Cover Your Bases:
 How to Minimize the Sequencing Coverage in DNA Storage Systems

Joint works with:
Daniella Bar-Lev ${ }^{1}$, Omer Sabary ${ }^{1}$, Ryan Gabrys ${ }^{2}$, Anina Gruica ${ }^{3}$, Alberto Ravgnani ${ }^{3}$
(1) Technion - Israel Inst. of Technology

(2) University of California, San Diego

(3) Eindhoven University of Technology

Limitations of Existing Technologies

Most of the world's data is stored on magnetic and optical media

Disks are rated for 3-5 years and

DNA as Storage Medium
DNA is extremely durable - can still recover DNA from mammoths, Neanderthals, and 700,000 old horses!

2012 DNA Storage Proof of Concopt
DNA is dense

- Tape: 10-100 GB/mm ${ }^{3}$
- DNA: $10^{9} \mathrm{~GB} / \mathrm{mm}^{3}$

DNA write (synthesis) and read (sequencing) costs are decreasing daily Can one store user information in DNA?

DNA as Storage Medium

Richard Feynman first proposed the use of macromolecules for storage "There is plenty of room at the bottom"
Church et al. (Science, 2012) and Goldman et al. (Nature, 2013) stored $643,739 \mathrm{~KB}$ of data in synthetic DNA, resp.

menv nature

Letter
Towards practical, high-capacity, lowmaintenance information storage in synthesized DNA

DNA as Storage Medium

- Richard Feynman first proposed the use of macromolecules for storage "There is plenty of room at the bottom"
- Church et al. (Science, 2012) and Goldman et al. (Nature, 2013) stored 643, 739 KB in synthetic DNA, resp.
- Grass et al.: 2015, 81KB
- Yazdi et al.: 2015, random access, rewritable DNA storage system
- Bornholt et al.: 2016, 42KB
- Blawat et al.: 2016, 22MB
- Helixworks: 2016, first commercially available DNA storage medium
- Erlich \& Zielinski: 2017, 2.11 MB
- Organick et al.: 2017, 200MB
- Yazdi et al.: 2017, portable and error-free DNA data storage
- Takahashi et al.: 2019, end-to-end automation of DNA data storage
- Tabatabaei et al.: 2019, DNA punch card
- Anavy et al.: 2019, DNA using composite letters
- DNA Catalog: 2019, the first to store 16GB of data
- Iridia: 2019, complete DNA storage system on a chip
- Chandak et al.: 2019, codes for DNA storage using LDPC codes
- Lee et al.: 2019, DNA storage using enzymatic synthesis
- Antkowiak et al.: 2020, DNA storage using photolithographic synthesis
- Roquet et al.: 2021, DNA storage via combinatorial assembly
- Preuss et al.: 2021, combinatorial synthesis of DNA shortmers
- Maes et al.: 2022, DNA Drive using long double stranded replicative DNA molecules
- Yan et al.: 2023, combinatorial synthesis with enzymatically-ligated composite motifs

Twist Bioscience, Illumina and Western Digital Form Alliance with Microsoft to Advance Data Storage in DNA

(Ω Press Release Nomber 13, 2020

- Ten Additional Technology Leaders Join Founding Members to Together Advance Industry Roadmap, Set Stage for Widespread Adoption of New Longterm Storage Option -

esults

artup packs all 16GB of

Twist Bioscience, Illumina, Western Digital and Alliance as founding members. In addition to c the DNA Data Storage Alliance plans to develo and industries as well as promote and educate to promote adoption of this future solution. Th joined the alliance as members:

- Ansa Biotechnologies
- CATALOG
- The Claude Nobs Foundation (Montreux
- DNA Script
- EPFL (École Polytechnique Fédérale de La Innovation Center (Montreux Jazz Digital
- ETH Zurich - The Swiss Federal Institute c Switzerland
- imec
- Iridia
- Molecular Assemblies
- Molecular Information Systems Lab at th

CATALOG- Enterprise storage \$35M raised- DNA Archiving

Catalog's technology relies on a device that feeds blank webbing at 16 meters per minute into a modified inkjet printer that deposits drops of
 synthetic DNA on the web.
That webbing is then moved to an incubation chamber to represent the data, which is then written to a flask of DNA.

Reading the data can be done with a DNA sequencer.

Iridia- Chip scale storage- \$24M Raised

Integrated, High Precision \& Distributed Writing, Reading and
Storage of DNA on Chip Storage of DNA on Chip

On Chip "Writing" of DNA
No moving parts
No microfluidics
Longer DNA strands
No toxic waste (enzyme catalyzed)
Higher quality DNA (in process QC)
Less expensive (single molecule)
Leverages existing semiconductor
manufacturing infrastructure
Massively parallel processing

On Chip "Reading" of DNA
No PCR required No sample prep required M Faster Zero" read costs

Long reads
Leverages existing semiconductor manufacturing infrastructure
Massively parallel processing

DNA Storage Companies/Groups

CATALOG

ODNALI

OligoArchive

DNalgo

日目 Kern
 Systems

DNA Data Storage: Global Markets and Technologies

- BBC Research Report

- The global market for DNA data storage should grow from $\$ 36.4$ million in 2020 to $\$ 525.3$ million by 2025 with a compound annual growth rate (CAGR) of 70.6\% for the period of 2020-2025.
- North American DNA data storage market should grow from $\$ 29.1$ million in 2020 to $\$ 340.1$ million by 2025 with a compound annual growth rate (CAGR) of 63.5\% for the period of 2020-2025.
- European DNA data storage market should grow from $\$ 4.4$ million in 2020 to $\$ 95.7$ million by 2025 with a compound annual growth rate (CAGR) of 85.1\% for the period of 2020-2025.
- Brandessence Market Research Report
- At 65.8\% CAGR, DNA Data Storage Market Size is Expected to Reach USD 1926.7 Million by 2028

Synthesis and Sequencing Costs

- Synthesis
- Twist/Agilent
- 100,000 200-base strands cost
$\approx \$ 20 \mathrm{~K}(1 \mathrm{MB}=\$ 4.2 \mathrm{~K})$
- Sequencing
- Technion Genome Center: Illumina Hiseq
- \$2500 for 200M strands

- Oxford Nanopore Technologies MinION sequencer
- $\$ 1000$ for a single run (flow cell) to read 10^{10} bases $=50 \mathrm{M}$ strands

DNA as Storage Medium

Goal: Build a fully operational, cost-efficient, real-time, DNA-based storage system

Important challenges:
Cost of synthesis and sequencing

Lack of appropriate coding solutions

DNA Intro

- DNA consists of 4 bases, aka nucleotides:
Adenine
- DNA strand, aka oligonucleotide, is a string of the nucleotides

- Convert a binary sequence into a quaternary sequence
- $A=00$
C $=01$
(6) $=10$
($=11$
- 00.01.11.00.10.01.01.11.00.00.01.10

- However...
- Strands are limited in their size (~200 bases)
- Strands are not ordered (a soup with many strands)

How to Write Data into DNA?

- DNA Synthesis: artificially generating DNA strands
- Strands are generated by appending one base at a time
- Typical lengths are ~200 bases (due to technology limitations)
- Each strand has thousands copies

- DNA Sequencing: reading DNA strands
- Generating many reads of each strand
- Less expensive and faster than synthesis (per base)

How to Write Data into DNA?

- Parse the file to strings of bits

- Each string is converted to a DNA strand with index and primer

DNA Storage Channel Model

00101010100
11101001000
01010010010
00010101000
10001001011
00010101100
11110110011
00010110101
1111100001 01010111011

Primer Address
Primer ACTGG.AAAA.ACTGGTAATATATAATGTCCGTGCGTA.TGCAA ACTGG.AAAC.ACGTGGTCAAGTACGTTGACGTACTC.TGCAA ACTGG.AAAG.ACGTACGTGTGCGAACATGACCAGTG.TGCAA ACTGG.AAAT.AAGGTTGTGTCCCAGATGACGTGATG.TGCAA ACTGG.AACA.TGCATGCAAGTGTCAGATGCGTAATG.TGCAA ACTGG.AACC.TTTGGTGAACATGCAGTGATGAACTG.TGCAA ACTGG.AACG.AAGTACCAGTGATCTATGCGTGACGT.TGCAA ACTGG.AACT.AGTGTACGTGCTGCTAAGTACGTGTC.TGCAA

DNA Storage Channel Model

Errors in DNA

- Both synthesis and sequencing can cause errors

Deletions

Insertions

Substitutions

Error Characterization

Organick et al., 22MB

Erlich \& Zielinski, 2.11 MB

Grass et al., 81KB

Coding Problems

- Main goals of coding for DNA-storage
- Clustering algorithms Clustering specifically for the errors in DNA
- Reconstruction of sequences Reconstruction of different sequences together
- Constrained codes

Avoiding the specific bad patterns in DNA such as long homopolymers and GC content

- Codes correcting insertions/deletions

Codes correcting combinations of deletions, insertions, and substitutions

How to Sequence DNA Strands?

Nanopore

The Coverage Depth Problem

- Assumptions:
- The file is encoded into n strands, each has millions of copies
- During sequencing, the strands are randomly read until the file is decoded
- The problem: Find the expected number of reads and the probability to decode the file
- The answer depends upon:
- The code
- The noise model
- The reading distribution of the strands

The Coupon's Collector Problem

- First studied by Feller in 1967
- The problem: If each box of cereal contains one out of n coupons, how many cereal boxes one should expect to buy to collect all n coupons?

How many coupons do you expect you need to draw with replacement before having drawn each coupon at least once?

There are n different coupons

- Solution:

- T : \#draws, t_{i} : time to collect the i-th new coupon
- $T=t_{1}+t_{2}+t_{3}+\cdots+t_{n}$
- Each t_{i} has geometric dist. w/ succ. prob. $p_{i}=\frac{n-i+1}{n}$ and expectation $\frac{1}{p_{i}}=\frac{n}{n-i+1}$
$\cdot E[T]=E\left[t_{1}\right]+E\left[t_{2}\right]+\cdots+E\left[t_{n}\right]=\frac{n}{n}+\frac{n}{n-1}+\cdots+\frac{n}{1}=n\left(\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+\frac{1}{1}\right)$

$$
=n H_{n}=n \log (n)+\gamma n+0.5+O\left(\frac{1}{n}\right), \quad \gamma \approx 0.57 \text { the Euler-Mascheroni const. }
$$

The Dixie Cup Problem/The Urn Problem

- First studied by Newman in 1960
- The problem: Given n urns, what is the expectation of the number of thrown balls in order to have at least t balls in each urn?

Identical balls are thrown into the urns and in each round one ball is thrown into one of the urns randomly.
How many balls do you expect you need to trow into the urns, with replacement, before having all the urns not empty?

- Other extensions:

- It is sufficient to have only k out of the n urns, each with at least t balls
- Different distributions to throw balls to the urns

The Dixie Cup Problem/The Urn Problem

- First studied by Newman in 1960
- The problem: Given n urns, what is the expectation of the number of thrown balls in order to have at least t balls in each urn?
- Known results:

- $k=n, t=1: n H_{n}=n \log (n)+\gamma n+0.5+O\left(\frac{1}{n}\right)$
- $k<n, t=1: n\left(H_{n}-H_{n-k}\right) \approx n \log \left(\frac{n}{n-k}\right)$
- $k=n, t>1: n \log n+n(t-1) \log \log n+n C_{t}+o(n)$
- $k\left\langle n, t>1: \sum_{q=0}^{k-1} \int_{0}^{\infty}\left[u^{q}\right] \prod_{i=1}^{n}\left(e_{t-1}\left(p_{i} v\right)+u\left(e^{p_{i} v}-e_{t-1}\left(p_{i} v\right)\right)\right) e^{-v} d v\right.$

$$
e_{t}(x)=\sum_{i=0}^{t} \frac{x^{i}}{i!}
$$

The Coverage Depth Problem

k information strands are encoded into n strands using an (n, k) code \mathcal{C}

\boldsymbol{U}
 x

Main goal: Study the required sample size M to guarantee successful decoding of \boldsymbol{U}
$\nu_{t}^{p}(\mathcal{C})$ - r.v. of the number of samples for successful decoding of \boldsymbol{U}
$v_{t}^{p}(n, k)$ - when \mathcal{C} is an MDS code
If \boldsymbol{p} is the uniform distribution, it is removed from the notation

The Coverage Depth Problem

Problem 1 - The MDS coverage depth problem

For any k, n, find:

1) The expectation value $\mathbb{E}\left[v_{t}(n, k)\right]$

2. The probability distribution of $v_{t}(n, k)$, i.e., for any $m \in \mathbb{N}$ find the value $P\left[v_{t}(n, k)>m\right]$

Problem 2-The coding coverage depth problem

For any k, n, find:

1) Given n, \boldsymbol{p}, find an (n, k) code \mathcal{C} that minimizes $\mathbb{E}\left[v_{t}^{\boldsymbol{p}}(\mathcal{C})\right]$
(2) The minimum value of $\mathbb{E}\left[v_{t}^{\boldsymbol{p}}(\mathcal{C})\right]$ over all possible $\mathcal{C}, \boldsymbol{p}$. That is, the value $M^{\mathrm{opt}}(k) \triangleq \liminf _{\mathcal{C} p}\left\{\mathbb{E}\left[v_{t}^{p}(\mathcal{C})\right]\right\}$

The Coverage Depth Problem

The Noiseless Channel $(t=1)$

- The uncoded case: There are n strands, and all of them should be sampled Solution: Coupon collector's problem: $\mathbb{E}\left[v_{1}(n, n)\right]=n \log (n)+\gamma n+O(1)$
- The coded case: k of the n strands should be sampled

The Coverage Depth Problem

 The Noiseless Channel $(t=1)$- The uncoded case: $\mathbb{E}\left[v_{1}(n, n)\right]=n \log (n)+\gamma n+O(1)$

- Claim: For all $n \geq k, \mathbb{E}\left[v_{1}(n, k)\right] \geq \mathbb{E}\left[v_{1}(n+1, k)\right]$
- Claim: If \mathcal{C} is not an MDS code, then $\mathbb{E}\left[v_{1}^{p}(n, k)\right] \leq \mathbb{E}\left[v_{1}^{p}(\mathcal{C})\right]$
- Theorem: For any $\boldsymbol{p}, \mathbb{E}\left[v_{1}^{\boldsymbol{p}}(n, k)\right] \geq \mathbb{E}\left[v_{1}(n, k)\right] \approx n \log \left(\frac{n}{n-k}\right)$
- Theorem: $\liminf \left\{\mathbb{E}\left[\nu_{1}(n, k)\right]: n \in \mathbb{N}\right\}= \begin{cases}k \log (e) & \text { If } \frac{k}{n}=\Theta(1) \\ k & \text { Otherwise }\end{cases}$

The MDS Coverage Depth Problem

The Noisy Channel ($t>1$)

Assumptions:

人 \mathcal{C} is an $[n, k]$ MDS code and \boldsymbol{p} is the uniform distribution
Each strand \boldsymbol{x}_{i} can be retrieved given $t>1$ samples

$$
\sum_{a=0}^{k-1} \int_{0}^{\infty}\left[u^{q}\right] \prod_{i=1}^{n}\left(e_{t-1}\left(p_{i} v\right)+u\left(e^{p_{i} v}-e_{t-1}\left(p_{i} v\right)\right)\right) e^{-v} d v
$$

Lemma: For any ϵ and n s.t. $n>e^{6 t 2^{t-1} / \epsilon} \geq 16$, it holds

$$
P\left[v_{t}(n, k) \leq r(n, k, t)\right] \geq 1-\epsilon
$$

$r(n, k, t)=n \log \left(\frac{n}{n-k}\right)+n t \log \log n+2 n \log (t+1)$
Lemma: For any $c>0$, it holds: $P\left[v_{t}(n, k) \leq n \log \left(\frac{n}{n-k}\right)-n c\right] \leq e^{-c}\left(\frac{n-k+1}{n_{3}-k}\right)$

The MDS Coverage Depth Problem

The Noisy Channel ($t>1$)
Assumptions:
人 \mathcal{C} is an $[n, k]$ MDS code and \boldsymbol{p} is the uniform distribution
Each strand \boldsymbol{x}_{i} can be retrieved given $t>1$ samples

$$
\sum_{q=0}^{k-1} \int_{0}^{\infty}\left[u^{q}\right] \prod_{i=1}^{n}\left(e_{t-1}\left(p_{i} v\right)+u\left(e^{p_{i} v}-e_{t-1}\left(p_{i} v\right)\right)\right) e^{-v} d v
$$

Theorem: For any ϵ and n large enough, it holds
$\log \left(\frac{1}{1-R}\right)+f_{c}(n, R) \leq \mathbb{E}\left[\frac{\nu_{t}(n, k)}{n}\right] \leq\left(\log \left(\frac{1}{1-R}\right)+t \log \log n+2 \log (t+1)\right) \cdot(1+2 \varepsilon)$ where $f_{c}(n, R)=\frac{1}{2 n}\left(1-\frac{1}{1-R}\right)-\sum_{h=1}^{\infty} \frac{B_{2 h}}{2 h n^{2 h}}\left(1-\frac{1}{(1-R)^{2 h}}\right)=\mathcal{O}\left(\frac{1}{n^{2}}\right)$ and B_{h} is the h-th Bernoulli number.

The Random Access Problem

k information strands are encoded into n strands using some (n, k) code \mathcal{C}

The user wishes to retrieve a subset of the k information strands

We consider the singleton case, i.e., $|I|=1$

The Random Access Problem

Problem 3 - The singleton coverage depth problem

- \mathcal{C} - an (n, k) code
- $\tau_{i}(\mathcal{C})$ - r.v. for the number of samples to recover the i-th info. strand

10 Find the expectation value $\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]$ and the probability distribution $P\left[\tau_{i}(\mathcal{C})>r\right]$ for any $r \in \mathbb{N}$
(2) Find the maximal expected number of samples to retrieve an information strand

$$
T_{\max }^{\mathcal{C}} \triangleq \max _{1 \leq i \leq k} \mathbb{E}\left[\tau_{i}(\mathcal{C})\right]
$$

The Random Access Problem

Solve Problem 3 in case $n=k$ and no coding is used
Lemma: For $n \geq 1$ and $1 \leq i \leq n$, the following hold
(1) $\mathbb{E}\left[\tau_{i}\right]=n$ and $T_{\text {max }}=n$
(2) For any $r \in \mathbb{N}$ we have that $P\left[\tau_{i}>r\right]=\left(1-\frac{1}{n}\right)^{r}$ and $P\left[\tau_{i}=r\right]=\frac{1}{n} \cdot\left(1-\frac{1}{n}\right)^{r-1}$

The Random Access Problem

Solve Problem 3 in case $n=k$ and no coding is used
Lemma: For $n \geq 1$ and $1 \leq i \leq n$, the following hold
(1) $\mathbb{E}\left[\tau_{i}\right]=n$ and $T_{\text {max }}=n$
(2) For any $r \in \mathbb{N}$ we have that $P\left[\tau_{i}>r\right]=\left(1-\frac{1}{n}\right)^{r}$ and $P\left[\tau_{i}=r\right]=\frac{1}{n} \cdot\left(1-\frac{1}{n}\right)^{r-1}$

Proof:
(1) τ_{i} has geometric distribution with success probability $p=\frac{1}{n}$. Hence,

$$
T_{\max }=\max _{1 \leq i \leq k} \mathbb{E}\left[\tau_{i}\right]=p^{-1}=n
$$

The Random Access Problem

Definition: A set $J \subseteq[n]$ is a retrieval set of the i-th information strand, \boldsymbol{u}_{i}, if it is possible to decode \boldsymbol{u}_{i} from the encoded strands whose indices belong to J
$\widehat{\mathcal{D}}(i)$ - The set of all retrieval sets of \boldsymbol{u}_{i}
$\mathcal{D}(i)$ - The set of all minimal retrieval sets of \boldsymbol{u}_{i} (with respect to inclusion)

Example: For the $[k+1, k]$ simple parity code:

$$
\begin{aligned}
& u_{1} u_{2} u_{3} . . . u_{k} \sum_{i=1}^{k} u^{n} \\
& \mathcal{D}(1)=\left\{\begin{array}{l:l:c:c}
u_{1} & u_{2} & u_{3} & u_{k} \\
\sum_{i=1} u_{i} & \boldsymbol{j}
\end{array}\right.
\end{aligned}
$$

The Random Access Problem

Solve Problem 3 in case $n=k$
Claim: For any ($n=k, k$) code \mathcal{C} it holds that $T_{\text {max }}^{\mathcal{C}} \geq T_{\text {max }}=n$. In particular, if ρ_{i} is the size of the smallest retrieval set of \boldsymbol{u}_{i}, then
(1) $\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=n H_{\rho_{i}}$
(2) $T_{\text {max }}^{\mathcal{C}}=n H_{\rho}$, where $\rho=\max _{i} \rho_{i}$

Observation: Since $n=k$, given any set of strands $\left\{\boldsymbol{x}_{i}: i \in J\right\}$ we can recover at most $|J|$ information strands

The Random Access Problem

Theorem: For any (n, k) code \mathcal{C}, if $\mathcal{D}(i)=\{A, B\}$ for two disjoint retrieval sets $A \cap B=\emptyset$, then $\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=n \cdot\left(H_{|A|}+H_{|B|}-H_{|A|+|B|}\right)$

Corollary 1: For any (n, k) code \mathcal{C}, if $\mathcal{D}(i)=\left\{A_{1}, \ldots, A_{v}\right\}$ for mutually disjoint retrieval sets, then,

$$
\mathbb{E}\left[\tau_{i}(C)\right]=n \cdot \sum_{s=1}^{v}(-1)^{s+1} \sum_{1 \leq j_{1}<\cdots<j_{s} \leq v} H_{\left|A_{j_{1}}\right|+\cdots+\left|A_{j_{s}}\right|}
$$

Corollary 2: For the $[n=k+1, k]$ simple parity code:

$$
\text { For any } i, T_{\max }^{\mathcal{C}}=\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=(k+1) \cdot\left(H_{1}+H_{k}-H_{k+1}\right)=k
$$

The Random Access Problem

Question: Is it possible to have $T_{\text {max }}^{\mathcal{C}}<k$?

- The identity code achieves $T_{\text {max }}^{\mathcal{C}}=\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=k$
- The simple parity code achieves $T_{\max }^{\mathcal{C}}=\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=k$
- A non-systematic $[n, k]$ MDS code achieves $T_{\max }^{c} \approx n \log \left(\frac{n}{n-k}\right)>k$
- What about systematic MDS codes...?
- Theorem: For any (n, k) MDS code $\mathcal{C}, k>n$, it holds $T_{\text {max }}^{\mathcal{C}}=\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=k$
- Lemma: For the Hamming code \mathcal{C}, it holds $T_{\max }^{\mathcal{C}}=\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=k$
- Lemma: For the Simplex code \mathcal{C}, it holds $T_{\text {max }}^{\mathcal{C}}=\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=k$
- Lemma: For the Product code \mathcal{C}, it holds $T_{\text {max }}^{\mathcal{C}}=\mathbb{E}\left[\tau_{i}(\mathcal{C})\right]=k$

The Random Access Problem

k information strands are encoded into n strands using some (n, k) code \mathcal{C} with a parity check matrix G

The user wishes to retrieve one of the k information strands
Problem 3' - The singleton coverage depth problem

- \mathcal{C} - an (n, k) code with a parity check matrix G
- $\tau_{i}(G)$ - r.v. for the number of column samples from G to decode the i-th unit vector e_{i}
- Find the maximal expected number of samples to retrieve any unit vectors

$$
T_{\max }^{G} \triangleq \max _{1 \leq i \leq k} \mathbb{E}\left[\tau_{i}(G)\right]
$$

The Random Access Problem

Problem 3' - The singleton coverage depth problem

- \mathcal{C} - an (n, k) code with a parity check matrix G
- $\tau_{i}(G)$ - r.v. for the number of column samples from G to decode the i-th unit vector e_{i}
- Find the maximal expected number of samples to retrieve any unit vector

$$
T_{\max }^{G} \triangleq \max _{1 \leq i \leq k} \mathbb{E}\left[\tau_{i}(G)\right]
$$

Example:
$\begin{aligned} & \text { - } \mathcal{C}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}, x_{1}, x_{2}, x_{1}+x_{2}\right) \\ & \text { - } \mathbb{E}\left[\tau_{1}(G)\right]=\mathbb{E}\left[\tau_{2}(G)\right]=1.917<2\end{aligned} \quad G=\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right)$

The Random Access Problem

- Theorem: Given a parity check matrix G of a code \mathcal{C},

$$
\text { let } \alpha_{i}(s)=\left|\left\{S \subseteq[n]:|S|=s, e_{i} \in\left\langle g_{j}: j \in S\right\rangle\right\}\right| \text {. }
$$

Then, $E\left[\tau_{i}(G)\right]=n H_{n}-\sum_{s=1}^{n-1} \frac{\alpha_{i}(s)}{\binom{n-1}{s}}$.

- Example:
$\begin{aligned} & \text { - } \mathcal{C}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}, x_{1}, x_{2}, x_{1}+x_{2}\right) \\ & \text { - } \mathbb{E}\left[\tau_{1}(G)\right]=\mathbb{E}\left[\tau_{2}(G)\right]=1.917<2\end{aligned} \quad G=\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right)$

$$
\alpha_{1}(1)=2, \alpha_{1}(2)=9, \alpha_{1}(3)=\binom{5}{3}, \alpha_{1}(4)=\binom{5}{4}
$$

$$
\mathbb{E}\left[\tau_{1}(G)\right]=5 H_{5}-\sum_{s=1}^{4} \frac{\alpha_{1}(s)}{\binom{4}{s}}=\frac{23}{12} \approx 1.917
$$

The Random Access Problem

- Theorem: Given a parity check matrix G of a code \mathcal{C},

$$
\text { let } \alpha_{i}(s)=\left|\left\{S \subseteq[n]:|S|=s, e_{i} \in\left\langle g_{j}: j \in S\right\rangle\right\}\right| \text {. }
$$

Then, $E\left[\tau_{i}(G)\right]=n H_{n}-\sum_{s=1}^{n-1} \frac{\alpha_{i}(s)}{\binom{n-1}{s}}$.

- Example: Assume \mathcal{C} is an MDS code with a systematic generator matrix G.

$$
\alpha_{i}(s)= \begin{cases}\left(\begin{array}{c}
n-1 \\
s-1 \\
n \\
s
\end{array}\right) & \text { if } s \in[k-1] \\
\text { if } s \geq k .\end{cases}
$$

$$
\mathbb{E}\left[\tau_{i}(G)\right]=n H_{n}-\sum_{s=1}^{k-1} \frac{\binom{n-1}{s-1}}{\binom{n-1}{s}}-\sum_{s=k}^{n-1} \frac{\binom{n}{s}}{\binom{n-1}{s}}=n H_{n}-\sum_{s=1}^{k-1} \frac{s}{n-s}-\sum_{s=k}^{n-1} \frac{n}{n-s}=k
$$

The Average Expectation

- $\tilde{\tau}_{i}(G)$ - r.v. counting the number of drawn columns of G until the i th column of G is recovered.
- Theorem: $\sum_{i=1}^{n} E\left[\tilde{\tau}_{i}(G)\right]=k n$.

$$
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

- A code \mathcal{C} is called recovery balanced if $E\left[\tilde{\tau}_{1}(G)\right]=\cdots=E\left[\tilde{\tau}_{n}(G)\right]$.
- Corollary: If G is a systematic generator matrix of a recovery balanced code \mathcal{C}, then $E\left[\tilde{\tau}_{i}(G)\right]=k$ for $i \in[n]$ and $T_{\text {max }}^{\mathcal{C}}=k$.
- For a systematic MDS code \mathcal{C} with systematic generator matrix G, it holds $E\left[\tilde{\tau}_{i}(G)\right]=k$ for $i \in[n]$ and $T_{\text {max }}^{\mathcal{C}}=k$.

Breaking the Balance of MDS Codes

- Theorem: Let $G=\left(I_{k} \mid R\right)$ be a systematic generator matrix of an MDS code. For $x \geq 1$, let $G^{x}=\left(I_{k}|\cdots| I_{k} \mid R\right)$ (x copies of the identity matrix). Then,

$$
\begin{aligned}
T_{\max }\left(G^{x}\right)= & +\sum_{s=1}^{N-1} \frac{\binom{N-x}{s}}{\binom{N-1}{s}}-\sum_{s=k}^{N-1} \sum_{a=0}^{k-1} \frac{\binom{k-1}{a}}{\binom{N-1}{s}} \\
& \sum_{m=0}^{s-k}\binom{n-k}{s-a-m} \sum_{t=0}^{a}(-1)^{t}\binom{a}{t}\binom{(a-t) x}{m+a}
\end{aligned}
$$

- Example:
$\begin{aligned} & \text { - } \mathcal{C}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}, x_{1}, x_{2}, x_{1}+x_{2}\right) \\ & \text { - } \mathbb{E}\left[\tau_{1}(G)\right]=\mathbb{E}\left[\tau_{2}(G)\right]=1.917<2\end{aligned} \quad G=\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1\end{array}\right)$

Breaking the Balance of MDS Codes

The Random Access Problem

Question: Is it possible to have $T_{\max }^{\mathcal{C}}<k$?
Example
Information word

Codeword

$$
\mathbb{E}\left[\tau_{1}(\mathcal{C})\right]=\sum_{r=1}^{\infty} P\left[\mathcal{T}_{1}^{c} \geq r\right]=\frac{403}{105} \approx 3.838
$$

The Random Access Problem

Question: Is it possible to have $T_{\text {max }}^{\mathcal{C}}<k$?

The Random Access Problem

- Theorem: There exists an $(n, 2)$ code \mathcal{C} s.t. $T_{\text {max }}^{\mathcal{C}}=1.83=0.914 \cdot 2$. There exists an $(n, 3)$ code \mathcal{C} s.t. $T_{\text {max }}^{\mathcal{C}}=2.67=0.89 \cdot 3$.
- For an (n, k) code $\mathcal{C}, \mathcal{C}^{\gamma}$ is the $(\gamma n, \gamma k)$ code consisting of γ copies of \mathcal{C}.
- Theorem: $T_{\text {max }}^{c^{\gamma}}=\gamma T_{\text {max }}^{c}$
- Corollary: There exists an $(\gamma n, 2 \gamma)$ code \mathcal{C} s.t. $T_{\text {max }}^{\mathcal{C}}=0.914 \cdot 2 \gamma$. There exists an $(\gamma n, 3 \gamma)$ code \mathcal{C} s.t. $T_{\text {max }}^{\mathcal{C}}=0.89 \cdot 3 \gamma$.

Lower Bounds

Theorem: For any (n, k) code \mathcal{C}, it holds: $T_{\text {max }}^{\mathcal{C}} \geq \frac{k+1}{2}$
Theorem: For any (n, k) code \mathcal{C}, it holds: $T_{\max }^{\mathcal{C}} \geq \frac{n}{k} \cdot \sum_{i=0}^{k} \frac{k-i}{n-i}=n-\frac{n(n-k)}{k} \cdot\left(H_{n}-H_{n-k}\right)$

$$
=k\left(\frac{1}{R}+\frac{1-R}{R^{2}} \cdot \log (1-R)\right)
$$

Summary

- The DNA storage channel
- The coverage depth problem
- The random access problem
- Many interesting open problems...

There are

Funded by the European Union

 ... 9

Coding Theory and Algorithms for DNA-based Data Storage

Call for Contributions

```
    SUNDAY, JULY 7, 2024 ATHENS, GREIECE
```

The workshop will focus on coding theory and algorithms for DNA-based data storage. It will consist of invited and contributed talks, as well as poster presentations, from researchers and experts. The workshop is organized as a satellite workshop of the 2024 IEEE International Symposium on Information Theory (ISIT2024).

- Jointly organized with Dave Landsman from the DNA Data Storage Alliance.
- Contribution deadline: April 15, 2024.
- Designed to foster collaboration.

