The covering radius of a constrained system

Definition

Let X, Y be constrained systems over Σ.

- For a fixed n, the covering radius of $B_n(X)$ relatively to $B_n(Y)$ is defined as

$$R(B_n(X), B_n(Y)) \triangleq \min \left\{ r \in \mathbb{N} \mid B_n(Y) \subseteq \bigcup_{\bar{x} \in B_n(X)} \text{Ball}_r(\bar{x}) \right\}.$$

- The (combinatorial) covering radius of X relatively to Y is

$$R(X, Y) \triangleq \lim_{n \to \infty} \frac{R(B_n(X), B_n(Y))}{n}.$$
The covering radius of a constrained system

Definition

Let X, Y be constrained systems over Σ.

- For a fixed n, the covering radius of $B_n(X)$ relatively to $B_n(Y)$ is defined as

 $$R(B_n(X), B_n(Y)) \triangleq \min \left\{ r \in \mathbb{N} \mid B_n(Y) \subseteq \bigcup_{\bar{x} \in B_n(X)} \text{Ball}_r(\bar{x}) \right\}.$$

- The (combinatorial) covering radius of X relatively to Y is

 $$R(X, Y) \triangleq \liminf_{n \to \infty} \frac{R(B_n(X), B_n(Y))}{n}.$$

Remark

Typically, $Y = \Sigma^\mathbb{Z}$, hence, $B_n(Y) = \Sigma^n$ for all n and $R(B_n(X), B_n(Y))$ is the usual covering radius of $B_n(X)$.
Example

Let $X_{0,k}$ be the system of all binary words that do not contain $k + 1$ consecutive zeros, and let $Y = \{0, 1\}^\mathbb{Z}$ be the system of all binary words.
Example

Let $X_{0,k}$ be the system of all binary words that do not contain $k + 1$ consecutive zeros, and let $Y = \{0, 1\}^\mathbb{Z}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?
Example
Let \(X_{0,k}\) be the system of all binary words that do not contain \(k + 1\) consecutive zeros, and let \(Y = \{0, 1\}^\mathbb{Z}\) be the system of all binary words. What is \(R(X_{0,k}, Y)\)?

Solution
Let us evaluate \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n)\):
The case of \((0, k) - RLL\)

Example
Let \(X_{0,k}\) be the system of all binary words that do not contain \(k + 1\) consecutive zeros, and let \(Y = \{0, 1\}^\mathbb{Z}\) be the system of all binary words. What is \(R(X_{0,k}, Y)\)?

Solution
Let us evaluate \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n)\):

- For any \((y_1, \ldots, y_n) = \overline{y} \in \{0, 1\}^n\), consider \(\overline{x}\) obtained by setting the values in the coordinates \(k + 1, 2(k + 1), \ldots\) to 1.
The case of $(0, k) – RLL$

Example

Let $X_{0,k}$ be the system of all binary words that do not contain $k + 1$ consecutive zeros, and let $Y = \{0, 1\}^\mathbb{Z}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

Let us evaluate $R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n)$:

- For any $(y_1, \ldots, y_n) = \bar{y} \in \{0, 1\}^n$, consider \bar{x} obtained by setting the values in the coordinates $k + 1, 2(k + 1), \ldots$ to 1. Clearly \bar{x} does not contain a run of $k + 1$ zeros, and $d(\bar{x}, \bar{y}) \leq \left\lfloor \frac{n}{k+1} \right\rfloor$.
The case of \((0, k)−RLL\)

Example

Let \(X_{0,k}\) be the system of all binary words that do not contain \(k + 1\) consecutive zeros, and let \(Y = \{0, 1\}^\mathbb{Z}\) be the system of all binary words. What is \(R(X_{0,k}, Y)\)?

Solution

Let us evaluate \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n)\):

- For any \((y_1, \ldots, y_n) = \bar{y} \in \{0, 1\}^n\), consider \(\bar{x}\) obtained by setting the values in the coordinates \(k + 1, 2(k + 1), \ldots\) to 1. Clearly \(\bar{x}\) does not contain a run of \(k + 1\) zeros, and \(d(\bar{x}, \bar{y}) \leq \lfloor \frac{n}{k+1} \rfloor\). This proves that \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n) \leq \lfloor \frac{n}{k+1} \rfloor\).
Example
Let $X_{0,k}$ be the system of all binary words that do not contain $k + 1$ consecutive zeros, and let $Y = \{0, 1\}^\mathbb{Z}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution
Let us evaluate $R(B_n(X_{0,k}), \{0, 1\}^n)$:

- For any $(y_1, \ldots, y_n) = \bar{y} \in \{0, 1\}^n$, consider \bar{x} obtained by setting the values in the coordinates $k + 1, 2(k + 1), \ldots$ to 1. Clearly \bar{x} does not contain a run of $k + 1$ zeros, and $d(\bar{x}, \bar{y}) \leq \left\lfloor \frac{n}{k+1} \right\rfloor$. This proves that $R(B_n(X_{0,k}), \{0, 1\}^n) \leq \left\lfloor \frac{n}{k+1} \right\rfloor$.
- On the other hand if take $\bar{y} = \bar{0}$, then $d(\bar{x}, \bar{0}) \geq \left\lceil \frac{n}{k+1} \right\rceil$ for all $\bar{x} \in B_n(X_{0,k})$.

The case of $(0, k) – RLL
The case of \((0, k) – RLL\)

Example

Let \(X_{0,k}\) be the system of all binary words that do not contain \(k + 1\) consecutive zeros, and let \(Y = \{0, 1\}^\mathbb{Z}\) be the system of all binary words. What is \(R(X_{0,k}, Y)\)?

Solution

Let us evaluate \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n)\):

- For any \((y_1, \ldots, y_n) = \overline{y} \in \{0, 1\}^n\), consider \(\overline{x}\) obtained by setting the values in the coordinates \(k + 1, 2(k + 1), \ldots\) to 1. Clearly \(\overline{x}\) does not contain a run of \(k + 1\) zeros, and \(d(\overline{x}, \overline{y}) \leq \lfloor \frac{n}{k+1} \rfloor\). This proves that \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n) \leq \lfloor \frac{n}{k+1} \rfloor\).

- On the other hand if take \(\overline{y} = \overline{0}\), then \(d(\overline{x}, \overline{0}) \geq \lceil \frac{n}{k+1} \rceil\) for all \(\overline{x} \in \mathcal{B}_n(X_{0,k})\). This proves that \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n) \geq \lceil \frac{n}{k+1} \rceil\).
The case of \((0, k) – RLL\)

Example

Let \(X_{0,k}\) be the system of all binary words that do not contain \(k + 1\) consecutive zeros, and let \(Y = \{0, 1\}^\mathbb{Z}\) be the system of all binary words. What is \(R(X_{0,k}, Y)\)?

Solution

Let us evaluate \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n)\):

- For any \((y_1, \ldots, y_n) = \overline{y} \in \{0, 1\}^n\), consider \(\overline{x}\) obtained by setting the values in the coordinates \(k + 1, 2(k + 1), \ldots\) to 1. Clearly \(\overline{x}\) does not contain a run of \(k + 1\) zeros, and \(d(\overline{x}, \overline{y}) \leq \left\lfloor \frac{n}{k+1} \right\rfloor\). This proves that \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n) \leq \left\lfloor \frac{n}{k+1} \right\rfloor\).

- On the other hand if take \(\overline{y} = \overline{0}\), then \(d(\overline{x}, \overline{0}) \geq \left\lfloor \frac{n}{k+1} \right\rfloor\) for all \(\overline{x} \in \mathcal{B}_n(X_{0,k})\). This proves that \(R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n) \geq \left\lfloor \frac{n}{k+1} \right\rfloor\).

Taking limits: \(R(X_{0,k}, Y) = \liminf_{n \to \infty} \frac{R(\mathcal{B}_n(X_{0,k}), \{0, 1\}^n)}{n} = \frac{1}{k + 1}\).
An intriguing phenomenon

Example

- For $k = 1$ we have $R(X_{0,1}, \{0, 1\}^\mathbb{Z}) = \frac{1}{2}$.
An intriguing phenomenon

Example

• For $k = 1$ we have $R(X_{0,1}, \{0, 1\}^\mathbb{Z}) = \frac{1}{2}$.

• Consider the system $X_{\text{rep}} = \{0, 1\}$. A simple calculation shows that $R(X_{\text{rep}}, \{0, 1\}^\mathbb{Z})$ is also $\frac{1}{2}$.
An intriguing phenomenon

Example

- For $k = 1$ we have $R(X_{0,1}, \{0, 1\}^\mathbb{Z}) = \frac{1}{2}$.
- Consider the system $X_{\text{rep}} = \{0, 1\}$. A simple calculation shows that $R(X_{\text{rep}}, \{0, 1\}^\mathbb{Z})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity ($\text{Cap}(X_{0,1}) \approx 0.694$) and the other with zero capacity ($\text{Cap}(X_{\text{rep}}) = 0$), with the same covering radius!
An intriguing phenomenon

Example

- For $k = 1$ we have $R(X_{0,1}, \{0, 1\}^\mathbb{Z}) = \frac{1}{2}$.
- Consider the system $X_{\text{rep}} = \{\overline{0}, \overline{1}\}$. A simple calculation shows that $R(X_{\text{rep}}, \{0, 1\}^\mathbb{Z})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity ($\text{Cap}(X_{0,1}) \approx 0.694$) and the other with zero capacity ($\text{Cap}(X_{\text{rep}}) = 0$), with the same covering radius!
- We recall that a large covering radius means bad error-correction capabilities.
An intriguing phenomenon

Example

- For $k = 1$ we have $R(X_{0,1}, \{0, 1\}^\mathbb{Z}) = \frac{1}{2}$.
- Consider the system $X_{\text{rep}} = \{0, 1\}$. A simple calculation shows that $R(X_{\text{rep}}, \{0, 1\}^\mathbb{Z})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity ($\text{Cap}(X_{0,1}) \approx 0.694$) and the other with zero capacity ($\text{Cap}(X_{\text{rep}}) = 0$), with the same covering radius!
- We recall that a large covering radius means bad error-correction capabilities.
- The covering radius of $X_{0,1}$ is determined by rare patterns like $\bar{0}$.
An intriguing phenomenon

Example

- For $k = 1$ we have $R(X_{0,1}, \{0, 1\}^\mathbb{Z}) = \frac{1}{2}$.
- Consider the system $X_{\text{rep}} = \{0, 1\}$. A simple calculation shows that $R(X_{\text{rep}}, \{0, 1\}^\mathbb{Z})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity ($\text{Cap}(X_{0,1}) \approx 0.694$) and the other with zero capacity ($\text{Cap}(X_{\text{rep}}) = 0$), with the same covering radius!
- We recall that a large covering radius means bad error-correction capabilities.
- The covering radius of $X_{0,1}$ is determined by rare patterns like $\overline{0}$.

We need an alternative definition for the covering radius which ignores such rare patterns.
The Essential Covering Radius
A Trade-off Between Quantization-Error and Rate

Question: What happens to the covering radius if we allow to drop an \(\varepsilon \in (0, 1) \) fraction of the words in \(B_n(Y) \) to be covered?
A Trade-off Between Quantization-Error and Rate

Question: What happens to the covering radius if we allow to drop an $\varepsilon \in (0, 1)$ fraction of the words in $B_n(Y)$ to be covered?

- We can drop bad patterns and therefore reduce the covering radius.
A Trade-off Between Quantization-Error and Rate

Question: What happens to the covering radius if we allow to drop an \(\varepsilon \in (0, 1) \) fraction of the words in \(B_n(Y) \) to be covered?

- We can drop bad patterns and therefore reduce the covering radius.
- On the other hand, in the context of QCC, where \(B_n(Y) = \Sigma^n \), we lose rate — the rate of our coding scheme decreases by \(-\frac{\log(1-\varepsilon)}{n} \).
A Trade-off Between Quantization-Error and Rate

Question: What happens to the covering radius if we allow to drop an $\varepsilon \in (0, 1)$ fraction of the words in $\mathcal{B}_n(Y)$ to be covered?

- We can drop bad patterns and therefore reduce the covering radius.
- On the other hand, in the context of QCC, where $\mathcal{B}_n(Y) = \Sigma^n$, we lose rate — the rate of our coding scheme decreases by $-\frac{\log(1-\varepsilon)}{n}$.

Definition

Let X and Y be constrained systems, μ be an invariant ergodic measure on Y. For $\varepsilon \in (0, 1)$ we define $R_\varepsilon(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)$ by:

$$
\min \left\{ r \in \mathbb{N} \left| \mu_n \left(\mathcal{B}_n(Y) \cap \left(\bigcup_{\bar{x} \in \mathcal{B}_n(X)} \text{Ball}_r(\bar{x}) \right) \right) \geq 1 - \varepsilon \right\}.
$$
The essential covering radius

Remark

In the typical case, where Y is the trivial (non) constrained system, taking μ to be the i.i.d uniform measure, $R_\varepsilon(B_n(X), B_n(Y), \mu_n)$ is the minimal radius for covering a fraction of $(1 - \varepsilon)$ of Σ^n.
Remark
In the typical case, where Y is the trivial (non) constrained system, taking μ to be the i.i.d uniform measure, $R_\varepsilon(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)$ is the minimal radius for covering a fraction of $(1 - \varepsilon)$ of Σ^n.

An Asymptotic Definition
For a fixed $\varepsilon \in (0, 1)$ define

$$R_\varepsilon(X, Y, \mu) \triangleq \liminf_{n \to \infty} \frac{R_\varepsilon(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)}{n}.$$
Remark

In the typical case, where Y is the trivial (non) constrained system, taking μ to be the i.i.d uniform measure, $R_\varepsilon(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)$ is the minimal radius for covering a fraction of $(1 - \varepsilon)$ of Σ^n.

An Asymptotic Definition

For a fixed $\varepsilon \in (0, 1)$ define

$$R_\varepsilon(X, Y, \mu) \triangleq \liminf_{n \to \infty} \frac{R_\varepsilon(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)}{n}.$$

Taking the uncovered-fraction of Y to 0 we define the essential covering radius of X with respect to (Y, μ) as

$$R_0(X, Y, \mu) \triangleq \lim_{\varepsilon \to 0} R_\varepsilon(X, Y, \mu).$$
Do we get improved results?

The Case of $(0, k)$-RLL

We revisit the case where $Y = \{0, 1\}^\mathbb{Z}$ is non-constrained and $X_{0,k}$ is the $(0, k)$-RLL system. Let μ be the $\text{Ber}(\frac{1}{2})$ i.i.d measure on Y.

Question: is the essential covering radius strictly smaller than the combinatorial covering radius in that case?

Theorem

$R_{0}(X_{0,k}, Y, \mu) = \frac{1}{2}(2^{k+1} - 1) \ll \frac{1}{k+1} = R(X_{0,k}, Y)$.

In the Context of QCC

For a sequence of ECCs capable of correcting δ_n errors:

• Using the combinatorial covering radius – it is possible to correct up to $(\delta - 1)k + 1$ errors.
• Using the essential covering radius – with vanishing loss of rate, it is possible to correct $(\delta - 1)\frac{1}{2}(2^{k+1} - 1)$ errors!
Do we get improved results?

The Case of \((0, k)\)-RLL

We revisit the case where \(Y = \{0, 1\}^\mathbb{Z}\) is non-constrained and \(X_{0,k}\) is the \((0, k)\)-RLL system. Let \(\mu\) be the \(\text{Ber}(\frac{1}{2})\) i.i.d measure on \(Y\).

Question: is the essential covering radius is strictly smaller then the combinatorial covering radius in that case?
Do we get improved results?

<table>
<thead>
<tr>
<th>The Case of $(0, k)$-RLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>We revisit the case where $Y = {0, 1}^\mathbb{Z}$ is non-constrained and $X_{0,k}$ is the $(0, k)$-RLL system. Let μ be the Ber($\frac{1}{2}$) i.i.d measure on Y.</td>
</tr>
<tr>
<td>Question: is the essential covering radius strictly smaller than the combinatorial covering radius in that case?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_0(X_{0,k}, Y, \mu) = \frac{1}{2(2^{k+1} - 1)} \ll \frac{1}{k + 1} = R(X_{0,k}, Y)$.</td>
</tr>
</tbody>
</table>

In the context of QCC,

| For a sequence of ECCs capable of correcting δ errors: |
| • Using the combinatorial covering radius – it is possible to correct up to $(\delta - 1)^k$ errors. |
| • Using the essential covering radius – with vanishing loss of rate, it is possible to correct $(\delta - 1)2^{(k+1)-1}$ errors! |
Do we get improved results?

The Case of \((0, k)\)-RLL

We revisit the case where \(Y = \{0, 1\}^\mathbb{Z}\) is non-constrained and \(X_{0,k}\) is the \((0, k)\)-RLL system. Let \(\mu\) be the \(\text{Ber}(\frac{1}{2})\) i.i.d measure on \(Y\).

Question: is the essential covering radius is strictly smaller then the combinatorial covering radius in that case?

Theorem

\[
R_0(X_{0,k}, Y, \mu) = \frac{1}{2(2^{k+1} - 1)} \ll \frac{1}{k+1} = R(X_{0,k}, Y).
\]

In The Context of QCC

For a sequence of ECCs capable of correcting \(\delta n\) errors:

- Using the combinatorial covering radius – it is possible to correct up to \((\delta - \frac{1}{k+1})n\) errors.
- Using the essential covering radius – with vanishing loss of rate, it is possible to correct \((\delta - \frac{1}{2(2^{k+1} - 1)})n\) errors!
Results
The Combinatorial Covering Radius

- We prove that under the assumption of primitive X or Y, the lim inf in the definition is a limit.

The Essential Covering Radius

- We find an equivalent characterization of the essential covering radius using ergodic theory.
- The ergodic-theoretic definition is useful for establishing bounds on the essential covering radii of constrained systems.
Results

The Combinatorial Covering Radius

- We prove that under the assumption of primitive X or Y, the lim inf in the definition is a limit.
- We show a relation between covering radius and capacity:

$$R(X, Y) \geq H_{|\Sigma|}^{-1}(h(Y) - h(X)).$$
Results

The Combinatorial Covering Radius

- We prove that under the assumption of primitive X or Y, the lim inf in the definition is a limit.
- We show a relation between covering radius and capacity:

 \[R(X, Y) \geq H_{|\Sigma|}^{-1}(h(Y) - h(X)). \]

The Essential Covering Radius

- We find an equivalent characterization of the essential covering radius using ergodic theory.
Results

The Combinatorial Covering Radius

- We prove that under the assumption of primitive X or Y, the lim inf in the definition is a limit.
- We show a relation between covering radius and capacity:

$$R(X, Y) \geq H_{|\Sigma|}^{-1}(h(Y) - h(X)).$$

The Essential Covering Radius

- We find an equivalent characterization of the essential covering radius using ergodic theory.
- The ergodic-theoretic definition is useful for establishing bounds on the essential covering radii of constrained systems.
What’s next?

The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.
What’s next?

The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.

Possible Directions for The Future

- The algorithmic aspect of QCC - developing quantization algorithms.
What’s next?

The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.

Possible Directions for The Future

- The algorithmic aspect of QCC - developing quantization algorithms.
- Studying the covering radii of well-known constrained systems.
What’s next?

The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.

Possible Directions for The Future

- The algorithmic aspect of QCC - developing quantization algorithms.
- Studying the covering radii of well-known constrained systems.
- Providing general bounds and methods to study the covering radius for studying constrained systems.
Thank you for your attention!