Generalized Staircase Codes

with Arbitrary Bit Degree

Frank R. Kschischang
Department of Electrical & Computer Engineering
University of Toronto
frank@ece.utoronto.ca

Simons Institute Workshop on
Application-Driven Coding
Berkeley, California

March 6, 2024



Acknowledgements

Joint work with:

Mohannad Shehadeh Alvin Y. Sukmadji
Funding:

This work was funded in part by the Natural Sciences and Engineering Research
Council of Canada, and in part by Huawei Canada Research Center. .



Motivation |I: Decoding Window Size

o Distance between transmitter and receiver: d (m)
k N
o Propagation speed: ¢ (m/s) ‘ d ‘
. , TX RX
o Data transmission speed: D (bit/s) 100100010100010011110100111
o Bits in transit: N = 24 (bit) N
o Decoding window size: O(N)

d =100 m to 10 km, D =1 Gb/s, ¢ =3-10% m/s = N = 0.33 to 33 kbit.

d =225-10° km, D =2 Mb/s, c = 3-10%8 m/s = N = 1500 Mbit.

d =100 m to 1000 km, D =1 Tb/s, c =2-108 m/s = N = 0.5 to 5000 Mbit.




Motivation Il: Power Consumption

o Decoder Power Consumption (W) = Decoder Energy Efficency (J/bit) x D (bit/s)

o To achieve Decoder Power Consumption of &~ 1 W, requires
Decoder Energy Efficiency ~ (1 2t) .

D =1 Gb/s = Decoder Energy Efficiency ~ 1 nJ/bit
D =2 Mb/s = Decoder Energy Efficiency ~ 0.5 uJ/bit
D =1 Tb/s = Decoder Energy Efficiency ~ 1 pJ/bit




Motivation Il: Power Consumption (cont’d)

decoding
complexity

region
of interest

For high data rate (fiber-optic communications) applications, we are interested in
codes with low decoding complexity:

@ high code rate: R~ 0.9 to R ~ 0.99

o large decoding windows ~ 10° bits.



Staircase Codes

Introduced in B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang and J. Lodge,
“Staircase Codes: FEC for 100 Gb/s OTN,” J. Lightwave Technology, vol. 30,
Jan. 2012, pp. 110-117.

Spatially-coupled product codes

(4]

Iterative algebraic decoding in a sliding window
High-rate (low-complexity) BCH component decoders
Low error floors with analytic bounds

Adopted in standards:

o OIF 400ZR (400 Gb/s, coherent), 2017 (inner Hamming, outer staircase)
o ITU-T G.709.2 (OTU4 long-reach interface), 2018
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Staircase Codes: Summary

(*]

Each square “staircase block”
is of size S x S bits.

C is a binary systematic code
of length 25 (e.g., a
t-error-correcting BCH code).

rows are codewords of C — i -

Iterative decoding occurs
within a sliding window: info bits —~>
“oldest” block shifted out

when “newest block” is filled. initial zero block

f

columns are

Every bit is checked by two (not transmitted)
codes (degree 2) \_L; S
Two codes intersect in at > 0

most one bit ( “scattering” =
girth > 4 in Tanner graph
with code-constraint vertices)

| codewords of C

parity bits



Increasing Bit Degree while Maintaining Scattering

Minimum weight uncorrectable error pattern contains at least (M + 1)t + 1 errors.

7
()

Scattering:

o Error floors below 1071% with M =1
usually requires t > 3.

o Energy cost (J) for t-error-correcting
BCH codes scales as O(t?), or
O(t?/t) = O(t) J per corrected bit.

o This motivates reducing t,

compensating with an increased M to
maintain low error floor.

component codes intersect at most once



Alternative View of Staircase Codes (M = 1)

0 Bo
B B
Bl B,
B} Bs
B B
rows are codewords
Bd Bs
Bl By
B Bs

Bé'— By
not. - . - N— transmitted
transmitted :



Generalization: M > 1

0 0 Bo 0 0 0 B
0 Bj B 0 0 Bl B
0 B B 0 0 Bf B
By B, Bs 0 0 BI B
Bl Bj B 0 Bl B] B
o b e B> o,
BY B Bs BZ2 B B Bs
Bf B By B* Bj* BY By
Bf B Bs BI? B BY Bg
B§ By Bo B2 B B B,
e ted S N transmitted . . : N— transmitted

transmitted : : :
M=2 M =3 ‘



Notation: intra-block permutations

o Codeword is an infinite sequence By, B1, By, ... of S x § matrices satisfying
certain constraints

©

Assume entries from F, for concreteness (but could generally be any alphabet)
S x S matrices indexed by (/,j) € {0,1,...,5—1} x{0,1,...,S =1} = [S] x [5]
M + 1 permutations 7y indexed by k € {0,1,..., M} = [M +1]:

©

©

7k [S] x [S] — [S] % [S]
(I’J) ’—>7Tk(i7j)

SxS
]F2

@ BT« is the permuted copy of B € according to 7y
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Notation: intra-block permutations (cont’d)

o If
b(o,0) bo1 .-+ bos-1
g_ | Peo ey - bas
bis—10) bis-11) .-+ bs—1,5-1)
o then
bz, (0,0) br.01) -+ bryos-1)
g bwk$1,0) bw,(fl,l) e bm((l.,Sfl)
bri(s-1,0) bry(s-1,1) -+ br(s-1,5-1)

o Without loss of generality, take mp = id, so B™ = B
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Notation: inter-block delays

o Inter-block constraints are causal, characterized by delays
o Consider M + 1 distinct non-negative integer block delay values dp, d, ..., dy

o Without loss of generality, assume

O=dy<di < ---<dpy
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Generalized staircase code construction

o Fix a component code C C FgMH)'S of length (M +1)-S
o Code is then defined by the constraint that the rows of the matrix

[B-”M B™-1 ... BM

T i SX(M+1)5
i—dy  Bi-dy_, 24, Bila Bf} eF;

belong to the component code C for all i > dps and that
B1=B=-=B_4,=0sxs

@ Encoding memory is dy; blocks

o If C is linear, systematic with redundancy r, dimension (M +1)-S —r

S-(S—r)

Runterminated = ? 1-

= i

o Rate of component code C has to be at least M/(M + 1
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Scattering intra-block permutations

o It is both practically convenient and mathematically sufficient to consider
permutations defined by linear-algebraic operations on matrix indices
(i,J) € [S] < [S]

o To do so, must associate the index set [S] = {0,1,...,5 — 1} with a finite
commutative ring R of cardinality S

@ Permutations are then defined by invertible 2 x 2 matrices:
.. . .|a b ) —_ .
i) = () |2 5] = i+ ci.bi+ 0

where (ad — bc)™! exists in R
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Choice of ring R with [R| =5

o Intra-block scattering families of permutations are most easily constructed when
‘R has sufficiently many elements with invertible differences as will be seen shortly

o Finite fields are a good choice since any pair of distinct elements have an
invertible difference since all nonzero elements are invertible

o Take R =F, = Z, with S = p a prime number, i.e., perform integer arithmetic
on matrix indices modulo a prime-valued S

o Take R = F, with S = g a prime power and associate {0,1,...,S — 1} with
{0,1,a,0?,...,a° 2} where « is a primitive element of F,

@ R = Zs for non-prime S can work if S has a sufficiently large lowest prime factor
denoted Ipf(S)

o This is because {0,1,...,Ipf(S) — 1} have invertible differences for distinct
elements modulo S since {£+1,+2,..., £(Ipf(S) — 1)} are coprime with S
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Definition

An (M 4+ 1,S)-net is a set of S? elements called “points” along with a collection of
(M + 1) partitions of these points into subsets of size S called “lines” such that
distinct lines intersect in at most one point.

(*]

This is a generalization of the concept of “rows” and “columns” of an S x S grid
which define a (2, S)-net

If the entries of the matrix B are the points and the rows of the M 4 1 matrices
BT« for k € {0,1,..., M} are the M + 1 partitions, then an (M + 1, S)-net is
equivalent to a special collection of permutations on [S] x [S]

This collection has the property that for any distinct k, k' € {0,1,..., M}, any
row of B™ has at most a single element in common with a row of B™«

(M + 1, S)-nets are well-studied objects in combinatorics and finite geometry with
close connections or equivalences to orthogonal arrays, mutually orthogonal Latin
squares, transversal designs, and affine planes

Standard reference: Handbook of Combinatorial Designs by Colbourn and Dinitz
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Finite-geometric nets

(1,3)-net (2,3)-net (3,3)-net (4,3)-net



Theorem (Linear-algebraic intra-block scattering permutations)

A collection of M + 1 permutations on R X R, where R is a finite commutative ring of
cardinality S, defined by a collection of invertible 2 x 2 matrices define an (M+1,S)-net
if and only if, for any pair of distinct matrices A, A in the collection where

a b ~ 5 b
A_[c d]’A_[E J]’

we have that cd — d¢& is invertible in R.

By linear algebra.
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If R = Z, with p a prime, the identity permutation /> together with

0 1
1 z
for z € {0,1,..., M — 1} define an (M + 1, p)-net if M < p. (Theorem condition

becomes that z; — z is invertible for distinct z;,z € {0,1,..., M — 1} which is
automatically true in Z, = F,, since z; — zo # 0.)

If R = Z, with p a prime, the identity permutation /> together with the involutions

—z 1-—22
1 z

for z€{0,1,...,M — 1} define an (M + 1, p)-net if M < p.

\
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If R = Zs, the identity permutation /x> together with

b -

for z € {0,1,..., M — 1} define an (M + 1, S)-net if M < Ipf(S).

If R = Fq with g a prime power, the identity permutation hy> together with

01

1 z
for z € {0,1,,02,...,aM=2} where a is a primitive element of F, form an
(M+1,q)netif M <gq.
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Overlap problem:

@ no problem when M =1, but ...

@ when M = 2, bits in the same row of
[BF , B, B;] may appear in the
same row of [BT ; B Bj,1], violating
the scattering property.

@ same issue when M > 2.



Inter-block scattering delays for M = 2

0

0

0
By
=
=
=
Bf
=
Bs

0
8
B
8]
B
8]
B
B
B
8]

Bo
B
B>
Bs
By
Bs
Bs
B7
Bsg
By

o Take (do, d1,d2) = (0,1,3) instead of
(do, d1,d2) = (0,1,2)

© No overlap: for all i # j, Bi* and B/ appear
side-by-side at most once
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Inter-block scattering delays

Definition (Golomb ruler)

The M+ 1 integers 0 = dp < di < --- < dp referred to as “marks” form a Golomb
ruler of order M + 1 and length dy; if no two distinct pairs of marks are the same
distance apart, i.e., have the same difference. An optimal Golomb ruler is the ruler
with the shortest length dy; (thus smallest memory) for a given order M + 1.

o Any Golomb ruler whether optimal or suboptimal yields inter-block
scattering

Optimal Golomb rulers are known for all M 4+ 1 < 28 as of today
Optimal Golomb rulers have at least quadratic length dy = Q(M?)
Though many more suboptimal or near-optimal constructions are known

© 6 6 o

E.g., di = 2% — 1 gives a naive construction which is optimal for M € {0, 1,2} but
highly sub-optimal for M > 3 (exponential length dy; = 2M — 1)
Good rulers for M + 1 < 65000: www.cs.toronto.edu/~apostol/golomb/

(]
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www.cs.toronto.edu/~apostol/golomb/

Optimal Golomb Rulers

order | length | optimal Golomb ruler (see Wikipedia for sources)
1 0 0

2 1 01

3 3 013

4 6 0146

5 11 014911

6

7

8

17 014101217

25 01410182325

34 014915223234

9 44 0151225273541 44

10 55 016102326 34415355

11 72 0141328334754647072

12 85 0262429 40435568 7576 85

13 106 | 025 2537 4359 70 85 89 98 99 106

14 127 | 04620355259 77 78 86 89 99 122 127

15 151 | 0420305759 62 76 100 111 123 136 144 145 151
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LUT-free decoding of systematic Hamming codes

o Consider a [2™,2™ — (m + 1)] extended Hamming code whose parity-check matrix
has columns given by the binary representations of 2j + 1 for j € {0,1,...,2" -1}

[0 0 0 ... 1]
000 ... 1
H—= |+
001 ... 1
010 ... 1
111 ... 1]

o Famously, syndrome decoding of such a code is trivial with the first m bits of the
syndrome column interpreted as an integer directly giving the error location
j€{0,1,...,2m -1}

@ Unfortunately, H must have its columns permuted in order to have a
corresponding systematic generator matrix thus ruining this decoding method
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Systematic Hamming Codes (cont’d)

@ However, if we can find a systematizing permutation which is algebraically-defined
so that it's easy to invert, this problem is solved

o Interpret the column index set {0,1,...,2™ — 1} as the ring of integers modulo
2m, i.e., sz

o All odd integers are invertible modulo 2™ so any odd a € Zym and possibly
non-odd b € Zym define an algebraic (affine) permutation

TZZQm—>ZQm
j—T1()=a-j+b

7'_1: sz —)sz
jr= ) =at (- b)
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Systematic Hamming Codes (cont’d)

o 7 and 77! are trivially implemented in software/hardware as a simple (m + 1)-bit
add-and-multiply

o By a computer search, we found values of a and b for all m € {3,4,...,15,16}
such that the the parity check matrix H permuted according to 7 has a systematic
generator matrix

@ This means that both decoding these Hamming codes as well as generating
columns of H can be done as simply as computing 7 and 771

o Both such steps must be done repeatedly in a higher-order staircase code with
high bit degree and many Hamming components

@ The alternative would be to have multiple possibly redundant LUTs with 2™
(m + 1)-bit entries wherever these computations are needed

o Adaptation to a code shortened in the first s positions is accomplished by
replacing b with b+ a- s

28



Systematizing affine permutations for extended Hamming codes

13 | 163
14 | 301
15 | 553
16 | 1065

170
308
553
1155

531
541
2025
4875
13989
14873
55321
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Performance results (extended Hamming components)

o Highly-optimized C-based software simulators achieve simulated throughputs of
several Gbps per core of a modern consumer multi-core CPU allowing for direct
verification of sub-1071 error floors

o Relative to conventional staircase codes with t = 3, performance is roughly 0.2 to
0.5 dB worse in terms of the gap to the hard-decision Shannon limit as the code
rate ranges from 0.98 down to 0.8

@ Under concatenation with soft-decoded inner codes, gap can be much smaller:
e.g., using proposed codes as drop-in replacement for CFEC rate 239/255 outer
code which is paired with rate 120/128 soft-decision Hamming code, loss is under
0.2 dB

o M =3 or M =4 seems to suffice for getting sub-1071% error floors

@ Memory (decoding window size) is always smaller
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Simulation Results

669,3), R = 0.98000
409,3), R = 0.97000
307,3), R = 0.96000
179,4), R = 0.93725
(47 4), R = 0.80000

100\\\\\\\\\\\\\\

0/(1016)

‘/,,,/" 0/(10 16 ) \

S \

1 osaels \

Bit error rate
=
9
oo
O A

0/(3 - 1015)

10—16 S N A S A S S A A A
04 06 08 1 12 14 16 18

Gap to hard-decision Shannon limit (dB)

O N A A A A A
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Final Generalization

@ For L an integer divisor of S, subdivide S x S codeword blocks evenly into

(S/L) x S wide sub-blocks.

eg., L=2:9"""7

= T

o Define a new code in terms of (S/L) x (S/L) blocks.

@ This preserves rate, but can reduce memory.
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Example (L =2, M = 2)

— — By B
5 B, Bs
jn
;; ; — B(—)r B, Bs
Z 5 B Bs By
e 8 BT B B @ Now require L Golomb rulers, each
< 4 =8 =9 with M + 1 marks, having disjoint
© — Bf B{ Bio B distance spectra
— Bl BS By Bz Bis o Intra-block permutations {mg,...,7m}
can be “recycled” in different phases

— B B] BI Bj, B Bis
Bf BJ Bf By, Bis Bir
BZ B;r Bg BL Bis Big
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Difference Triangle Sets

Definition
An (L, M)-DTS is a set of L Golomb rulers of order M + 1 whose respective sets of
distances are disjoint. Equivalently, it is a set of L rulers of order M + 1 given by

dée) < d{g) << d,(\f;)

for ¢ € [L] such that all positive differences

{4 4
4 — g

for ki, ko € [M + 1], ko > ki, and ¢ € [L] are distinct.

o See, e.g, Chapter 19 of Colbourn and Dinitz (eds), Handbook of Combinatorial
Designs, 2007.



L-uniform Ruler

Definition

An L-uniform ruler of order M’ 4+ 1 is a set of integers dy < di < --- < dpy for which
M +1
[{dy : k € [M' +1],dy = £ mod L} = L+
for each ¢ € [L].
@ In other words, elements of {0,...,L — 1} appear equally often as residues of

{do, ey del} mod L.
o Necessarily, M’ +1 = L(M + 1) for some positive integer M + 1 and we can
construct any such ruler from L base rulers of order M + 1 given by

déz) < dl(e) <l < d,(\f;)
for each ¢ € [L] as
{de ke M +1}={LdP +e:ke[M+1],¢e L]}



Higher-order Staircase Codes

Ingredient 1 (A difference triangle set)
An (L, M)-DTS given by
Ozdéﬁ) <d{€) < d,(\f;)

for ¢ € [L] with corresponding L-uniform ruler of order L(M + 1)
dy<d <:---< dL(M+1)—1

given accordingly as

{de ke L M+1)]} ={Ld" +¢: ke [M+1],0€ L]}




Higher-order Staircase Codes

Ingredient 2 (geometric net)

An (M +1,5/L)-net with corresponding M + 1 permutations of [S/L] x [S/L] given
by mx for k € [M + 1] where mg is the identity permutation, and a resulting collection
of L(M + 1) permutations of [S/L] x [S/L] given by 7}, = my for every k € [M + 1]

and k' € [L(M + 1)] such that dj € {Ld\" +¢: ¢ € [L]}

Ingredient 3 (component code)
A component code C of length (M +1)S and dimension (M +1)S —r
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Higher-order Staircase Codes

Definition
A higher-order staircase code of rate 1 — r/S is defined by the constraint on the

bi-infinite sequence of (S/L) x (S/L) matrices ...,B_», B_1, By, B1, By, ... that the
rows of

(Bn Gy | [Bat BT 4)

belong to C for all n € LZ.

.




Recovery of Well-Known Codes

@ When L = M =1, the classical staircase codes of Smith, et al. (2012) are
recovered.

@ When L > 1 and M =1, the tiled diagonal zipper codes of Sukmadji, et al.
(2022) are recovered.

© When S = L and r =1, a recursive (rather than feedforward) version of the
self-orthogonal convolutional codes of Robinson and Bernstein (1967), et al. are

recovered
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On Difference Triangle Sets

Usually characterized by scope: the maximum length of the constituent rulers.

@ The scope is a proxy for the decoding memory requirement.

©
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The length-sum — an unstudied DTS parameter — is the sum of the lengths of
the constituent rulers.

The length-sum is a proxy for the encoding memory requirement.
Minimum scope DTSs and minimum length-sum DTSs do not necessarily coincide.
For M =1, a minimum scope (L,1)-DTS is given by {0,1}, {0,2}, ..., {0, L}.

For M =2, minimum scope (L,2)-DTSs have an explicit construction (Skolem,
1957)
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Scope versus Length-Sum of DTSs (Examples)

(L=9, M=3)-DTS (L=4, M =4)-DTS
scope scope
' LP bound ' LP bound
56 | e -
3 — no solutions
! trivial bound ILP bound
54 1 --e - R 41 -+ ¢
% I { length-sum % : length-sum
414 422 435 150 153
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o search for DTSs that are optimal with respect to the scope and length-sum
tradeoff

o extend simulations to larger L and larger t (¢t = 2 in particular)
o evaluate performance/complexity tradeoffs

o evaluate performance in concatenation with suitable soft-decision inner code
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