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A natural problem

I logical group G ⊆ SU(d)

e.g., single-qubit Clifford group

I nice physical representation g 7→ ρ(g)

e.g., Gaussian unitaries, transversal gates ρ(g) = g⊗n

I design a code where logical g is implemented with ρ(g)?

If you don’t care about bosonic codes, you can think about this for the next 10 minutes.
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Story of the result

1 initial idea: design multimode bosonic cat codes

I didn’t really work, but found a somewhat okay 2-mode bosonic qutrit

I inspired a very comprehensive generalization

2 follow-up: same thing with nice logical gates

3 extension to arbitrary (non-bosonic) codes
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Outline
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The most-studied bosonic codes are single-mode

I cat code, GKP, binomial code

Code fingerprint: Wigner function of 1
2 (|0̄〉〈0̄|+ |1̄〉〈1̄|)

V. Albert et al, PRA 2019

not clear whether there are any other super smart single-mode bosonic codes to be found

what about multimode bosonic codes? They should give better performance...
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Codewords chosen as superpositions of coherent states

Natural choices of constellations: additive vs multiplicative group structure

I lattice (square, hexagonal...) in phase-space of dimension 2m
=⇒ m-mode GKP code

I roots of unity in 2D =⇒ cat codes

strategy

I pick a nice constellation of size N in C2 (for 2-mode codes)

=⇒ N-dimensional Hilbert space

I tricky part: find a good qubit/qudit in that space
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1st try: 2-mode generalization of cat codes

I constellation: 24 coherent states |αa`〉|αb`〉where a`, b` ∈ C and {a` + jb`} form the binary
tetrahedral group 2T (Pauli + Hadamard)

I it defines a 24-dim subspace of the 2-mode Fock space

I how to find a good code (qubit or qudit)?

I numerical optimization of encoding/decoding doesn’t lead anywhere

I in the end, we defined a qutrit with nice symmetry properties =⇒ 2T-qutrit
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Fidelity of entanglement vs random codes
Performance for pure-loss channel, with loss parameter γ

I iterative numerical optimization (SDP) of decoding and encoding

I 2T-qutrit = fixed point =⇒ local optimum

I pretty competitive for low loss
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Fidelity of entanglement vs single-mode cat qutrits

I free parameter of the code: amplitude α > 0 of the coherent states

I sweet spot for specific value

I again pretty competitive for low loss

I additional feature: some nice logical gates (thanks to group structure)
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Generalization: quantum spherical codes

Shubham Jain, Joseph Iosue,
Alexander Barg, Victor Albert

arXiv:2302.11593

I idea: replace the group 2T by spherical designs

I nice error protection, also work out some logical gates

I even a variant of the 2T-qutrit with better performance
against loss =⇒ a bit depressing

I but the set of nice logical operations is a bit larger for the
2T-qutrit

new question: can we design bosonic codes with nice logical gate sets?

answer: YES! with a nice systematic construction
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Outline
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General idea

Standard strategy for designing quantum codes

1 find a code with good parameters (rate, distance)

2 understand how to perform gate fault-tolerantly

our appproach

1 find a code family with nice logical gate set (easy)

2 optimize code distance / tolerance to noise (less easy?)
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Codes with nice logical gates

input
I group of logical gates G ⊆ SU(2) (for a single logical qubit)
I nice physical representation on physical Hibert space: ρ : g ∈ G 7→ ρ(g)

output: encoding: E : C2 → HP such that

E(g|ψ〉) = ρ(g) E(|ψ〉)

I this is always possible! Simple general construction

I main open question: how to get protection against noise
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Previous work on this question (apologies to missing references!)

I encoding qubits in spins

I qubit codes with transversal gates

I codes with continuous symmetries
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General recipe

I group of logical gates G ⊆ SU(d)
I nice physical representation ρ on physical spaceHP
I pick any logical state |Σ〉 ∈ Cd and any physical state |Φ〉 ∈ HP (e.g. vacuum state)

Encoding map

E : Cd → HP

|ψ〉 7→ d
|G|

∑
g∈G〈Σ|g†|ψ〉 ρ(g)|Φ〉

slightly more general (useful for GKP, cat qudits):
I arbitrary group G
I d-dim representation ρL: replace 〈Σ|g†|ψ〉 by 〈Σ|ρL(g)†|ψ〉
I need a bit of care if ρL is not irreducible
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Elementary facts of representation theory

Representation ∼= sum of irreducible representations

ρ(g) = U

(⊕
i

ρi(g)⊗ 1Mi

)
U†

I ρi: irreducible representations of G
I Mi: multiplicity of ρi in ρ(g)

Orthogonality of irreps

d
|G|

∑
g∈G

ρi(g)† ⊗ ρj(g) =

{
0 if i 6= j∑d−1

p,q=0 |p〉〈q| ⊗ |q〉〈p| = SWAP if i = j

Projector onto (isotypic component) of ρi

Π = 2
|G|
∑

g tr(g†)⊗ ρ(g)
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Rewriting the encoding map

E(|ψ〉) =
d
|G|

∑
g∈G

〈Σ|g†|ψ〉 ρ(g)|Φ〉 ρ(g) = U

(⊕
i

ρi(g)⊗ 1Mi

)
U†

Π =
2
|G|

∑
g

tr(g†)⊗ ρ(g) projector onto isotypic component
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Proof of covariance

ρ(g)Π = U(g ⊗ 1M)U†

|Φ〉 ∈ HP

〈Σ|g|ψ〉

Π U† U E(|ψ〉)
HL′

M

E(g|ψ〉) = ρ(g) E(|ψ〉) ∀g ∈ G
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Alternative encoding map

|Φ〉 ∈ HP

〈Σ||ψ〉

Π U† U E(|ψ〉)
HL′

M

|ψ〉

U E(|ψ〉)|φ〉 ∈ M

A code for any |φ〉 ∈ M:
Eφ(|ψ〉) = U|ψ〉|φ〉

U : Cd ⊗M→ HP isometry, given by G and ρ

challenge: find the states |φ〉 that give good protection against noise
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Application to bosonic codes
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The case of bosonic codes

Pick
I |Φ〉 = |~α〉 a coherent state
I ρ(g) Gaussian unitary: ρ(g)|~α〉 = |g~α〉

E(|ψ〉) =
2
|G|

∑
g∈G

〈Σ|g†|ψ〉 |g~α〉

is a superposition of coherent states.

=⇒ generalization of quantum spherical codes, but with nice gate sets.

one can recover the usual suspects:
I GKP: Pauli group and displacements
I cat codes: 〈σX〉 and dephasing

and define new codes: for G = Pauli or Clifford group
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Example 1: the GKP code

I encode a qubit in single-mode Fock space

I physical representation displacement operators:

GP = 〈D(α),D(β)〉with D(α) = eα∗a†−αa

D(α)D(β) = −D(β)D(α) if βα∗ − β∗α = iπ

standard square GKP lattice: α =
√

π
2 , β = i

√
π
2

I logical representation ρL(D(α)) = σX, ρL(D(β)) = σZ =⇒ Pauli group

I pick |Σ〉 = |0〉 ∈ C2, |Φ〉 = |0〉 ∈ HP (vacuum state)
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Example 1: the GKP code
Let’s compute

|0〉 ∝
∑

g∈GP

〈0|ρL(g)†|0〉 g|0〉

The only nonzero coefficients 〈0|ρL(g)†|0〉 6= 0 are for ρL(g) ∈ {±1,±σZ}:
i.e. g = D(2pα)D(qβ) = (−1)pqD(2pα + qβ) with p, q ∈ Z

|0〉 ∝
∑

p,q∈Z
(−1)pq|2pα + qβ)〉

|1〉 ∝ ρ(σX)|1〉
∝ D(α)|0〉

∝
∑

p,q∈Z
(−1)pq(−i)q|(2p + 1)α + βq〉

=⇒ recover GKP code without any fine-tuning
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Example 2: the 2N-legged cat qubit
I G = 〈eiπ/N〉, cyclic group of order 2N
I logical representation ρL(eiπ/N) = σX

I physical representation with dephasing: ρ(eiπ/N) = eiπn̂/N

I pick |Σ〉 = |0〉 ∈ C2, |Φ〉 = |α〉 ∈ HP (arbitrary coherent state)

|0〉 ∝
∑

g∈GP

〈0|ρL(g)†|0〉ρ(g)|α〉 ∝
2N−1∑
k=0

δk,evenekiπn̂/N|α〉

∝
N−1∑
k=0

|e2πik/Nα〉

|1〉 = ρ(eiπ/N)|0〉 ∝
N−1∑
k=0

|eπi(2k+1)k/Nα〉

=⇒ this is the cat qubit
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New code 1: G = Pauli group with Gaussian unitaries

I logical group: GL = 〈σX, σZ〉
I HP: 2-mode Fock space
I physical representation: Gaussian unitary (beamsplitters and phase-shifts)

ρ ( a b
c d ) : |α〉β〉 7→ |aα + bβ〉|cα + dβ〉

I pick |Σ〉 = |0〉 ∈ C2, |Φ〉 = |α〉|β〉 ∈ HP (arbitrary coherent state)

|0〉 ∝ |c1(α)〉|c0(β)〉
|1〉 ∝ |c0(β)〉|c1(α)〉

with |c0(α)〉 = |α〉+ | − α〉, |c1(α)〉 = |α〉 − | − α〉

I recover the dual-rail encoding in the limit α→ 0:

a single photon in 2 modes: |0〉 = |1〉|0〉, |1〉 = |0〉|1〉
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New code 1: G = Pauli group with Gaussian unitaries

entanglement infidelity for pure-loss channel γ = 10−2

dual-rail encoding: α = 0
=⇒ need to optimize the initial state |Φ〉 ∈ HP (maximize the distance between the

points of the constellation, same as for quantum spherical codes)
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More interesting code: G = single-qubit Clifford group

I 2O group: binary octahedral group (aka single-qubit Clifford group)

2O = 〈S,H〉, |2O| = 48

S =

[
η 0
0 η−1

]
, H =

1√
2

[
η η
−η−1 η−1

]
∈ SU(2)

ρ ( a b
c d ) : |α〉|β〉 7→ |aα + bβ〉|cα + dβ〉

=⇒ |0〉, |1〉: superpositions of 40 coherent states in 2 modes

I “relatively” easy to get a universal gate set with quartic Hamiltonians∗

T = exp
(
i
π

16
(n̂1 − n̂2 − 1)2

)
, CZ = exp

(
i
π

4
(n̂1 − n̂2 − 1)(n̂3 − n̂4 − 1)

)
I measurement in {|0〉, |1〉} basis is easy

I state preparation and error correction??

(∗) similar to CROT. e.g. rotation-symmetric bosonic codes (Grimsmo, Combes, Baragiola)
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Beyond bosonic codes

The construction is very general:

HL = C
d, HP = (Cd′)⊗n

Natural choices for the physical representation ρ(g):

I transversal gates ρ(g) = g⊗n

I ρ(g) = (g†)⊗n

I ρ(g) = g⊗p ⊗ (g†)⊗(n−p)
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Codes Jn, kK with G = Pauli group and physical Pauli gates

G = Pk and ρ(g) ∈ Pn

|Pk| = 2× 4k (only± 1 phases)

Projector onto the irrep: Π =
2k

|G|
∑
g

tr(g†)ρ(g)

=
2k

2× 4k

∑
g∈{±1}

tr(g†)ρ(g)

=
2k

2× 4k ×
(
2× 2k

1

)
= 1

I multiplicity space of maximal dimension

I unitary U : (C2)⊗k ⊗ (C2)⊗(n−k) → (C2)⊗n can be chosen Clifford

I recover stabilizer codes: |ψ〉 7→ U|ψ〉|0〉⊗(n−k)
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Code J5, 1K with transversal 2T

I 2T group: binary tetrahedral group, 2T = 〈Z,H〉 = (Paulis + Hadamard), |2T| = 24

I 3 irreps of dimension 2: ρ4, ρ
∗
4, ρ5

I pick ρL = ρ5 : ρ5(Z) =

[
i 0
0 −i

]
, ρ5(H) = eiπ/4√

2

[
1 1
i −i

]
I ρ(g) = ρ5(g)⊗5

I easy to compute that:
ρ = ρ⊕5

4 ⊕ ρ
∗⊕5
4 ⊕ ρ⊕6

5

U : C2 ⊗C6 → (C2)⊗5

I can find |φ〉 ∈ C6 such that
span(U|0〉|φ〉,U|1〉|φ〉) = J5, 1, 3K

Recover the 5-qubit code, but need to choose |φ〉 carefully.
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Code J7, 1K with transversal Clifford group

2O group: binary octahedral group (aka single-qubit Clifford group)

2O = 〈S,H〉, |2O| = 48

ρ7(S) =

[
η 0
0 η−1

]
, ρ7(H) =

1√
2

[
η η
−η−1 η−1

]
ρL = ρ7 ρ⊗7

7 = ρ⊕7
6 ⊕ ρ

⊕15
7 ⊕ ρ⊕21

8

ρ6, ρ7: dimension 2, ρ8: dimension 8

ρ(g) = ρ7(g)†⊗7 =⇒ standard Steane code J7, 1, 3K

ρ(g) = ρ7(g)⊗7 =⇒ Steane code with different labeling of the logical states

again, the state in the multiplicity space C15 should be chosen with care
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What about the distance?

I not completely clear at the moment

I recent preprint by Kubischta, Teixeira (arXiv:2402.01638) constructs codes with distance t + 1 from
twisted unitary t-groups

I one can write the Knill-Laflamme conditions for a code of distance d

|E| < d =⇒ ΠCEΠC = cEΠC

ΠC = U(12 ⊗ φ)U† with φ := |φ〉〈φ|

KL conditions become:

find |φ〉 ∈ CM s.t. {(12 ⊗ φ)U†EU(12 ⊗ φ) = cE(12 ⊗ φ) : |E| < d}

(For the 5-qubit code, there exists a canonical choice of |φ〉. The corresponding code satisfies 90 out of the 105
KL conditions for d = 3.)
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Code with universal set of transversal gates?

I The same construction works for G = SU(2).

I Eastin-Knill theorem: a code of distance > 1 has a finite set of transvsersal gates

I For bosonic codes, each irrep of SU(2) has multiplicity 1

=⇒ there’s a single code, and this is the dual-rail encoding

I what about multiqubit codes?

I multiplicity of 2-dim irrep in tensor product representation is very large!

n = 1 =⇒ M = 1, n = 3 =⇒ M = 2, n = 5 =⇒ M = 5

n = 7 =⇒ M = 14, n = 2p + 1 =⇒ M ≈ 2n

√
2πn

I the multiplicity isn’t sufficient to say that a code with good distance exists

I U = Schur transform

I the error
∑

i Pi acts trivially on the multiplicity space
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Summary

I general formalism to design “codes” with specific physical representation of logical gates

I recovers the standard bosonic codes (GKP, cat codes) without fine tuning

I new multimode bosonic codes with reasonably nice universal gate set

I for qubit codes: can recover the standard (small) codes, but if you know where to look

I very general: qudits, oscillators, rotors for both logical and physical systems

Many questions

I is this formalism a curiosity or can it be useful?

I how to find the codes with good parameters?

I logical state preparation? error correction?

Thanks!
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