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Background: Group Testing

I We have a large population of items
I Very few of them are "defective" (probability of being defective, g is very small)

I Goal: Identify x: defective (xi = 1), non-defective (xi = 0)
I To reduce the number of tests: test the items in groups (pooling) [Dorfman1943]

I Rate, W = m
n (smaller is better)

I Adaptive vs non-adaptive test design

I We consider the asymptotic regime: n ! •

[Dorfman1943] Robert Dorfman, “The Detection of Defective Members of Large Populations,” The Annals of Mathematical Statistics,,
vol. 14, no. 4, pp. 436–440, 1943.
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Background: Graphical Representation

I For non-adaptive group testing the pooling can be represented by a test matrix A

A =

0

@
1 1 0 1 0 1
0 1 1 1 1 0
1 0 1 0 1 1

1

A

x1 x2 x3 x4 x5 x6

I The matrix can be represented by a bipartite graph G

I We consider the scenario where the graph is sparse
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Non-quantitative vs Quantitative

I Non-quantitative: test result, si = 1 if at least one item is defective otherwise si = 0 (logical OR)

I For quantitative group testing, a test result shows the number of defective items

si = Ân
j=1 xjaij ! s = Ax
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Group Testing with Sparse Graphs

I A popular non-quantitative scheme is SAFFRON [Lee2016]

I A variation of SAFFRON uses generalized LDPC (GLDPC) construction
with SAFFRON as the signature matrix (component code) [Vem2017]

Signature matrix: mb ⇥dc

U =

0

BB@

0 0 1 1
0 1 0 1
1 1 0 0
1 0 1 0

1

CCA

Adjacency matrix: mB ⇥n

B =

0

@
1 1 1 1 0 0
0 1 0 1 1 1
1 0 1 0 1 1

1

A

Test matrix: m⇥n A =

0

BBBBBBBBBBBBBBBBBB@

0 0 1 1 0 0
0 1 0 1 0 0
1 1 0 0 0 0
1 0 1 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 1 0 1 0 0
0 1 0 0 1 0
0 0 0 0 1 1
0 0 1 0 0 1
1 0 1 0 0 0
1 0 0 0 1 0

1

CCCCCCCCCCCCCCCCCCAm = mb ⇥mB

[Lee2016] K. Lee, R. Pedarsani, and K. Ramchandran, “SAFFRON: A fast, efficient, and robust framework for group testing
based on sparse-graph codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Barcelona, Spain, July 2016.
[Vem2017] A. Vem, N. T. Janakiraman, and K. R. Narayanan, “Group testing using left-and-right-regular sparse-graph codes,”
in CoRR, vol. abs/1701.07477, 2017.
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Quantitative Group Testing with Sparse Graphs: Prior work

I The test results show the number of defectives
I Best known scheme with sparse graph uses GLDPC [KAR2019]

U =

0

BBBBBB@

dc

1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

1

CCCCCCA
t = 1,mu = 3

I dc = 2mu �1 ! mu = log2(dc +1)
I Tests per subcode = t log2(dc +1)+1

I Rate, W = m
n = dv

dc

⇣
tdlog2(dc +1)e+1

⌘

I A t-error-correcting BCH code is used as a component code

I An additional row of ones to identify # of defective items

[KAR2019] E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan, and A. Sprintson, “Sparse graph codes for
non-adaptive quantitative group testing,” inProc. IEEE Inf. Theory Workshop (ITW), 2019.
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Prior Work

I Density Evolution

For each iteration `

q(`): probability a test sends resolved to item
p(`): probability a defective item is unresolved

Test to item:

q(`) =
t�1

Â
i=0

✓
dc �1

i

◆⇣
p(`�1)

⌘i⇣
1�p(`�1)

⌘dc�1�i

Item to test:

p(`) =g (1�q(`�1))dv�1

I Small number of tests for a large population size

I Increasing t improves error correction

I Penalized by increasing number of tests
m = n dv

dc

⇣
tdlog2(dc +1)e+1

⌘

n = 65536
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GLDPC, t = 8, dv = 2

⌅ What about using t = 0 ?
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Proposed scheme: Group Testing with LDPC

I With t = 0 we loose local error correcting capability
I We can observe and utilize two events

⌅ Syndrome equal zero: s(`)i = 0
Infer all items as 0 (non-defective)

⌅ Syndrome equals test degree: s(`)i = d(`)c
Infer all items as 1 (defective)

I We then peel off resolved items (reducing the syndrome accordingly)
I This is repeated until no item to peel
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Density Evolution

I p(`)1 : probability that a message from a defective is unresolved

I q(`)0 : probability that a message to a non-defective is resolved

I p(`)0 : probability a message from non-defective is unresolved

I q(`)1 : probability that a message to a defective is resolved

From test to item

q(`)0 =
dc�1

Â
i=0

✓
dc �1

i

◆
g i(1� g)dc�1�i

⇣
1�p(`�1)

1

⌘i

q(`)1 =
dc�1

Â
i=0

✓
dc �1

i

◆
g i(1� g)dc�1�i

⇣
1�p(`�1)

0

⌘dc�1�i

From item to test
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From test to item

q(`)0 =
dc�1

Â
i=0

✓
dc �1

i

◆
g i(1� g)dc�1�i

⇣
1�p(`�1)

1

⌘i

q(`)1 =
dc�1

Â
i=0

✓
dc �1

i

◆
g i(1� g)dc�1�i

⇣
1�p(`�1)

0

⌘dc�1�i

From item to test

p(`)0 =
⇣

1�q(`�1)
0

⌘dv�1

p(`)1 =
⇣

1�q(`�1)
1

⌘dv�1
.
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Performance Comparison

I We consider two scenarios

⌅ Fixing the proportion of defective

items g and changing the rate W = m
n

I Same as in previous work [KAR2019]

⌅ Fixing the rate W and changing g

I A new perspective considering A
(code) as fixed

Minimum rate required for a fixed g

0.1 0.12 0.14 0.16 0.18 0.2 0.22
0.5

1

1.5

2

2.5

3

g (in %)

W
th

(in
%

)

LDPC (t = 0), dv =5
GLDPC, t = 2, dv = 2

[KAR2019] E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan, and A. Sprintson, “Sparse graph codes for
non-adaptive quantitative group testing,” inProc. IEEE Inf. Theory Workshop (ITW), 2019.
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Performance Comparison: Fixed Rate, W = 5%

Table: GLDPC Based
t dv gth

1
2 0.2487
3 0.3708
4 0.3510

2
2 0.3983
3 0.3372
4 0.2884

3
2 0.3784
3 0.3189
4 0.2441

5
2 0.3418
3 0.2686
4 0.2014

Table: LDPC Based
dv gth

3 0.4555
4 0.5982
5 0.6416
6 0.6464
7 0.6353

10 0.5773

n = 153000
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GLDPC t = 3, dv = 3
LDPC, dv = 5
LDPC, dv = 10

⌅⌅ Can we get consistently better with increasing dv? What about spatial coupling?
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Group Testing with Spatial Coupling

I Classical approach: test each block of items separately

I Spatial Coupling: Interconnect blocks (motivated by results in coding theory)

memory w = 1

Michael Lentmaier, Lund University LDPC Codes and Spatial Coupling for Quantitative Group Testing 11 / 21



Group Testing with Spatial Coupling

I The chain is terminated after length L

I Density evolution

q(`)0,t =
1

w +1

w
Â
j=0

dc�1

Â
i=0

Bino(dc �1, i,g)
⇣

1�p(`�1)
1,t�j

⌘i

q(`)1,t =
1

w +1

w
Â
j=0

dc�1

Â
i=0

Bino(dc �1, i,g)
⇣

1�p(`�1)
0,t�j

⌘dc�1�i

p(`)0,t =
1

w +1

w
Â
j=0

⇣
1�q(`�1)

0,t+j

⌘dv�1

p(`)1,t =
1

w +1

w
Â
j=0

⇣
1�q(`�1)

1,t+j

⌘dv�1
.

I p(`)0,t = p(`)0,t = 0 for t < 0 and t > L

I Rate becomes

WSC = W
⇣

1+
w
L

⌘

I The rate increase vanishes as L
increases
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Spatial Coupling: Wave Effect

⌅ Tests at boundary have lower degree
I The nodes at the boundary can be resolved with higher probability
I The effect spreads within the chain as a wave

10 20 30 40 50 60 70 80 90 10010�10

10�8

10�6

10�4
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100

block index, t

m
is

sd
et
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tio

n
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te
10 Iterations
50 iterations
100 iterations
120 iterations
140 iterations
160 iterations
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Spatial coupling: Performance Changing Rate
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⌅ n = 153 000
⌅ Low error floor with coupling

⌅ coupled (solid) uncoupled (dashed)
⌅ memory w = 5
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Spatial coupling: Performance for Fixed Rate

Table: gth for W = 5% with GLDPC Code-Based

t dv w = 0 w = 1 w = 5 w = 10

1 3 0.3708 0.4166 0.4166 0.4166
4 0.3510 0.4395 0.4425 0.4425

3 3 0.3189 0.4257 0.4379 0.4395
4 0.2441 0.3662 0.4028 0.4028

5 3 0.2686 0.3784 0.4089 0.4089
4 0.2014 0.3159 0.3769 0.3769

Table: gth for W = 5% with LDPC Code-Based

dv w = 0 w = 1 w = 5 w = 10

4 0.5982 0.8423 0.8540 0.8540
5 0.6416 0.9682 1.0274 1.0250
6 0.6464 1.0044 1.1325 1.1327

10 0.5773 0.9188 1.2814 1.2816

0.2 0.4 0.6 0.8 1 1.2 1.410�5

10�4

10�3

10�2

10�1

100

g [%]

m
is

de
te

ct
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LDPC dv = 5
LDPC dv = 10
GLDPC t = 3, dv = 3

⌅ n = 153 000, L = 200, w = 5
⌅ solid(coupled) dashed(uncoupled)
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Can We Prove Threshold Saturation?

I Finding a density evolution recursion that follows the conditions of a vector admissible system.

q(`)0 =
dc�1

Â
i=0

✓
dc �1

i

◆
g i(1� g)dc�1�i

⇣
1�p(`�1)

1

⌘i

q(`)1 =
dc�1

Â
i=0

✓
dc �1

i

◆
g i(1� g)dc�1�i

⇣
1�p(`�1)

0

⌘dc�1�i

p(`)0 =
⇣

1�q(`�1)
0

⌘dv�1

p(`)1 =
⇣

1�q(`�1)
1

⌘dv�1
.

With x(`)0 = 1�q(`)0 , x(`)1 = 1�q(`)1 , y(`)0 = (1� g)q(`)0 , y(`)1 = gp(`)1
we can write:

x(`)0 =1�
⇣

1� y(`�1)
1

⌘dc�1

x(`)1 =1�
⇣

1� y(`�1)
0

⌘dc�1

y(`)0 =(1� g)
⇣

x(`�1)
0

⌘dv�1

y(`)1 =g
⇣

x(`�1)
1

⌘dv�1
.

With spatial coupling:

x(`)0,t = 1� 1
w +1

w
Â
j=0

⇣
1� y(`�1)

1,t�j

⌘dc�1

x(`)1,t = 1� 1
w +1

w
Â
j=0

⇣
1� y(`�1)

0,t�j

⌘dc�1

y(`)0,t = (1� g) 1
w +1

w
Â
j=0

⇣
x(`�1)

0,t+j

⌘dv�1

y(`)1,t = g 1
w +1

w
Â
j=0

⇣
x(`�1)

1,t+j

⌘dv�1
.
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First approach: finding maximum g for a fixed W

I Vector admissible system: [YED2012] a recursion (f,g) with

x(`) = f

⇣
g(x(`�1));e

⌘
, x(0) = 1 , e 2 [0,1]

where f(x) = [f1(x), · · · , fd(x)] and g(x) = [g1(x), · · · ,gd(x)] are twice continuously
differentiable and strictly increasing in all arguments.

I With e = g we get from density evolution equations:

fg (x0,x1;g) =
h
(1� g) · xdv�1

0 , g · xdv�1
1

i

gg (y0,y1) =
h
1� (1� y1)

dc�1, 1� (1� y0)
dc�1

i
.

I Problem: (1� g) and g cannot both increase ) conditions not fulfilled

[YED2012] A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of threshold saturation for coupled
vector recursions,” inProc. IEEE Inf. Theory Workshop (ITW), 2012.
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Second approach: finding minimum W for a fixed g
I Vector admissible system: [YED2012] a recursion (f,g) with

x(`) = f

⇣
g(x(`�1));e

⌘
, x(0) = 1 , e 2 [0,1]

where f(x) = [f1(x), · · · , fd(x)] and g(x) = [g1(x), · · · ,gd(x)] are twice continuously
differentiable and strictly increasing in all arguments.

I Setting e = 1� 1
dc

we get from density evolution equations:

f(y0,y1;e) =
h
1� (1� y1)

e
1�e , 1� (1� y0)

e
1�e

i

g(x0,x1) =
h
(1� g) · xdv�1

0 , g · xdv�1
1

i

I Threshold saturation occurs

I The potential function is then given as

U(x;e) =
Z 1

0

⇣�
z(l )� f(g(z(l ));e)

�
Dg0(z(l ))

⌘
· z0(l )dl
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Potential function

U(x;e) =(1�p)xdv�1
1

0

B@(1� e)
1�

⇣
1�pxdv�1

2

⌘ 1
1�e

pxdv�1
2

+
(dv �1)

dv
x1 �1

1

CA

+pxdv�1
2

0

B@(1� e)
1�

⇣
1� (1�p)xdv�1

2

⌘ 1
1�e

(1�p)xdv�1
1

+
(dv �1)

dv
x2 �1

1

CA

Potential threshold:

e⇤ = sup{e 2 [0,1] |min
x

U(x;e)� 0} .

0
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1

�0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

U
(x

;e
)

dv = 6, g = 1% with e⇤ = 0.9924. U(x;e) is above the z = 0 plane since e = 0.9667 < e⇤.
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Potential thresholds
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g [%]

W
⇤ th

[%
]

dv = 3
dv = 4
dv = 5
dv = 6
dv = 7
dv = 10
dv = 15

W⇤
th =

dv
dc

= dv(1� e⇤) .

e⇤ = sup{e 2 [0,1] |min
x

U(x;e)� 0} .

The minimum rate W⇤
th for a fixed g computed from the potential threshold e⇤.
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Conclusions and Outlook

Conclusions

I Using a simple LDPC code significantly outperforms a GLDPC construction
with t-error-correcting component code

I With spatial coupling we can improve the performance of both schemes
I We can measure the performance by two different approaches

⌅ Fixing the proportion g and determining minimum rate W
⌅ Fixing the rate, W and determining the maximum g

I Threshold saturation: with coupling the BP decoder achieves the potential threshold

Outlook

I Bundling of tests: non-binary messages can improve performance
I Looking at soft message passing
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