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Limitations of Existing Technologies
Most of the world’s data is stored on 
magnetic and optical media

Disks are rated for 3-5 years and 
tapes 10-30
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DNA as Storage Medium
DNA is extremely durable - can still recover DNA from 
mammoths, Neanderthals, and 700,000 old horses!
DNA is dense
• Tape: 10-100 GB/mm3

• DNA:  109 GB /mm3

DNA write (synthesis) and read 
(sequencing) costs are decreasing daily
Can one store user information in DNA?
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DNA as Storage Medium
Richard Feynman first proposed the use of macromolecules for 
storage “There is plenty of room at the bottom"
Church et al. (Science, 2012) and Goldman et al. (Nature, 2013) 
stored 643, 739 KB of data in synthetic DNA, resp.
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DNA as Storage Medium
• Richard Feynman first proposed the use of macromolecules for storage “There is plenty of room at the bottom"
• Church et al. (Science, 2012) and Goldman et al. (Nature, 2013) stored 643, 739 KB in synthetic DNA, resp.
• Grass et al.: 2015, 81KB
• Yazdi et al.: 2015, random access, rewritable DNA storage system
• Bornholt et al.: 2016, 42KB
• Blawat et al.:  2016, 22MB
• Helixworks:  2016, first commercially available DNA storage medium
• Erlich & Zielinski: 2017, 2.11 MB
• Organick et al.: 2017, 200MB
• Yazdi et al.: 2017, portable and error-free DNA data storage
• Takahashi et al.: 2019, end-to-end automation of DNA data storage
• Tabatabaei et al.: 2019, DNA punch card
• Anavy et al.: 2019, DNA using composite letters
• DNA Catalog: 2019, the first to store 16GB of data
• Iridia: 2019, complete DNA storage system on a chip
• Chandak et al.: 2019, codes for DNA storage using LDPC codes
• Lee et al.: 2019, DNA storage using enzymatic synthesis
• Antkowiak et al.: 2020, DNA storage using photolithographic synthesis 
• Roquet et al.: 2021, DNA storage via combinatorial assembly
• Preuss et al.: 2021, combinatorial synthesis of DNA shortmers
• Maes et al.: 2022, DNA Drive using long double stranded replicative DNA molecules
• Yan et al.: 2023, combinatorial synthesis with enzymatically-ligated composite motifs
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Recent Results
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CATALOG- Enterprise storage 
$35M raised- DNA Archiving

Catalog‘s technology relies on a device 
that feeds blank webbing at 16 meters 
per minute into a modified inkjet 
printer that deposits drops of 
synthetic DNA on the web. 
That webbing is then moved to an 
incubation chamber to represent the 
data, which is then written to a flask of 
DNA.
Reading the data can be done with a 
DNA sequencer.
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Iridia- Chip scale 
storage- $24M Raised
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DNA Storage Companies/Groups
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DNA Data Storage: Global Markets 
and Technologies 

• BBC Research Report
• The global market for DNA data storage should grow from $36.4 million in 2020 to $525.3 million by 

2025 with a compound annual growth rate (CAGR) of 70.6% for the period of 2020-2025.
• North American DNA data storage market should grow from $29.1 million in 2020 to $340.1 million 

by 2025 with a compound annual growth rate (CAGR) of 63.5% for the period of 2020-2025. 
• European DNA data storage market should grow from $4.4 million in 2020 to $95.7 million by 2025 

with a compound annual growth rate (CAGR) of 85.1% for the period of 2020-2025.

• Brandessence Market Research Report
•  At 65.8% CAGR, DNA Data Storage Market Size is Expected to Reach USD 1926.7 Million by 2028
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Synthesis and Sequencing Costs
• Synthesis
• Twist/Agilent

• 100,000 200-base strands cost
 ≈ $20K (1MB = $4.2K)

• Sequencing
• Technion Genome Center: Illumina Hiseq

• $2500 for 200M strands
• Oxford Nanopore Technologies MinION sequencer 

• $1000 for a single run (flow cell) to read 1010 bases = 50M strands
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DNA as Storage Medium
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Goal: Build a fully operational, cost-efficient, 
real-time, DNA-based storage system

Important challenges:
Cost of synthesis and sequencing 
Lack of appropriate coding solutions



DNA Intro
• DNA consists of 4 bases, aka nucleotides:

       Adenine     Cytosine            Guanine            Thymine
• DNA strand, aka oligonucleotide, is a string of the nucleotides
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A C G T

AA C T G C C AT CA G

• Convert a binary sequence into a quaternary sequence
•            = 00                = 01              = 10             = 11

• 00.01.11.00.10.01.01.11.00.00.01.10

• However…
• Strands are limited in their size (~200 bases)
• Strands are not ordered (a soup with many strands)

AA C T G C C AT CA G

A C G T



How to Write Data into DNA?
• DNA Synthesis: artificially generating DNA 

strands
• Strands are generated by appending one base 

at a time
• Typical lengths are ~200 bases

(due to technology limitations)
• Each strand has thousands copies

• DNA Sequencing: reading DNA strands
• Generating many reads of each strand
• Less expensive and faster than synthesis (per 

base)
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How to Write Data into DNA?
• Parse the file to strings of bits
• Each string is converted to a DNA 

strand with index and primer 

15



DNA Storage Channel Model
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DNA Storage Channel Model
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A C

C

Errors in DNA
• Both synthesis and sequencing can cause errors

     Deletions

     Insertions

     Substitutions
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AA C T G C C AT A

AA C T G C AT CA

AA C T G C C AT CAG

AA C T G C C G A



Grass et al., 81KBErlich & Zielinski, 2.11 MB
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Error Characterization
Organick et al., 22MB



Coding Problems
• Main goals of coding for DNA-storage
• Clustering algorithms

Clustering specifically for the errors in DNA
• Reconstruction of sequences

Reconstruction of different sequences together
• Constrained codes

Avoiding the specific bad patterns in DNA such as long 
homopolymers and GC content
• Codes correcting insertions/deletions

Codes correcting combinations of deletions, insertions, and 
substitutions 
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How to Sequence DNA Strands?
Illumina
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Nanopore



The Coverage Depth Problem

• Assumptions:
• The file is encoded into 𝑛 strands, each has 

millions of copies
• During sequencing, the strands are randomly 

read until the file is decoded

• The problem: Find the expected number of 
reads and the probability to decode the file
• The answer depends upon:
• The code
• The noise model
• The reading distribution of the strands
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The Coupon’s Collector Problem
• First studied by Feller in 1967
• The problem: If each box of cereal contains one out of 𝑛 coupons, how 

many cereal boxes one should expect to buy to collect all 𝑛 coupons?

• Solution: 
• 𝑇: #draws, 𝑡!: time to collect the 𝑖-th new coupon
• 𝑇 = 𝑡" + 𝑡# + 𝑡$ +⋯+ 𝑡%
• Each 𝑡! has geometric dist. w/ succ. prob. 𝑝! =

%&!'"
%

 and expectation "
(!
= %

%&!'"

• 𝐸[𝑇] = 𝐸[𝑡"] + 𝐸[𝑡#] + ⋯+ 𝐸[𝑡%] =
%
%
+ %

%&"
+⋯+ %

"
= 𝑛("

%
+ "

%&"
+⋯+ "

#
+ "

"
)	

										= 𝑛𝐻% = 𝑛log 𝑛 + 𝛾𝑛 + 0.5 + 𝑂("
%
),    𝛾 ≈ 0.57 the Euler-Mascheroni const. 23



The Dixie Cup Problem/The Urn Problem
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• First studied by Newman in 1960
• The problem: Given 𝑛 urns, what is the 

expectation of the number of thrown balls 
in order to have at least 𝑡 balls in each urn?

• Other extensions: 
• It is sufficient to have only 𝑘 out of the 𝑛 urns, 

each with at least 𝑡 balls
• Different distributions to throw balls to the urns



The Dixie Cup Problem/The Urn Problem
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• First studied by Newman in 1960
• The problem: Given 𝑛 urns, what is the expectation of 

the number of thrown balls in order to have at least 𝑡 
balls in each urn?

• Known results: 
• 𝑘 = 𝑛, 𝑡 = 1: 𝑛𝐻! = 𝑛log 𝑛 + 𝛾𝑛 + 0.5 + 𝑂("!)

• 𝑘 < 𝑛, 𝑡 = 1: 𝑛(𝐻!−𝐻!#$) ≈ 𝑛log !
!#$

• 𝑘 = 𝑛, 𝑡 > 1:

• 𝑘 < 𝑛, 𝑡 > 1: 



26

𝑘 information strands are encoded into 𝑛 strands using an (𝑛, 𝑘) code 𝒞

The Coverage Depth Problem

𝓧𝓤
Main goal: Study the required sample size 𝑀 to guarantee successful decoding of 𝓤 

𝜈!
𝒑 𝒞  - r.v. of the number of samples for successful decoding of 𝓤 
𝜈!
𝒑 𝑛, 𝑘 	- when 𝒞 is an MDS code

If 𝒑 is the uniform distribution, it is removed from the notation
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The Coverage Depth Problem
Problem 1 - The MDS coverage depth problem
For any 𝑘, 𝑛, find:

The expectation value 𝔼[𝜈!(𝑛, 𝑘)]

The probability distribution of 𝜈!(𝑛, 𝑘), i.e., for any 𝑚 ∈ ℕ find 
the value 𝑃[𝜈! 𝑛, 𝑘 > 𝑚]

Problem 2 - The coding coverage depth problem
For any 𝑘, 𝑛, find:

Given 𝑛, 𝒑, find an (𝑛, 𝑘) code 𝒞	that minimizes 𝔼[𝜈!
𝒑(𝒞)]

The minimum value of 𝔼[𝜈!
𝒑(𝒞)] over all possible 𝒞, 𝒑. 

That is, the value 𝑀#$% 𝑘 ≜ liminf
𝒞,𝒑

𝔼 𝜈!
𝒑 𝒞



The Coverage Depth Problem

• The uncoded case: There are 𝑛 strands, and all of them should be sampled
Solution: Coupon collector’s problem: 𝔼 𝜈! 𝑛, 𝑛 = 𝑛log 𝑛 + 𝛾𝑛 + 𝑂(1)
• The coded case: 𝑘	of the 𝑛 strands should be sampled
𝔼 𝜈! 𝑛, 𝑘 = 𝑛log "

"#$
= $

%
log !

!#%
, 𝔼 𝜈!

𝒑 𝑛, 𝑘 =
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The Noiseless Channel (𝑡 = 1) 



The Coverage Depth Problem

• The uncoded case: 𝔼 𝜈! 𝑛, 𝑛 = 𝑛log 𝑛 + 𝛾𝑛 + 𝑂(1)

• The coded case:	𝔼 𝜈! 𝑛, 𝑘 ≈ 𝑛log "
"#$

,	𝔼 𝜈!
𝒑 𝑛, 𝑘 =

• Claim: For all 𝑛 ≥ 𝑘, 𝔼 𝜈! 𝑛, 𝑘 ≥ 𝔼 𝜈! 𝑛 + 1, 𝑘
• Claim: If 𝒞 is not an MDS code, then 𝔼 𝜈!

𝒑 𝑛, 𝑘 ≤ 𝔼[𝜈!
𝒑(𝒞)] 

• Theorem: For any 𝒑, 𝔼 𝜈!
𝒑 𝑛, 𝑘 ≥ 𝔼 𝜈! 𝑛, 𝑘  ≈ 𝑛log "

"#$
• Theorem:
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The Noiseless Channel (𝑡 = 1) 



Lemma: For any 𝜖 and 𝑛	s.t. 𝑛 > 𝑒'()!"#/+ ≥ 16 , it holds 
𝑃 𝜈( 𝑛, 𝑘 ≤ 𝑟(𝑛, 𝑘, 𝑡)	 ≥ 1 − 𝜖

𝑟 𝑛, 𝑘, 𝑡 = 𝑛log
𝑛

𝑛 − 𝑘
+ 𝑛𝑡loglog𝑛 + 2𝑛log(𝑡 + 1)

The MDS Coverage Depth Problem  
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The Noisy Channel (𝑡 > 1) 
Assumptions:

𝒞 is an [𝑛, 𝑘] MDS code and 𝒑 is the uniform distribution 
Each strand 𝒙( can be retrieved given 𝑡 > 1 samples

Lemma: For any 𝑐 > 0, it holds: 𝑃 𝜈% 𝑛, 𝑘 ≤ 𝑛log
𝑛

𝑛 − 𝑘
− 𝑛𝑐 ≤ 𝑒#&

𝑛 − 𝑘 + 1
𝑛 − 𝑘



Theorem: For any 𝜖 and 𝑛	large enough, it holds 

where 
and 𝐵,  is the ℎ-th Bernoulli number.

The MDS Coverage Depth Problem  
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The Noisy Channel (𝑡 > 1) 
Assumptions:

𝒞 is an [𝑛, 𝑘] MDS code and 𝒑 is the uniform distribution 
Each strand 𝒙( can be retrieved given 𝑡 > 1 samples
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𝑘 information strands are encoded into 𝑛 strands using some (𝑛, 𝑘) code 𝒞

The user wishes to retrieve a subset of the 𝑘 information strands

We consider the singleton case, i.e., |𝐼| = 1

The Random Access Problem



Problem 3 - The singleton coverage depth problem
• 𝒞 - an (𝑛, 𝑘) code
• 𝜏-(𝒞) - r.v. for the number of samples to recover the 𝑖-th info. strand
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The Random Access Problem

Find the expectation value 𝔼 𝜏- 𝒞  and the probability distribution               
𝑃 𝜏- 𝒞 > 𝑟  for any 𝑟 ∈ ℕ

Find the maximal expected number of samples to retrieve an 
information strand

𝑇./0𝒞 	≜ 	 max
!2-2$

𝔼 𝜏- 𝒞



Solve Problem 3 in case 𝑛 = 𝑘 and no coding is used
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The Random Access Problem

Lemma: For 𝑛 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑛,	the following hold

𝔼 𝜏( = 𝑛 and 𝑇)*+ = 𝑛

For any 𝑟 ∈ ℕ we have that 𝑃 𝜏! > 𝑟 = 1 − "
#

$
 and 𝑃 𝜏! = 𝑟 = "

#
⋅ 1 − "

#

$%"
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The Random Access Problem

Proof: 
𝜏' has geometric distribution with success probability 𝑝 = "

!
. Hence, 

𝑇()* = 	 max
"+'+$

𝔼 𝜏' = 𝑝#" = 𝑛

Lemma: For 𝑛 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑛,	the following hold

𝔼 𝜏( = 𝑛 and 𝑇)*+ = 𝑛

For any 𝑟 ∈ ℕ we have that 𝑃 𝜏! > 𝑟 = 1 − "
#

$
 and 𝑃 𝜏! = 𝑟 = "

#
⋅ 1 − "

#

$%"

Solve Problem 3 in case	𝑛 = 𝑘	and no coding is used
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The Random Access Problem
Definition: A set 𝐽 ⊆ [𝑛] is a retrieval set of the 𝑖-th information strand, 𝒖(, if it is 
possible to decode 𝒖(	from the encoded strands whose indices belong to 𝐽
H𝒟(𝑖) - The set of all retrieval sets of 𝒖(
𝒟(𝑖) - The set of all minimal retrieval sets of 𝒖( (with respect to inclusion)

Example: For the	[𝑘 + 1, 𝑘]	simple parity code:
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The Random Access Problem

Claim: For any (𝑛 = 𝑘, 𝑘) code 𝒞 it holds that 𝑇)*+𝒞 ≥ 𝑇)*+ = 𝑛.
In particular, if 𝜌( is the size of the smallest retrieval set of 𝒖(, then

𝔼 𝜏( 𝒞 = 𝑛𝐻,)
𝑇)*+𝒞 = 𝑛𝐻,, where 𝜌 = max

(
𝜌(

Solve Problem 3 in case 𝑛 = 𝑘

Observation: Since 𝑛 = 𝑘, given any set of strands 𝒙(: 𝑖 ∈ 𝐽  we can recover 
at most |𝐽| information strands
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The Random Access Problem
Theorem: For any (𝑛, 𝑘) code 𝒞, if 𝒟 𝑖 = 𝐴, 𝐵  for two disjoint retrieval sets       
𝐴 ∩ 𝐵 = ∅, then 𝔼[𝜏( 𝒞 ] = 𝑛 ⋅ 𝐻|.| +𝐻|/| −𝐻 . 0|/|

Corollary 1: For any (𝑛, 𝑘) code 𝒞, if 𝒟 𝑖 = 𝐴1, … , 𝐴2  for mutually disjoint 
retrieval sets, then,

𝔼[𝜏' 𝒞 ] = 𝑛 ⋅J
,-"

.

−1 ,/"J
"+0!1⋯10"+.

𝐻 3#! /⋯/ 3#"

Corollary 2: For the [𝑛 = 𝑘 + 1, 𝑘]	simple parity code: 
 For any 𝑖, 𝑇)*+𝒞 = 𝔼 𝜏( 𝒞 = 𝑘 + 1 ⋅ 𝐻1 +𝐻3 −𝐻301 = 𝑘
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The Random Access Problem
Question: Is it possible to have 𝑇./0𝒞 < 𝑘?

• The identity code achieves 𝑇./0𝒞 = 𝔼 𝜏- 𝒞 = 𝑘
• The simple parity code achieves 𝑇./0𝒞 = 𝔼 𝜏- 𝒞 = 𝑘

• A non-systematic [𝑛, 𝑘]	MDS code achieves 𝑇./0𝒞 ≈ 𝑛log "
"#$

> 𝑘

• What about systematic MDS codes…?
• Theorem: For any (𝑛, 𝑘) MDS code 𝒞, 𝑘 > 𝑛, it holds 𝑇./0𝒞 = 𝔼 𝜏- 𝒞 = 𝑘
• Lemma: For the Hamming code 𝒞, it holds 𝑇./0𝒞 = 𝔼 𝜏- 𝒞 = 𝑘
• Lemma: For the Simplex code 𝒞, it holds 𝑇./0𝒞 = 𝔼 𝜏- 𝒞 = 𝑘
• Lemma: For the Product code 𝒞, it holds 𝑇./0𝒞 = 𝔼 𝜏- 𝒞 = 𝑘
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𝑘 information strands are encoded into 𝑛 strands using some (𝑛, 𝑘) code 𝒞 
with a parity check matrix 𝑮 

The user wishes to retrieve one of the 𝑘 information strands

The Random Access Problem

Problem 3’ - The singleton coverage depth problem
• 𝒞 - an (𝑛, 𝑘) code with a parity check matrix 𝑮
• 𝜏((𝐺) - r.v. for the number of column samples from 𝑮 to decode 

the 𝑖-th unit vector 𝒆!
• Find the maximal expected number of samples to retrieve any unit vectors

𝑇./0= 	≜ 	 max
!2-2$

𝔼 𝜏- 𝐺
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The Random Access Problem
Problem 3’ - The singleton coverage depth problem
• 𝒞 - an (𝑛, 𝑘) code with a parity check matrix 𝑮
• 𝜏((𝐺) - r.v. for the number of column samples from 𝑮 to decode 

the 𝑖-th unit vector 𝒆!
• Find the maximal expected number of samples to retrieve any unit vector

𝑇./0= 	≜ 	 max
!2-2$

𝔼 𝜏- 𝐺

Example:
• 𝒞: 𝑥!, 𝑥) → (𝑥!, 𝑥), 𝑥!, 𝑥), 𝑥! + 𝑥))
• 𝔼 𝜏! 𝐺 = 𝔼 𝜏) 𝐺 = 1.917 < 2



• Theorem: Given a parity check matrix 𝐺 of a code 𝒞,
    let 𝛼- 𝑠 = |{𝑆 ⊆ 𝑛 ∶ 𝑆 = 𝑠, 𝑒- ∈ 𝑔>: 𝑗 ∈ 𝑆 }|. 

Then, 𝐸[𝜏- 𝐺 ] 	= 𝑛𝐻" − ∑?@!"#! A$ ?
"#!
?

.
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The Random Access Problem

• Example:
• 𝒞: 𝑥!, 𝑥) → (𝑥!, 𝑥), 𝑥!, 𝑥), 𝑥! + 𝑥))
• 𝔼 𝜏! 𝐺 = 𝔼 𝜏) 𝐺 = 1.917 < 2



• Theorem: Given a parity check matrix 𝐺 of a code 𝒞,
    let 𝛼- 𝑠 = |{𝑆 ⊆ 𝑛 ∶ 𝑆 = 𝑠, 𝑒- ∈ 𝑔>: 𝑗 ∈ 𝑆 }|. 

Then, 𝐸[𝜏- 𝐺 ] 	= 𝑛𝐻" − ∑?@!"#! A$ ?
"#!
?

.

• Example: Assume 𝒞 is an MDS code with a systematic generator matrix 𝐺. 

43

𝑘

The Random Access Problem



The Average Expectation

• �̃�- 𝐺  - r.v. counting the number of drawn columns of 𝐺	until the 𝑖th 
column of 𝐺 is recovered.
• Theorem: ∑-@!" 𝐸[�̃�- 𝐺 ] = 𝑘𝑛.
• A code 𝒞 is called recovery balanced if 𝐸[�̃�! 𝐺 ] = ⋯ = 𝐸[�̃�" 𝐺 ].
• Corollary: If 𝐺 is a systematic generator matrix of a recovery balanced 

code 𝒞, then 𝐸[�̃�- 𝐺 ] = 𝑘 for 𝑖 ∈ [𝑛] and 𝑇./0𝒞 = 𝑘.
• For a systematic MDS code 𝒞 with systematic generator matrix 𝐺, it 

holds 𝐸[�̃�- 𝐺 ] = 𝑘 for 𝑖 ∈ [𝑛] and 𝑇./0𝒞 = 𝑘.
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Breaking the Balance of MDS Codes

• Theorem: Let 𝐺 = 𝐼$ 𝑅  be a systematic generator matrix of an MDS code. 
For 𝑥 ≥ 1, let 𝐺B = 𝐼$ ⋯|𝐼$|𝑅  (𝑥	copies of the identity matrix). Then, 
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• Example:
• 𝒞: 𝑥!, 𝑥) → (𝑥!, 𝑥), 𝑥!, 𝑥), 𝑥! + 𝑥))
• 𝔼 𝜏! 𝐺 = 𝔼 𝜏) 𝐺 = 1.917 < 2



Breaking the Balance of MDS Codes
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The Random Access Problem

Example

Information word

Codeword

Minimal retrieval 
sets of 𝒖1

Question: Is it possible to have 𝑇./0𝒞 < 𝑘?
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The Random Access Problem

Example

Information word

Codeword

Question: Is it possible to have 𝑇./0𝒞 < 𝑘?



• Theorem: There exists an (𝑛, 2) code 𝒞	s.t. 𝑇./0𝒞 = 1.83 = 0.914 ⋅ 2. 
There exists an (𝑛, 3) code 𝒞	s.t. 𝑇./0𝒞 = 2.67 = 0.89 ⋅ 3.

• For an (𝑛, 𝑘) code 𝒞, 𝒞C  is the (𝛾𝑛, 𝛾𝑘) code consisting of 𝛾 copies of 𝒞. 
• Theorem: 𝑇./0𝒞% = 𝛾𝑇./0𝒞

• Corollary: There exists an (𝛾𝑛, 2𝛾) code 𝒞	s.t. 𝑇./0𝒞 = 0.914 ⋅ 2𝛾. 
There exists an (𝛾𝑛, 3𝛾) code 𝒞	s.t. 𝑇./0𝒞 = 0.89 ⋅ 3𝛾.
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The Random Access Problem
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Lower Bounds

Theorem:  For any (𝑛, 𝑘) code 𝒞, it holds: 𝑇)*+𝒞 ≥ 301
4

 

Theorem:  For any (𝑛, 𝑘) code 𝒞, it holds: 𝑇)*+𝒞 ≥

= 𝑘



Summary

• The DNA storage channel
• The coverage depth problem
• The random access problem
• Many interesting open problems…
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• Jointly organized with Dave Landsman from the DNA Data Storage Alliance.
• Contribution deadline: April 15, 2024.
• Designed to foster collaboration.


