Quantized-Constraint Concatenation and The Covering Radius of Constrained Systems

Moshe Schwartz

McMaster University, Canada Ben-Gurion University of the Negev, Israel

Joint work with: Dor Elimelech and Tom Meyerovitch

Motivation

• Constrained codes are often employed in communication and storage systems in order to mitigate the occurrence of data-dependent errors.

Motivation

- Constrained codes are often employed in communication and storage systems in order to mitigate the occurrence of data-dependent errors.
- In many channels some patterns are more prone to error than others, and we avoid them by using constrained codes.

Motivation

- Constrained codes are often employed in communication and storage systems in order to mitigate the occurrence of data-dependent errors.
- In many channels some patterns are more prone to error than others, and we avoid them by using constrained codes.
- This reduces the number of errors, however the transmitted data may still be corrupted by data-independent errors, requiring additional error-correcting codes.

This is relevant for DNA storage

Examples of constraints

- Homopolymer runs
- GC content
- Local weight constraints

Examples of error types

- Substitution
- Insertions/Deletions
- Burst errors

Banerjee *et al.* ISIT '22, Cai *et al.* T-IT '21, Cai *et al.* ISIT '21, Lu *et al.* IEEE Access '21, Nguyen *et al.* T-IT '21, Press *et al.* PNAS '20, Weber *et al.* IEEE Comm. Lett. '20, (and others).

How do we combine the two?

• Construct an error-correcting code all of whose codewords obey the constraints.

- Construct an error-correcting code all of whose codewords obey the constraints.
 - Only a handful of ad-hoc examples are known.
 - A non-constructive (hard to compute) lower bound on the rate (Marcus and Roth, T-IT '92).

- Construct an error-correcting code all of whose codewords obey the constraints.
 - Only a handful of ad-hoc examples are known.
 - A non-constructive (hard to compute) lower bound on the rate (Marcus and Roth, T-IT '92).
- Separate the error-correcting code and the constrained code, and combine them using a concatenation scheme (e.g., concatenation, or reverse concatenation).

- Construct an error-correcting code all of whose codewords obey the constraints.
 - Only a handful of ad-hoc examples are known.
 - A non-constructive (hard to compute) lower bound on the rate (Marcus and Roth, T-IT '92).
- Separate the error-correcting code and the constrained code, and combine them using a concatenation scheme (e.g., concatenation, or reverse concatenation).
 - Many issues need to be resolved (see book draft by Marcus, Roth, and Siegel).
 - In the known schemes, the error-correction capabilities are quite limited: the state-of-the-art method (Gabrys, Siegel and Yaakobi ISIT '18) allows for a correction of O(√n) errors (where n is the block length).

Quantized-Constraint Concatenation (QCC)

• A constrained word represents the data to be transmitted and protected against errors.

- A constrained word represents the data to be transmitted and protected against errors.
- The process of embedding the information in the constrained media is reversible.

- A constrained word represents the data to be transmitted and protected against errors.
- The process of embedding the information in the constrained media is reversible.

But in QCC:

• We consider the embedding process of information in the constrained media as an irreversible quantization process rather then a coding procedure.

- A constrained word represents the data to be transmitted and protected against errors.
- The process of embedding the information in the constrained media is reversible.

But in QCC:

- We consider the embedding process of information in the constrained media as an irreversible quantization process rather then a coding procedure.
- The constrained word is considered as a corrupted version of the input message, obtained by a quantization procedure.

 We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words B_n(X) of length n.

- We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words B_n(X) of length n.
- Assume that r ∈ N is a number such that for any word ȳ ∈ Σⁿ there exists a constrained word x̄ ∈ B_n(X) such that d(x̄, ȳ) ≤ r.

- We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words B_n(X) of length n.
- Assume that r ∈ N is a number such that for any word ȳ ∈ Σⁿ there exists a constrained word x̄ ∈ B_n(X) such that d(x̄, ȳ) ≤ r.
- Let C ⊆ Σⁿ be an error-correcting code, capable of correcting t > r errors. Assume that we have an ECC encoder and an ECC decoder for C.

- We fix a constrained system X over an alphabet Σ, a block length n, and the set of constrained words B_n(X) of length n.
- Assume that r ∈ N is a number such that for any word ȳ ∈ Σⁿ there exists a constrained word x̄ ∈ B_n(X) such that d(x̄, ȳ) ≤ r.
- Let C ⊆ Σⁿ be an error-correcting code, capable of correcting t > r errors. Assume that we have an ECC encoder and an ECC decoder for C.

Encoding: Given an information word u

, use an encoder for an error-correcting code to map it to a codeword c

 ∈ C.

- Encoding: Given an information word u

 ū, use an encoder for an
 error-correcting code to map it to a codeword c

 c ∈ C.
- Quantization: Given c̄ ∈ C, find a constrained word x̄ ∈ B_n(X) such that d(c̄, x̄) ≤ r, and transmit x̄.

- Encoding: Given an information word u

 ū, use an encoder for an
 error-correcting code to map it to a codeword c

 c ∈ C.
- Quantization: Given c̄ ∈ C, find a constrained word x̄ ∈ B_n(X) such that d(c̄, x̄) ≤ r, and transmit x̄.
- Channel: At the channel output, x
 ['] ∈ Σⁿ, a corrupted version of x
 is observed.

- Encoding: Given an information word u

 , use an encoder for an error-correcting code to map it to a codeword c

 ∈ C.
- Quantization: Given c̄ ∈ C, find a constrained word x̄ ∈ B_n(X) such that d(c̄, x̄) ≤ r, and transmit x̄.
- Channel: At the channel output, x
 ['] ∈ Σⁿ, a corrupted version of x
 is observed.
- **Decoding**: Use the decoder for C on \overline{x}' and obtain \overline{u}' .

Error-Correcting Capabilities

• If the channel does not introduce more than t - r errors, i.e., $d(\overline{x}, \overline{x}') \leq t - r$, then $d(\overline{c}, \overline{x}') \leq t$.

Error-Correcting Capabilities

- If the channel does not introduce more than t r errors, i.e., $d(\overline{x}, \overline{x}') \leq t r$, then $d(\overline{c}, \overline{x}') \leq t$.
- Since C can correct t errors, we have u
 = u
 ', namely, it is possible to correct t − r channel errors.

Error-Correcting Capabilities

- If the channel does not introduce more than t r errors, i.e., $d(\overline{x}, \overline{x}') \leq t r$, then $d(\overline{c}, \overline{x}') \leq t$.
- Since C can correct t errors, we have u
 = u
 ', namely, it is possible to correct t − r channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number r to satisfy that for any $\overline{y} \in \Sigma^n$ there is $\overline{x} \in \mathcal{B}_n(X)$ with $d(\overline{x}, \overline{y}) \leq r$.

Error-Correcting Capabilities

- If the channel does not introduce more than t r errors, i.e., $d(\overline{x}, \overline{x}') \leq t r$, then $d(\overline{c}, \overline{x}') \leq t$.
- Since C can correct t errors, we have u
 = u', namely, it is possible to correct t − r channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number r to satisfy that for any $\overline{y} \in \Sigma^n$ there is $\overline{x} \in \mathcal{B}_n(X)$ with $d(\overline{x}, \overline{y}) \leq r$. This is exactly the covering radius of $\mathcal{B}_n(X)$:

Error-Correcting Capabilities

- If the channel does not introduce more than t r errors, i.e., $d(\overline{x}, \overline{x}') \leq t r$, then $d(\overline{c}, \overline{x}') \leq t$.
- Since C can correct t errors, we have u
 = u
 ', namely, it is possible to correct t − r channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number r to satisfy that for any $\overline{y} \in \Sigma^n$ there is $\overline{x} \in \mathcal{B}_n(X)$ with $d(\overline{x}, \overline{y}) \leq r$. This is exactly the covering radius of $\mathcal{B}_n(X)$:

Correcting $\Theta(n)$ **Errors**

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_{n \in \mathbb{N}}$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$.

Error-Correcting Capabilities

- If the channel does not introduce more than t r errors, i.e., $d(\overline{x}, \overline{x}') \leq t r$, then $d(\overline{c}, \overline{x}') \leq t$.
- Since C can correct t errors, we have u
 = u', namely, it is possible to correct t − r channel errors.

Conclusion

The error correction capability of QCC is lower bounded by the minimal number r to satisfy that for any $\overline{y} \in \Sigma^n$ there is $\overline{x} \in \mathcal{B}_n(X)$ with $d(\overline{x}, \overline{y}) \leq r$. This is exactly the covering radius of $\mathcal{B}_n(X)$:

Correcting $\Theta(n)$ **Errors**

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_{n\in\mathbb{N}}$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$. In that case, we can correct $(\delta - \rho)n = \Theta(n)$ errors!

Correcting $\Theta(n)$ **Errors**

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_n$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$. In that case, we can correct $(\delta - \rho)n = \Theta(n)$ errors!

What About The Rate?

The asymptotic rate of our scheme is determined by the rates of the codes (C_n)_{n∈ℕ}.

Correcting $\Theta(n)$ **Errors**

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_n$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$. In that case, we can correct $(\delta - \rho)n = \Theta(n)$ errors!

What About The Rate?

- The asymptotic rate of our scheme is determined by the rates of the codes (C_n)_{n∈ℕ}.
- By the Gilbert-Varshamov bound, as long as ρ ≤ δ < ¹/₂(1 ¹/_q) there exists a sequence of codes with asymptotic rate of H_q(2δ) > 0.

Correcting $\Theta(n)$ **Errors**

Assume that $R(\mathcal{B}_n(X))/n$ converges to some number ρ and assume that $(C_n)_n$ is a sequence of codes capable of correcting $\lceil \delta n \rceil$ errors, where $\delta > \rho$. In that case, we can correct $(\delta - \rho)n = \Theta(n)$ errors!

What About The Rate?

- The asymptotic rate of our scheme is determined by the rates of the codes (C_n)_{n∈ℕ}.
- By the Gilbert-Varshamov bound, as long as ρ ≤ δ < ¹/₂(1 ¹/_q) there exists a sequence of codes with asymptotic rate of H_q(2δ) > 0.

Conclusion

If $\rho < \frac{1}{2}(1 - \frac{1}{q})$ it is possible to correct $\Theta(n)$ errors with a non-vanishing rate.

The Covering Radius of a Constrained System

The covering radius of A constrained system

Definition

Let X, Y be constrained systems over Σ .

The covering radius of A constrained system

Definition

Let X, Y be constrained systems over Σ .

• For a fixed *n*, the covering radius of $\mathcal{B}_n(X)$ relatively to $\mathcal{B}_n(Y)$ is defined as

$$R(\mathcal{B}_n(X),\mathcal{B}_n(Y)) \triangleq \min\left\{r \in \mathbb{N} \mid \mathcal{B}_n(Y) \subseteq \bigcup_{\overline{x} \in \mathcal{B}_n(X)} \operatorname{Ball}_r(\overline{x})\right\}.$$
The covering radius of A constrained system

Definition

Let X, Y be constrained systems over Σ .

• For a fixed *n*, the covering radius of $\mathcal{B}_n(X)$ relatively to $\mathcal{B}_n(Y)$ is defined as

$$R(\mathcal{B}_n(X),\mathcal{B}_n(Y)) \triangleq \min\left\{r \in \mathbb{N} \mid \mathcal{B}_n(Y) \subseteq \bigcup_{\overline{x} \in \mathcal{B}_n(X)} \operatorname{Ball}_r(\overline{x})\right\}.$$

• The (combinatorial) covering radius of X relatively to Y is

$$R(X, Y) \triangleq \liminf_{n \to \infty} \frac{R(\mathcal{B}_n(X), \mathcal{B}_n(Y))}{n}$$

The covering radius of A constrained system

Definition

Let X, Y be constrained systems over Σ .

• For a fixed *n*, the covering radius of $\mathcal{B}_n(X)$ relatively to $\mathcal{B}_n(Y)$ is defined as

$$R(\mathcal{B}_n(X),\mathcal{B}_n(Y)) \triangleq \min\left\{r \in \mathbb{N} \mid \mathcal{B}_n(Y) \subseteq \bigcup_{\overline{x} \in \mathcal{B}_n(X)} \operatorname{Ball}_r(\overline{x})\right\}.$$

• The (combinatorial) covering radius of X relatively to Y is

$$R(X,Y) \triangleq \liminf_{n \to \infty} \frac{R(\mathcal{B}_n(X), \mathcal{B}_n(Y))}{n}$$

Remark

Typically, $Y = \Sigma^{\mathbb{Z}}$, hence, $\mathcal{B}_n(Y) = \Sigma^n$ for all *n* and $R(\mathcal{B}_n(X), \mathcal{B}_n(Y))$ is the usual covering radius of $\mathcal{B}_n(X)$.

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words.

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

Let us evaluate $R(\mathcal{B}_n(X_{0,k}), \{0,1\}^n)$:

For any (y₁,..., y_n) = ȳ ∈ {0,1}ⁿ, consider x̄ obtained by setting the values in the coordinates k + 1, 2(k + 1),... to 1.

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

Let us evaluate $R(\mathcal{B}_n(X_{0,k}), \{0,1\}^n)$:

For any (y₁,..., y_n) = ȳ ∈ {0,1}ⁿ, consider x̄ obtained by setting the values in the coordinates k + 1, 2(k + 1),... to 1. Clearly x̄ does not contain a run of k + 1 zeros, and d(x̄, ȳ) ≤ [n/k+1].

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

Let us evaluate $R(\mathcal{B}_n(X_{0,k}), \{0,1\}^n)$:

For any (y₁,..., y_n) = ȳ ∈ {0,1}ⁿ, consider x̄ obtained by setting the values in the coordinates k + 1, 2(k + 1),... to 1. Clearly x̄ does not contain a run of k + 1 zeros, and d(x̄, ȳ) ≤ ⌊ n/(k+1) ↓. This proves that R(B_n(X_{0,k}), {0,1}ⁿ) ≤ ⌊ n/(k+1) ↓.

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

- For any (y₁,..., y_n) = ȳ ∈ {0,1}ⁿ, consider x̄ obtained by setting the values in the coordinates k + 1, 2(k + 1),... to 1. Clearly x̄ does not contain a run of k + 1 zeros, and d(x̄, ȳ) ≤ ⌊ n/(k+1). This proves that R(B_n(X_{0,k}), {0,1}ⁿ) ≤ ⌊ n/(k+1).
- On the other hand if take $\overline{y} = \overline{0}$, then $d(\overline{x}, \overline{0}) \ge \lfloor \frac{n}{k+1} \rfloor$ for all $\overline{x} \in \mathcal{B}_n(X_{0,k})$.

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

- For any (y₁,..., y_n) = ȳ ∈ {0,1}ⁿ, consider x̄ obtained by setting the values in the coordinates k + 1, 2(k + 1),... to 1. Clearly x̄ does not contain a run of k + 1 zeros, and d(x̄, ȳ) ≤ ⌊ n/(k+1). This proves that R(B_n(X_{0,k}), {0,1}ⁿ) ≤ ⌊ n/(k+1).
- On the other hand if take $\overline{y} = \overline{0}$, then $d(\overline{x}, \overline{0}) \ge \lfloor \frac{n}{k+1} \rfloor$ for all $\overline{x} \in \mathcal{B}_n(X_{0,k})$. This proves that $R(\mathcal{B}_n(X_{0,k}), \{0,1\}^n) \ge \lfloor \frac{n}{k+1} \rfloor$.

Example

Let $X_{0,k}$ be the system of all binary words that do not contain k + 1 consecutive zeros, and let $Y = \{0, 1\}^{\mathbb{Z}}$ be the system of all binary words. What is $R(X_{0,k}, Y)$?

Solution

- For any (y₁,..., y_n) = ȳ ∈ {0,1}ⁿ, consider x̄ obtained by setting the values in the coordinates k + 1, 2(k + 1),... to 1. Clearly x̄ does not contain a run of k + 1 zeros, and d(x̄, ȳ) ≤ ⌊ n/(k+1). This proves that R(B_n(X_{0,k}), {0,1}ⁿ) ≤ ⌊ n/(k+1).
- On the other hand if take $\overline{y} = \overline{0}$, then $d(\overline{x}, \overline{0}) \ge \lfloor \frac{n}{k+1} \rfloor$ for all $\overline{x} \in \mathcal{B}_n(X_{0,k})$. This proves that $R(\mathcal{B}_n(X_{0,k}), \{0,1\}^n) \ge \lfloor \frac{n}{k+1} \rfloor$. Taking limits: $R(X_{0,k}, Y) = \liminf_{n \to \infty} \frac{R(\mathcal{B}_n(X_{0,k}), \{0,1\}^n)}{n} = \frac{1}{k+1}$.

Example

• For k = 1 we have $R(X_{0,1}, \{0, 1\}^{\mathbb{Z}}) = \frac{1}{2}$.

- For k = 1 we have $R(X_{0,1}, \{0, 1\}^{\mathbb{Z}}) = \frac{1}{2}$.
- Consider the system $X_{rep} = \{\overline{0}, \overline{1}\}$. A simple calculation shows that $R(X_{rep}, \{0, 1\}^{\mathbb{Z}})$ is also $\frac{1}{2}$.

- For k = 1 we have $R(X_{0,1}, \{0, 1\}^{\mathbb{Z}}) = \frac{1}{2}$.
- Consider the system $X_{rep} = \{\overline{0}, \overline{1}\}$. A simple calculation shows that $R(X_{rep}, \{0, 1\}^{\mathbb{Z}})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity $(Cap(X_{0,1}) \approx 0.694)$ and the other with zero capacity $(Cap(X_{rep}) = 0)$, with the same covering radius!

- For k = 1 we have $R(X_{0,1}, \{0, 1\}^{\mathbb{Z}}) = \frac{1}{2}$.
- Consider the system $X_{rep} = \{\overline{0}, \overline{1}\}$. A simple calculation shows that $R(X_{rep}, \{0, 1\}^{\mathbb{Z}})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity $(Cap(X_{0,1}) \approx 0.694)$ and the other with zero capacity $(Cap(X_{rep}) = 0)$, with the same covering radius!
- We recall that a large covering radius means bad error-correction capabilities.

- For k = 1 we have $R(X_{0,1}, \{0, 1\}^{\mathbb{Z}}) = \frac{1}{2}$.
- Consider the system $X_{rep} = \{\overline{0}, \overline{1}\}$. A simple calculation shows that $R(X_{rep}, \{0, 1\}^{\mathbb{Z}})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity $(Cap(X_{0,1}) \approx 0.694)$ and the other with zero capacity $(Cap(X_{rep}) = 0)$, with the same covering radius!
- We recall that a large covering radius means bad error-correction capabilities.
- The covering radius of $X_{0,1}$ is determined by rare patterns like $\overline{0}$.

Example

- For k = 1 we have $R(X_{0,1}, \{0, 1\}^{\mathbb{Z}}) = \frac{1}{2}$.
- Consider the system $X_{rep} = \{\overline{0}, \overline{1}\}$. A simple calculation shows that $R(X_{rep}, \{0, 1\}^{\mathbb{Z}})$ is also $\frac{1}{2}$.
- We have two systems, one which has strictly positive capacity $(Cap(X_{0,1}) \approx 0.694)$ and the other with zero capacity $(Cap(X_{rep}) = 0)$, with the same covering radius!
- We recall that a large covering radius means bad error-correction capabilities.
- The covering radius of $X_{0,1}$ is determined by rare patterns like $\overline{0}$.

We need an alternative definition for the covering radius which ignores such rare patterns.

The Essential Covering Radius

Question: What happens to the covering radius if we allow to drop an $\varepsilon \in (0, 1)$ fraction of the words in $\mathcal{B}_n(Y)$ to be covered?

Question: What happens to the covering radius if we allow to drop an $\varepsilon \in (0, 1)$ fraction of the words in $\mathcal{B}_n(Y)$ to be covered?

• We can drop bad patterns and therefore reduce the covering radius.

Question: What happens to the covering radius if we allow to drop an $\varepsilon \in (0, 1)$ fraction of the words in $\mathcal{B}_n(Y)$ to be covered?

- We can drop bad patterns and therefore reduce the covering radius.
- On the other hand, in the context of QCC, where B_n(Y) = Σⁿ, we lose rate the rate of our coding scheme decreases by log(1-ε)/n.

Question: What happens to the covering radius if we allow to drop an $\varepsilon \in (0, 1)$ fraction of the words in $\mathcal{B}_n(Y)$ to be covered?

- We can drop bad patterns and therefore reduce the covering radius.
- On the other hand, in the context of QCC, where B_n(Y) = Σⁿ, we lose rate the rate of our coding scheme decreases by log(1-ε)/n.

Definition

Let X and Y be constrained systems, μ be an invariant ergodic measure on Y. For $\varepsilon \in (0, 1)$ we define $R_{\varepsilon}(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)$ by:

$$\min\left\{r\in\mathbb{N}\,\middle|\,\mu_n\left(\mathfrak{B}_n(Y)\cap\left(\bigcup_{\overline{x}\in\mathfrak{B}_n(X)}\mathrm{Ball}_r(\overline{x})\right)\right)\geqslant 1-\varepsilon\right\}.$$

Remark

In the typical case, where Y is the trivial (non) constrained system, taking μ to be the i.i.d uniform measure, $R_{\varepsilon}(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)$ is the minimal radius for covering a fraction of $(1 - \varepsilon)$ of Σ^n .

Remark

In the typical case, where Y is the trivial (non) constrained system, taking μ to be the i.i.d uniform measure, $R_{\varepsilon}(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)$ is the minimal radius for covering a fraction of $(1 - \varepsilon)$ of Σ^n .

An Asymptotic Definition

For a fixed $\varepsilon \in (0,1)$ define

$$R_{\varepsilon}(X,Y,\mu) \triangleq \liminf_{n \to \infty} \frac{R_{\varepsilon}(\mathcal{B}_n(X),\mathcal{B}_n(Y),\mu_n)}{n}$$

Remark

In the typical case, where Y is the trivial (non) constrained system, taking μ to be the i.i.d uniform measure, $R_{\varepsilon}(\mathcal{B}_n(X), \mathcal{B}_n(Y), \mu_n)$ is the minimal radius for covering a fraction of $(1 - \varepsilon)$ of Σ^n .

An Asymptotic Definition

For a fixed $\varepsilon \in (0,1)$ define

$$R_{\varepsilon}(X,Y,\mu) \triangleq \liminf_{n \to \infty} \frac{R_{\varepsilon}(\mathcal{B}_n(X),\mathcal{B}_n(Y),\mu_n)}{n}$$

Taking the uncovered-fraction of Y to 0 we define the essential covering radius of X with respect to (Y, μ) as

$$R_0(X, Y, \mu) \triangleq \lim_{\varepsilon \to 0} R_{\varepsilon}(X, Y, \mu).$$

The Case of (0, k)-RLL

We revisit the case where $Y = \{0, 1\}^{\mathbb{Z}}$ is non-constrained and $X_{0,k}$ is the (0, k)-RLL system. Let μ be the Ber $(\frac{1}{2})$ i.i.d measure on Y.

The Case of (0, k)-RLL

We revisit the case where $Y = \{0,1\}^{\mathbb{Z}}$ is non-constrained and $X_{0,k}$ is the (0, k)-RLL system. Let μ be the Ber $(\frac{1}{2})$ i.i.d measure on Y.

Question: is the essential covering radius is strictly smaller then the combinatorial covering radius in that case?

The Case of (0, k)-RLL

We revisit the case where $Y = \{0,1\}^{\mathbb{Z}}$ is non-constrained and $X_{0,k}$ is the (0, k)-RLL system. Let μ be the Ber $(\frac{1}{2})$ i.i.d measure on Y.

Question: is the essential covering radius is strictly smaller then the combinatorial covering radius in that case?

Theorem

$$R_0(X_{0,k}, Y, \mu) = \frac{1}{2(2^{k+1}-1)} \ll \frac{1}{k+1} = R(X_{0,k}, Y).$$

The Case of (0, k)-RLL

We revisit the case where $Y = \{0,1\}^{\mathbb{Z}}$ is non-constrained and $X_{0,k}$ is the (0, k)-RLL system. Let μ be the Ber $(\frac{1}{2})$ i.i.d measure on Y.

Question: is the essential covering radius is strictly smaller then the combinatorial covering radius in that case?

Theorem

$$R_0(X_{0,k}, Y, \mu) = \frac{1}{2(2^{k+1}-1)} \ll \frac{1}{k+1} = R(X_{0,k}, Y).$$

In The Context of QCC

For a sequence of ECCs capable of correcting δn errors:

- Using the combinatorial covering radius it is possible to correct up to $(\delta \frac{1}{k+1})n$ errors.
- Using the essential covering radius with vanishing loss of rate, it is possible to correct $(\delta \frac{1}{2(2^{k+1}-1)})n$ errors!

The Combinatorial Covering Radius

• We prove that under the assumption of primitive X or Y, the liminf in the definition is a limit.

The Combinatorial Covering Radius

- We prove that under the assumption of primitive X or Y, the liminf in the definition is a limit.
- We show a relation between covering radius and capacity:

 $R(X,Y) \geq H_{|\Sigma|}^{-1}(h(Y) - h(X)).$

The Combinatorial Covering Radius

- We prove that under the assumption of primitive X or Y, the liminf in the definition is a limit.
- We show a relation between covering radius and capacity:

$$R(X,Y) \geq H_{|\Sigma|}^{-1}(h(Y) - h(X)).$$

The Essential Covering Radius

• We find an equivalent characterization of the essential covering radius using ergodic theory.

The Combinatorial Covering Radius

- We prove that under the assumption of primitive X or Y, the liminf in the definition is a limit.
- We show a relation between covering radius and capacity:

$$R(X,Y) \geq H_{|\Sigma|}^{-1}(h(Y) - h(X)).$$

The Essential Covering Radius

- We find an equivalent characterization of the essential covering radius using ergodic theory.
- The ergodic-theoretic definition is useful for establishing bounds on the essential covering radii of constrained systems.

The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.

The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.

Possible Directions for The Future

• The algorithmic aspect of QCC - developing quantization algorithms.
The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.

Possible Directions for The Future

- The algorithmic aspect of QCC developing quantization algorithms.
- Studying the covering radii of well-known constrained systems.

The covering radius of a constrained system is a new and interesting parameter due to its applications for error-correcting constrained codes, but also as a mathematical figure of merit.

Possible Directions for The Future

- The algorithmic aspect of QCC developing quantization algorithms.
- Studying the covering radii of well-known constrained systems.
- Providing general bounds and methods to study the covering radius for studying constrained systems.

Thank you for your attention!