Bosonic (and other) codes with interesting gate sets

Anthony Leverrier
Inria

Advances in Quantum Coding

16 February 2024
únáa

Multimode bosonic cat codes with an easily implementable universal gate set Aurélie Denys, Anthony Leverrier

A natural problem

- logical group $\mathrm{G} \subseteq \mathrm{SU}(\mathrm{d})$
e.g., single-qubit Clifford group
- nice physical representation $\mathrm{g} \mapsto \rho(\mathrm{g})$
e.g., Gaussian unitaries, transversal gates $\rho(\mathrm{g})=\mathrm{g}^{\otimes \mathrm{n}}$
- design a code where logical g is implemented with $\rho(\mathrm{g})$?

If you don't care about bosonic codes, you can think about this for the next 10 minutes.

Story of the result

11 initial idea: design multimode bosonic cat codes

- didn't really work, but found a somewhat okay 2-mode bosonic qutrit arXiv:2210.16188 [pdf, other]

The $2 T$-qutrit, a two-mode bosonic qutrit
Aurélie Denys, Anthony Leverrier
Comments: 24 pages, python code available at this https URL, v3 published version
Journal-ref: Quantum 7, 1032 (2023)

- inspired a very comprehensive generalization
arXiv:2302.11593 [pdf, other] quant-ph cond-mat.mes-hall cs.IT math.MG
Quantum spherical codes
Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates
3 extension to arbitrary (non-bosonic) codes

Outline

11 initial idea: design multimode bosonic cat codes

- didn't really work, but found a somewhat okay 2-mode bosonic qutrit arXiv:2210.16188 [pdf, other]

The $2 T$-qutrit, a two-mode bosonic qutrit
Aurélie Denys, Anthony Leverrier
Comments: 24 pages, python code available at this https URL, v3 published version
Journal-ref: Quantum 7, 1032 (2023)

- inspired a very comprehensive generalization
arXiv:2302.11593 [pdf, other] quant-ph cond-mat.mes-hall cs.IT math.MG
Quantum spherical codes
Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates
3 extension to arbitrary (non-bosonic) codes

The most-studied bosonic codes are single-mode

- cat code, GKP, binomial code

Code fingerprint: Wigner function of $\frac{1}{2}(|\overline{0}\rangle\langle\overline{0}|+|\overline{1}\rangle\langle\overline{1}|)$

V. Albert et al, PRA 2019
not clear whether there are any other super smart single-mode bosonic codes to be found
what about multimode bosonic codes? They should give better performance...

Codewords chosen as superpositions of coherent states

Natural choices of constellations: additive vs multiplicative group structure

- lattice (square, hexagonal...) in phase-space of dimension 2 m
$\Longrightarrow \mathrm{m}$-mode GKP code
- roots of unity in 2D \Longrightarrow cat codes
\rightarrow pick a nice constellation of size N in \mathbb{C}^{2} (for 2-mode codes)
$\Rightarrow \mathrm{N}$-dimensional I Trilbert space
- tricky part: find a good qubit/qudit in that space

Codewords chosen as superpositions of coherent states

Natural choices of constellations: additive vs multiplicative group structure

- lattice (square, hexagonal...) in phase-space of dimension 2 m $\Longrightarrow \mathrm{m}$-mode GKP code
- roots of unity in 2D \Longrightarrow cat codes

strategy

- pick a nice constellation of size N in \mathbb{C}^{2} (for 2-mode codes)
$\Longrightarrow \mathrm{N}$-dimensional Hilbert space
- tricky part: find a good qubit/qudit in that space

1st try: 2-mode generalization of cat codes

arXiv:2210.16188 [pdf, other]
The $2 T$-qutrit, a two-mode bosonic qutrit
Aurélie Denys, Anthony Leverrier
Comments: 24 pages, python code available at this https URL, v3 published version
Journal-ref: Quantum 7, 1032 (2023)

- constellation: 24 coherent states $\left|\alpha \mathrm{a}_{\ell}\right\rangle\left|\alpha \mathrm{b}_{\ell}\right\rangle$ where $\mathrm{a}_{\ell}, \mathrm{b}_{\ell} \in \mathbb{C}$ and $\left\{\mathrm{a}_{\ell}+\mathrm{j} \mathrm{b}_{\ell}\right\}$ form the binary tetrahedral group 2T (Pauli + Hadamard)
- it defines a 24 -dim subspace of the 2 -mode Fock space
- how to find a good code (qubit or qudit)?
- numerical optimization of encoding/decoding doesn't lead anywhere
- in the end, we defined a qutrit with nice symmetry properties \Longrightarrow 2T-qutrit

Fidelity of entanglement vs random codes

Performance for pure-loss channel, with loss parameter γ

(a) $\gamma=0.1$

(b) $\gamma=0.01$

(c) $\gamma=0.005$

- iterative numerical optimization (SDP) of decoding and encoding
- 2T-qutrit $=$ fixed point \Longrightarrow local optimum
- pretty competitive for low loss

Fidelity of entanglement vs single-mode cat qutrits

(a) $\gamma=0.1$

(b) $\gamma=0.01$

- free parameter of the code: amplitude $\alpha>0$ of the coherent states
- sweet spot for specific value
- again pretty competitive for low loss
- additional feature: some nice logical gates (thanks to group structure)

Generalization: quantum spherical codes

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2 T -qutrit with better performance against loss \Longrightarrow a bit depressing orens
- but the set of nice logical operations is a bit larger for the 2T-qutrit
new question: can we design bosonic codes with nice logical gate sets? answer: YFS! with a nice svstematic construction

Generalization: quantum spherical codes

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2 T -qutrit with better performance against loss \Longrightarrow a bit depressing
- but the set of nice logical operations is a bit larger for the 2T-qutrit
new question: can we design bosonic codes with nice logical gate sets? answer: YFS! with a nice svstematic construction

Generalization: quantum spherical codes

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2 T -qutrit with better performance against loss \Longrightarrow a bit depressing
- but the set of nice logical operations is a bit larger for the 2T-qutrit
new question: can we design bosonic codes with nice logical gate sets?

Generalization: quantum spherical codes

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2 T -qutrit with better performance against loss \Longrightarrow a bit depressing
- but the set of nice logical operations is a bit larger for the 2T-qutrit
new question: can we design bosonic codes with nice logical gate sets? answer: YES! with a nice systematic construction

Outline

11 initial idea: design multimode bosonic cat codes

- didn't really work, but found a somewhat okay 2-mode bosonic qutrit arxiv:2210.16188 [pdf, other]
The $2 T$-qutrit, a two-mode bosonic qutrit
Aurélie Denys, Anthony Leverrier
Comments: 24 pages, python code available at this https URL, v3 published version
Journal-ref: Quantum 7, 1032 (2023)
- inspired a very comprehensive generalization
arXiv:2302.11593 [pdf, other] quant-ph cond-mat.mes-hall cs.IT math.MG
Quantum spherical codes
Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates
3 extension to arbitrary (non-bosonic) codes

General idea

Standard strategy for designing quantum codes

1 find a code with good parameters (rate, distance)
2 understand how to perform gate fault-tolerantly
our appproach

- find a code family with nice logical gate set (easy)

2 optimize code distance / tolerance to noise (less easy?)

General idea

Standard strategy for designing quantum codes

1 find a code with good parameters (rate, distance)
2 understand how to perform gate fault-tolerantly

our appproach

1 find a code family with nice logical gate set (easy)
2 optimize code distance / tolerance to noise (less easy?)

Codes with nice logical gates

input

- group of logical gates $\mathrm{G} \subseteq \mathrm{SU}(2)$ (for a single logical qubit)
- nice physical representation on physical Hibert space: $\rho: \mathrm{g} \in \mathrm{G} \mapsto \rho(\mathrm{g})$
output: encoding: $\mathcal{E}: \mathbb{C}^{2} \rightarrow \mathcal{H}_{\mathrm{P}}$ such that

$$
\mathcal{E}(\mathrm{g}|\psi\rangle)=\rho(\mathrm{g}) \mathcal{E}(|\psi\rangle)
$$

- this is always possible! Simple general construction
- main open question: how to get protection against noise

Previous work on this question (apologies to missing references!)

- encoding qubits in spins
arXiv:2005.10910 [pdf, other] quant-ph doi 10.1103/PhysRevLett.127.010504
Encoding a qubit in a spin
Authors: Jonathan A. Gross

arXiv:2304.08611 [pdf, ps, other] quant-ph doi 10.1103/PhysReva. 108.022424

Multispin Clifford codes for angular momentum errors in spin systems Authors: Sivaprasad Omanakuttan, Jonathan A. Gross

- qubit codes with transversal gates
arXiv:2305.07023 [pdf, other] quant-ph doi 10.1103/PhysRevLett.131.240601
A Family of Quantum Codes with Exotic Transversal Gates
Authors: Eric Kubischta, Ian Teixeira

arXiv:2310.17652 [pdf, other] quant-ph

The Not-So-Secret Fourth Parameter of Quantum Codes
Authors: Eric Kubischta, Ian Teixeira

```
arXiv:2402.01638 [pdf, ps, other] quant-ph
```

Free Quantum Codes from Twisted Unitary t-groups
Authors: Eric Kubischta, Ian Teixeira

- codes with continuous symmetries
arXiv:1902.07725 [pdf, other] quant-ph math-ph doi 10.22331/q-2020-03-23-245
Continuous groups of transversal gates for quantum error correcting codes from finite clock arXiv:1902.07714 [pdf, other] quant-ph cond-mat.stat-mech hep-th doi 10.1103/PhysRevx. 10.041018
reference frames
Continuous symmetries and approximate quantum error correction
Authors: Mischa P. Woods, Álvaro M. Alhambra

General recipe

- group of logical gates $\mathrm{G} \subseteq \mathrm{SU}(\mathrm{d})$
- nice physical representation ρ on physical space \mathcal{H}_{P}
- pick any logical state $|\Sigma\rangle \in \mathbb{C}^{\mathrm{d}}$ and any physical state $|\Phi\rangle \in \mathcal{H}_{\mathrm{P}}$ (e.g. vacuum state)

Encoding map

$$
\begin{aligned}
\mathcal{E}: \mathbb{C}^{\mathrm{d}} & \rightarrow \mathcal{H}_{\mathrm{P}} \\
|\psi\rangle & \mapsto \frac{\mathrm{d}}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}}\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle \rho(\mathrm{g})|\Phi\rangle
\end{aligned}
$$

slightly more general (useful for GKP, cat qudits):

- arbitrary group G
\Rightarrow d-dim representation ρ_{L} : replace $\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle$ by $\langle\Sigma| \rho_{\mathrm{L}}(\mathrm{g})^{\dagger}|\psi\rangle$
- need a bit of care if ρ_{L} is not irreducible

General recipe

- group of logical gates $\mathrm{G} \subseteq \mathrm{SU}(\mathrm{d})$
- nice physical representation ρ on physical space \mathcal{H}_{P}
- pick any logical state $|\Sigma\rangle \in \mathbb{C}^{\mathrm{d}}$ and any physical state $|\Phi\rangle \in \mathcal{H}_{\mathrm{P}}$ (e.g. vacuum state)

Encoding map

$$
\begin{aligned}
\mathcal{E}: \mathbb{C}^{\mathrm{d}} & \rightarrow \mathcal{H}_{\mathrm{P}} \\
|\psi\rangle & \mapsto \frac{\mathrm{d}}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}}\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle \rho(\mathrm{g})|\Phi\rangle
\end{aligned}
$$

slightly more general (useful for GKP, cat qudits):

- arbitrary group G
- d-dim representation ρ_{L} : replace $\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle$ by $\langle\Sigma| \rho_{\mathrm{L}}(\mathrm{g})^{\dagger}|\psi\rangle$
- need a bit of care if ρ_{L} is not irreducible

Elementary facts of representation theory

Representation \cong sum of irreducible representations

$$
\rho(\mathrm{g})=\mathrm{U}\left(\bigoplus_{\mathrm{i}} \rho_{\mathrm{i}}(\mathrm{~g}) \otimes \mathbb{1}_{\mathrm{M}_{\mathrm{i}}}\right) \mathrm{U}^{\dagger}
$$

- ρ_{i} : irreducible representations of G
- M_{i} : multiplicity of ρ_{i} in $\rho(\mathrm{g})$

Orthogonality of irreps

Projector onto (isotypic component) of ρ
$\Pi=\frac{2}{|\mathrm{G}|} \sum_{\mathrm{g}} \operatorname{tr}\left(\mathrm{g}^{\dagger}\right) \otimes \rho(\mathrm{g})$

Elementary facts of representation theory

Representation \cong sum of irreducible representations

$$
\rho(\mathrm{g})=\mathrm{U}\left(\bigoplus_{\mathrm{i}} \rho_{\mathrm{i}}(\mathrm{~g}) \otimes \mathbb{1}_{\mathrm{M}_{\mathrm{i}}}\right) \mathrm{U}^{\dagger}
$$

- ρ_{i} : irreducible representations of G
- M_{i} : multiplicity of ρ_{i} in $\rho(\mathrm{g})$

Orthogonality of irreps

$$
\frac{\mathrm{d}}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}} \rho_{\mathrm{i}}(\mathrm{~g})^{\dagger} \otimes \rho_{\mathrm{j}}(\mathrm{~g})= \begin{cases}0 & \text { if } \mathrm{i} \neq \mathrm{j} \\ \sum_{\mathrm{p}, \mathrm{q}=0}^{\mathrm{d}-1}|\mathrm{p}\rangle\langle\mathrm{q}| \otimes|\mathrm{q}\rangle\langle\mathrm{p}|=\text { SWAP } & \text { if } \mathrm{i}=\mathrm{j}\end{cases}
$$

Elementary facts of representation theory

Representation \cong sum of irreducible representations

$$
\rho(\mathrm{g})=\mathrm{U}\left(\bigoplus_{\mathrm{i}} \rho_{\mathrm{i}}(\mathrm{~g}) \otimes \mathbb{1}_{\mathrm{M}_{\mathrm{i}}}\right) \mathrm{U}^{\dagger}
$$

- ρ_{i} : irreducible representations of G
- M_{i} : multiplicity of ρ_{i} in $\rho(\mathrm{g})$

Orthogonality of irreps

$$
\frac{\mathrm{d}}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}} \rho_{\mathrm{i}}(\mathrm{~g})^{\dagger} \otimes \rho_{\mathrm{j}}(\mathrm{~g})= \begin{cases}0 & \text { if } \mathrm{i} \neq \mathrm{j} \\ \sum_{\mathrm{p}, \mathrm{q}=0}^{\mathrm{d}-1}|\mathrm{p}\rangle\langle\mathrm{q}| \otimes|\mathrm{q}\rangle\langle\mathrm{p}|=\operatorname{SWAP} & \text { if } \mathrm{i}=\mathrm{j}\end{cases}
$$

Projector onto (isotypic component) of ρ_{i}

$$
\Pi=\frac{2}{|G|} \sum_{\mathrm{g}} \operatorname{tr}\left(\mathrm{~g}^{\dagger}\right) \otimes \rho(\mathrm{g})
$$

Rewriting the encoding map

$$
\begin{aligned}
\mathcal{E}(|\psi\rangle) & =\frac{\mathrm{d}}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}}\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle \rho(\mathrm{g})|\Phi\rangle \\
\Pi & =\frac{2}{|\mathrm{G}|} \sum_{\mathrm{g}} \operatorname{tr}\left(\mathrm{~g}^{\dagger}\right) \otimes \rho(\mathrm{g}) \quad
\end{aligned} \quad \text { projector onto isotypic component } \quad \text { (g) }
$$

Rewriting the encoding map

$$
\begin{aligned}
& \mathcal{E}(|\psi\rangle)=\frac{\mathrm{d}}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}}\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle \rho(\mathrm{g})|\Phi\rangle \quad \rho(\mathrm{g})=\mathrm{U}\left(\bigoplus_{\mathrm{i}} \rho_{\mathrm{i}}(\mathrm{~g}) \otimes \mathbb{1}_{\mathrm{M}_{\mathrm{i}}}\right) \mathrm{U}^{\dagger} \\
& \Pi=\frac{2}{|\mathrm{G}|} \sum_{\mathrm{g}} \operatorname{tr}\left(\mathrm{~g}^{\dagger}\right) \otimes \rho(\mathrm{g}) \quad \text { projector onto isotypic component }
\end{aligned}
$$

Rewriting the encoding map

$$
\begin{aligned}
\mathcal{E}(|\psi\rangle) & =\frac{\mathrm{d}}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}}\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle \rho(\mathrm{g})|\Phi\rangle \\
\Pi & =\frac{2}{|\mathrm{G}|} \sum_{\mathrm{g}} \operatorname{tr}\left(\mathrm{~g}^{\dagger}\right) \otimes \rho(\mathrm{g}) \quad
\end{aligned} \quad \text { projector onto isotypic component } \quad \text { (g) }
$$

Proof of covariance

$$
\rho(\mathrm{g}) \Pi=\mathrm{U}\left(\mathrm{~g} \otimes \mathbb{1}_{\mathrm{M}}\right) \mathrm{U}^{\dagger}
$$

$$
\mathcal{E}(\mathrm{g}|\psi\rangle)=\rho(\mathrm{g}) \mathcal{E}(|\psi\rangle)
$$

Proof of covariance

$$
\rho(\mathrm{g}) \Pi=\mathrm{U}\left(\mathrm{~g} \otimes \mathbb{1}_{\mathrm{M}}\right) \mathrm{U}^{\dagger}
$$

$$
\mathcal{E}(\mathrm{g}|\psi\rangle)=\rho(\mathrm{g}) \mathcal{E}(|\psi\rangle)
$$

Proof of covariance

$$
\rho(\mathrm{g}) \Pi=\mathrm{U}\left(\mathrm{~g} \otimes \mathbb{1}_{\mathrm{M}}\right) \mathrm{U}^{\dagger}
$$

Alternative encoding map

Alternative encoding map

A code for any $|\phi\rangle \in \mathcal{M}$:

$$
\mathcal{E}_{\phi}(|\psi\rangle)=\mathrm{U}|\psi\rangle|\phi\rangle
$$

Alternative encoding map

A code for any $|\phi\rangle \in \mathcal{M}$:

$$
\mathcal{E}_{\phi}(|\psi\rangle)=\mathrm{U}|\psi\rangle|\phi\rangle
$$

$\mathrm{U}: \mathbb{C}^{\mathrm{d}} \otimes \mathcal{M} \rightarrow \mathcal{H}_{\mathrm{P}}$ isometry, given by G and ρ

Alternative encoding map

A code for any $|\phi\rangle \in \mathcal{M}$:

$$
\mathcal{E}_{\phi}(|\psi\rangle)=\mathrm{U}|\psi\rangle|\phi\rangle
$$

$\mathrm{U}: \mathbb{C}^{\mathrm{d}} \otimes \mathcal{M} \rightarrow \mathcal{H}_{\mathrm{P}}$ isometry, given by G and ρ
challenge: find the states $|\phi\rangle$ that give good protection against noise

Application to bosonic codes

The case of bosonic codes

Pick

- $|\Phi\rangle=|\vec{\alpha}\rangle$ a coherent state
- $\rho(\mathrm{g})$ Gaussian unitary: $\rho(\mathrm{g})|\vec{\alpha}\rangle=|\mathrm{g} \vec{\alpha}\rangle$

$$
\mathcal{E}(|\psi\rangle)=\frac{2}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}}\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle|\mathrm{g} \vec{\alpha}\rangle
$$

is a superposition of coherent states.
\Longrightarrow generalization of quantum spherical codes, but with nice gate sets.
one can recover the usual suspects:

- GKP. Pauli oroun and disnlacements
$>$ cat codes: $\left\langle\sigma_{\mathrm{X}}\right\rangle$ and dephasing
and define new codes: for $\mathrm{G}=$ Pauli or Clifford group

The case of bosonic codes

Pick

- $|\Phi\rangle=|\vec{\alpha}\rangle$ a coherent state
- $\rho(\mathrm{g})$ Gaussian unitary: $\rho(\mathrm{g})|\vec{\alpha}\rangle=|\mathrm{g} \vec{\alpha}\rangle$

$$
\mathcal{E}(|\psi\rangle)=\frac{2}{|\mathrm{G}|} \sum_{\mathrm{g} \in \mathrm{G}}\langle\Sigma| \mathrm{g}^{\dagger}|\psi\rangle|\operatorname{g} \vec{\alpha}\rangle
$$

is a superposition of coherent states.
\Longrightarrow generalization of quantum spherical codes, but with nice gate sets.
one can recover the usual suspects:

- GKP: Pauli group and displacements
- cat codes: $\left\langle\sigma_{\mathrm{X}}\right\rangle$ and dephasing
and define new codes: for $\mathrm{G}=$ Pauli or Clifford group

Example 1: the GKP code

- encode a qubit in single-mode Fock space
- physical representation displacement operators:

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{P}}=\langle\mathrm{D}(\alpha), \mathrm{D}(\beta)\rangle \text { with } \mathrm{D}(\alpha)=\mathrm{e}^{\alpha^{*} \mathrm{a}^{\dagger}-\alpha \mathrm{a}} \\
& \qquad \mathrm{D}(\alpha) \mathrm{D}(\beta)=-\mathrm{D}(\beta) \mathrm{D}(\alpha) \quad \text { if } \quad \beta \alpha^{*}-\beta^{*} \alpha=\mathrm{i} \pi
\end{aligned}
$$

standard square GKP lattice: $\alpha=\sqrt{\frac{\pi}{2}}, \beta=\mathrm{i} \sqrt{\frac{\pi}{2}}$

- logical representation $\rho_{\mathrm{L}}(\mathrm{D}(\alpha))=\sigma_{\mathrm{X}}, \rho_{\mathrm{L}}(\mathrm{D}(\beta))=\sigma_{\mathrm{Z}} \quad \Longrightarrow \quad$ Pauli group
- pick $|\Sigma\rangle=|0\rangle \in \mathbb{C}^{2}, \quad|\Phi\rangle=|0\rangle \in \mathcal{H}_{\mathrm{P}}$ (vacuum state)

Example 1: the GKP code

Let's compute

$$
|\overline{0}\rangle \propto \sum_{\mathrm{g} \in \mathrm{G}_{\mathrm{P}}}\langle 0| \rho_{\mathrm{L}}(\mathrm{~g})^{\dagger}|0\rangle \mathrm{g}|0\rangle
$$

The only nonzero coefficients $\langle 0| \rho_{\mathrm{L}}(\mathrm{g})^{\dagger}|0\rangle \neq 0$ are for $\rho_{\mathrm{L}}(\mathrm{g}) \in\left\{ \pm \mathbb{1}, \pm \sigma_{\mathrm{Z}}\right\}$:
i.e. $g=D(2 p \alpha) D(q \beta)=(-1)^{p q} D(2 p \alpha+q \beta)$ with $p, q \in \mathbb{Z}$

$$
\begin{aligned}
|\overline{0}\rangle & \left.\left.\propto \sum_{\mathrm{p}, \mathrm{q} \in \mathbb{Z}}(-1)^{\mathrm{pq}} \mid 2 \mathrm{p} \alpha+\mathrm{q} \beta\right)\right\rangle \\
|\overline{1}\rangle & \propto \rho\left(\sigma_{\mathrm{X}}\right)|\overline{1}\rangle \\
& \propto \mathrm{D}(\alpha)|\overline{0}\rangle \\
& \propto \sum_{\mathrm{p}, \mathrm{q} \in \mathbb{Z}}(-1)^{\mathrm{pq}}(-\mathrm{i})^{\mathrm{q}}|(2 \mathrm{p}+1) \alpha+\beta \mathrm{q}\rangle
\end{aligned}
$$

Example 2: the 2N-legged cat qubit

- $\mathrm{G}=\left\langle\mathrm{e}^{\mathrm{i} \pi / \mathrm{N}}\right\rangle$, cyclic group of order 2 N
- logical representation $\rho_{\mathrm{L}}\left(\mathrm{e}^{\mathrm{i} \pi / \mathrm{N}}\right)=\sigma_{\mathrm{X}}$
- physical representation with dephasing: $\rho\left(\mathrm{e}^{\mathrm{i} \pi / \mathrm{N}}\right)=\mathrm{e}^{\mathrm{i} \pi \hat{\mathrm{n}} / \mathrm{N}}$
- pick $|\Sigma\rangle=|0\rangle \in \mathbb{C}^{2}, \quad|\Phi\rangle=|\alpha\rangle \in \mathcal{H}_{\mathrm{P}}$ (arbitrary coherent state)

$$
\begin{aligned}
|\overline{0}\rangle & \propto \sum_{\mathrm{g} \in \mathrm{G}_{\mathrm{P}}}\langle 0| \rho_{\mathrm{L}}(\mathrm{~g})^{\dagger}|0\rangle \rho(\mathrm{g})|\alpha\rangle \propto \sum_{\mathrm{k}=0}^{2 \mathrm{~N}-1} \delta_{\mathrm{k}, \mathrm{even}} \mathrm{e}^{\mathrm{ki} \pi \hat{\mathrm{n}} / \mathrm{N}}|\alpha\rangle \\
& \propto \sum_{\mathrm{k}=0}^{\mathrm{N}-1}\left|\mathrm{e}^{2 \pi \mathrm{ik} / \mathrm{N}} \alpha\right\rangle \\
|\overline{1}\rangle & =\rho\left(\mathrm{e}^{\mathrm{i} \pi / \mathrm{N}}\right)|\overline{0}\rangle \propto \sum_{\mathrm{k}=0}^{\mathrm{N}-1}\left|\mathrm{e}^{\pi \mathrm{i}(2 \mathrm{k}+1) \mathrm{k} / \mathrm{N}} \alpha\right\rangle
\end{aligned}
$$

\Longrightarrow this is the cat qubit

New code 1: $\mathrm{G}=$ Pauli group with Gaussian unitaries

- logical group: $\mathrm{G}_{\mathrm{L}}=\left\langle\sigma_{\mathrm{X}}, \sigma_{\mathrm{Z}}\right\rangle$
- \mathcal{H}_{P} : 2-mode Fock space
- physical representation: Gaussian unitary (beamsplitters and phase-shifts)

$$
\left.\rho\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right):|\alpha\rangle \beta\right\rangle \mapsto|\mathrm{a} \alpha+\mathrm{b} \beta\rangle|\mathrm{c} \alpha+\mathrm{d} \beta\rangle
$$

- pick $|\Sigma\rangle=|0\rangle \in \mathbb{C}^{2}, \quad|\Phi\rangle=|\alpha\rangle|\beta\rangle \in \mathcal{H}_{\mathrm{P}}$ (arbitrary coherent state)

$$
\begin{aligned}
|\overline{0}\rangle & \propto\left|\mathrm{c}_{1}(\alpha)\right\rangle\left|\mathrm{c}_{0}(\beta)\right\rangle \\
|\overline{1}\rangle & \propto\left|\mathrm{c}_{0}(\beta)\right\rangle\left|\mathrm{c}_{1}(\alpha)\right\rangle
\end{aligned}
$$

with $\left|\mathrm{c}_{0}(\alpha)\right\rangle=|\alpha\rangle+|-\alpha\rangle, \quad\left|\mathrm{c}_{1}(\alpha)\right\rangle=|\alpha\rangle-|-\alpha\rangle$

- recover the dual-rail encoding in the limit $\alpha \rightarrow 0$:

$$
\text { a single photon in } 2 \text { modes: } \quad|\overline{0}\rangle=|1\rangle|0\rangle, \quad|\overline{1}\rangle=|0\rangle|1\rangle
$$

New code 1: $\mathrm{G}=$ Pauli group with Gaussian unitaries

entanglement infidelity for pure-loss channel $\gamma=10^{-2}$ dual-rail encoding: $\alpha=0$
\Longrightarrow need to optimize the initial state $|\Phi\rangle \in \mathcal{H}_{\mathrm{P}}$ (maximize the distance between the points of the constellation, same as for quantum spherical codes)

More interesting code: $\mathrm{G}=$ single-qubit Clifford group

- 2 O group: binary octahedral group (aka single-qubit Clifford group)

$$
\begin{gathered}
2 \mathrm{O}=\langle\mathrm{S}, \mathrm{H}\rangle, \quad|2 \mathrm{O}|=48 \\
\mathrm{~S}=\left[\begin{array}{cc}
\eta & 0 \\
0 & \eta^{-1}
\end{array}\right], \quad \mathrm{H}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\eta & \eta \\
-\eta^{-1} & \eta^{-1}
\end{array}\right] \in \mathrm{SU}(2) \\
\rho\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c}
\end{array}\right):|\alpha\rangle|\beta\rangle
\end{gathered}
$$

$\Longrightarrow|\overline{0}\rangle,|\overline{1}\rangle$: superpositions of 40 coherent states in 2 modes

- "relatively" easy to get a universal gate set with quartic Hamiltonians*

$$
\overline{\mathrm{T}}=\exp \left(\mathrm{i} \frac{\pi}{16}\left(\hat{\mathrm{n}}_{1}-\hat{\mathrm{n}}_{2}-1\right)^{2}\right), \quad \overline{\mathrm{CZ}}=\exp \left(\mathrm{i} \frac{\pi}{4}\left(\hat{\mathrm{n}}_{1}-\hat{\mathrm{n}}_{2}-1\right)\left(\hat{\mathrm{n}}_{3}-\hat{\mathrm{n}}_{4}-1\right)\right)
$$

- measurement in $\{|\overline{0}\rangle,|\overline{1}\rangle\}$ basis is easy
- state preparation and error correction??
${ }^{(*)}$) similar to CROT. e.g. rotation-symmetric bosonic codes (Grimsmo, Combes, Baragiola)

Outline

11 initial idea: design multimode bosonic cat codes

- didn't really work, but found a somewhat okay 2-mode bosonic qutrit arxiv:2210.16188 [pdf, other]
The $2 T$-qutrit, a two-mode bosonic qutrit
Aurélie Denys, Anthony Leverrier
Comments: 24 pages, python code available at this https URL, v3 published version
Journal-ref: Quantum 7, 1032 (2023)
- inspired a very comprehensive generalization
arXiv:2302.11593 [pdf, other] quant-ph cond-mat.mes-hall cs.IT math.MG
Quantum spherical codes
Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates
3 extension to arbitrary (non-bosonic) codes

Beyond bosonic codes

The construction is very general:

$$
\mathcal{H}_{\mathrm{L}}=\mathbb{C}^{\mathrm{d}}, \quad \mathcal{H}_{\mathrm{P}}=\left(\mathbb{C}^{\mathrm{d}^{\prime}}\right)^{\otimes \mathrm{n}}
$$

Natural choices for the physical representation $\rho(\mathrm{g})$:

- transversal gates $\rho(\mathrm{g})=\mathrm{g}^{\otimes \mathrm{n}}$
- $\rho(\mathrm{g})=\left(\mathrm{g}^{\dagger}\right)^{\otimes \mathrm{n}}$
- $\rho(\mathrm{g})=\mathrm{g}^{\otimes \mathrm{p}} \otimes\left(\mathrm{g}^{\dagger}\right)^{\otimes(\mathrm{n}-\mathrm{p})}$

Codes $\llbracket n, k \rrbracket$ with $G=$ Pauli group and physical Pauli gates

$$
\begin{gathered}
\mathrm{G}=\mathcal{P}_{\mathrm{k}} \quad \text { and } \quad \begin{array}{c}
\rho(\mathrm{g}) \in \mathcal{P}_{\mathrm{n}} \\
\left|\mathcal{P}_{\mathrm{k}}\right|
\end{array}=2 \times 4^{\mathrm{k}} \quad(\text { only } \pm 1 \text { phases })
\end{gathered}
$$

$$
\text { Projector onto the irrep: } \quad \begin{aligned}
\Pi & =\frac{2^{\mathrm{k}}}{|\mathrm{G}|} \sum_{\mathrm{g}} \operatorname{tr}\left(\mathrm{~g}^{\dagger}\right) \rho(\mathrm{g}) \\
& =\frac{2^{\mathrm{k}}}{2 \times 4^{\mathrm{k}}} \sum_{\mathrm{g} \in\{ \pm \mathbb{1}\}} \operatorname{tr}\left(\mathrm{g}^{\dagger}\right) \rho(\mathrm{g}) \\
& =\frac{2^{\mathrm{k}}}{2 \times 4^{\mathrm{k}}} \times\left(2 \times 2^{\mathrm{k}} \mathbb{1}\right)=\mathbb{1}
\end{aligned}
$$

- multiplicity space of maximal dimension
- unitary U : $\left(\mathbb{C}^{2}\right)^{\otimes \mathrm{k}} \otimes\left(\mathbb{C}^{2}\right)^{\otimes(\mathrm{n}-\mathrm{k})} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes \mathrm{n}}$ can be chosen Clifford
- recover stabilizer codes: $|\psi\rangle \mapsto \mathrm{U}|\psi\rangle|0\rangle^{\otimes(\mathrm{n}-\mathrm{k})}$

Code 【5, 1】 with transversal 2 T

- 2T group: binary tetrahedral group, $2 \mathrm{~T}=\langle\mathrm{Z}, \mathrm{H}\rangle=$ (Paulis + Hadamard $), \quad|2 \mathrm{~T}|=24$
- 3 irreps of dimension 2: $\rho_{4}, \rho_{4}^{*}, \rho_{5}$
- pick $\rho_{\mathrm{L}}=\rho_{5}: \quad \rho_{5}(\mathrm{Z})=\left[\begin{array}{cc}\mathrm{i} & 0 \\ 0 & -\mathrm{i}\end{array}\right], \quad \rho_{5}(\mathrm{H})=\frac{\mathrm{e}^{\mathrm{i} \pi / 4}}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ \mathrm{i} & -\mathrm{i}\end{array}\right]$
- $\rho(\mathrm{g})=\rho_{5}(\mathrm{~g})^{\otimes 5}$
- easy to compute that:

$$
\begin{gathered}
\rho=\rho_{4}^{\oplus 5} \oplus \rho_{4}^{* \oplus 5} \oplus \rho_{5}^{\oplus 6} \\
\mathrm{U}: \mathbb{C}^{2} \otimes \mathbb{C}^{6} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes 5}
\end{gathered}
$$

- can find $|\phi\rangle \in \mathbb{C}^{6}$ such that

$$
\operatorname{span}(\mathrm{U}|0\rangle|\phi\rangle, \mathrm{U}|1\rangle|\phi\rangle)=\llbracket 5,1,3 \rrbracket
$$

Recover the 5-qubit code, but need to choose $|\phi\rangle$ carefully.

Code 【5, 1】 with transversal 2 T

- 2T group: binary tetrahedral group, $2 \mathrm{~T}=\langle\mathrm{Z}, \mathrm{H}\rangle=$ (Paulis + Hadamard $), \quad|2 \mathrm{~T}|=24$
- 3 irreps of dimension 2: $\rho_{4}, \rho_{4}^{*}, \rho_{5}$
\Rightarrow pick $\rho_{\mathrm{L}}=\rho_{5}: \quad \rho_{5}(\mathrm{Z})=\left[\begin{array}{cc}\mathrm{i} & 0 \\ 0 & -\mathrm{i}\end{array}\right], \quad \rho_{5}(\mathrm{H})=\frac{\mathrm{e}^{\mathrm{i} \pi / 4}}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ \mathrm{i} & -\mathrm{i}\end{array}\right]$
- $\rho(\mathrm{g})=\rho_{5}(\mathrm{~g})^{\otimes 5}$
- easy to compute that:

$$
\begin{gathered}
\rho=\rho_{4}^{\oplus 5} \oplus \rho_{4}^{* \oplus 5} \oplus \rho_{5}^{\oplus 6} \\
\mathrm{U}: \mathbb{C}^{2} \otimes \mathbb{C}^{6} \rightarrow\left(\mathbb{C}^{2}\right)^{\otimes 5}
\end{gathered}
$$

- can find $|\phi\rangle \in \mathbb{C}^{6}$ such that

$$
\operatorname{span}(\mathrm{U}|0\rangle|\phi\rangle, \mathrm{U}|1\rangle|\phi\rangle)=\llbracket 5,1,3 \rrbracket
$$

Recover the 5-qubit code, but need to choose $|\phi\rangle$ carefully.

Code $\llbracket 7,1 \rrbracket$ with transversal Clifford group

2 O group: binary octahedral group (aka single-qubit Clifford group)

$$
\begin{gathered}
2 \mathrm{O}=\langle\mathrm{S}, \mathrm{H}\rangle, \quad|2 \mathrm{O}|=48 \\
\rho_{7}(\mathrm{~S})=\left[\begin{array}{cc}
\eta & 0 \\
0 & \eta^{-1}
\end{array}\right], \quad \rho_{7}(\mathrm{H})=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\eta & \eta \\
-\eta^{-1} & \eta^{-1}
\end{array}\right] \\
\rho_{\mathrm{L}}=\rho_{7} \quad \rho_{7}^{\otimes 7}=\rho_{6}^{\oplus 7} \oplus \rho_{7}^{\oplus 15} \oplus \rho_{8}^{\oplus 21}
\end{gathered}
$$

ρ_{6}, ρ_{7} : dimension $2, \rho_{8}$: dimension 8

$$
\begin{array}{lll}
\rho(\mathrm{g})=\rho_{7}(\mathrm{~g})^{\dagger \otimes 7} & \Longrightarrow & \text { standard Steane code } \quad \llbracket 7,1,3 \rrbracket \\
\rho(\mathrm{~g})=\rho_{7}(\mathrm{~g})^{\otimes 7} & \Longrightarrow & \text { Steane code with different labeling of the logical states }
\end{array}
$$

again, the state in the multiplicity space \mathbb{C}^{15} should be chosen with care

Code $\llbracket 7,1 \rrbracket$ with transversal Clifford group

2 O group: binary octahedral group (aka single-qubit Clifford group)

$$
\begin{gathered}
2 \mathrm{O}=\langle\mathrm{S}, \mathrm{H}\rangle, \quad|2 \mathrm{O}|=48 \\
\rho_{7}(\mathrm{~S})=\left[\begin{array}{cc}
\eta & 0 \\
0 & \eta^{-1}
\end{array}\right], \quad \rho_{7}(\mathrm{H})=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\eta & \eta \\
-\eta^{-1} & \eta^{-1}
\end{array}\right] \\
\rho_{\mathrm{L}}=\rho_{7} \quad \rho_{7}^{\otimes 7}=\rho_{6}^{\oplus 7} \oplus \rho_{7}^{\oplus 15} \oplus \rho_{8}^{\oplus 21}
\end{gathered}
$$

ρ_{6}, ρ_{7} : dimension $2, \rho_{8}$: dimension 8

$$
\begin{array}{lll}
\rho(\mathrm{g})=\rho_{7}(\mathrm{~g})^{\dagger \otimes 7} & \Longrightarrow & \text { standard Steane code } \quad \llbracket 7,1,3 \rrbracket \\
\rho(\mathrm{~g})=\rho_{7}(\mathrm{~g})^{\otimes 7} & \Longrightarrow & \text { Steane code with different labeling of the logical states }
\end{array}
$$

again, the state in the multiplicity space \mathbb{C}^{15} should be chosen with care

What about the distance?

- not completely clear at the moment
- recent preprint by Kubischta, Teixeira (arXiv:2402.01638) constructs codes with distance t +1 from twisted unitary t-groups
- one can write the Knill-Laflamme conditions for a code of distance d

$$
\begin{gathered}
|\mathrm{E}|<\mathrm{d} \quad \Longrightarrow \Pi_{\mathrm{C}} \mathrm{E} \Pi_{\mathrm{C}}=\mathrm{c}_{\mathrm{E}} \Pi_{\mathrm{C}} \\
\Pi_{\mathrm{C}}=\mathrm{U}\left(\mathbb{1}_{2} \otimes \phi\right) \mathrm{U}^{\dagger} \quad \text { with } \quad \phi:=|\phi\rangle\langle\phi|
\end{gathered}
$$

KL conditions become:

$$
\text { find } \quad|\phi\rangle \in \mathbb{C}^{\mathrm{M}} \quad \text { s.t. } \quad\left\{\left(\mathbb{1}_{2} \otimes \phi\right) \mathrm{U}^{\dagger} \mathrm{EU}\left(\mathbb{1}_{2} \otimes \phi\right)=\mathrm{c}_{\mathrm{E}}\left(\mathbb{1}_{2} \otimes \phi\right):|\mathrm{E}|<\mathrm{d}\right\}
$$

(For the 5-qubit code, there exists a canonical choice of $|\phi\rangle$. The corresponding code satisfies 90 out of the 105 KL conditions for $\mathrm{d}=3$.)

Code with universal set of transversal gates?

- The same construction works for $\mathrm{G}=\mathrm{SU}(2)$.
- Eastin-Knill theorem: a code of distance >1 has a finite set of transvsersal gates
- For bosonic codes, each irrep of $\mathrm{SU}(2)$ has multiplicity 1
\Longrightarrow there's a single code, and this is the dual-rail encoding
- what about multiqubit codes?
- multiplicity of 2-dim irrep in tensor product representation is very large!
\square

Code with universal set of transversal gates?

- The same construction works for $\mathrm{G}=\mathrm{SU}(2)$.
- Eastin-Knill theorem: a code of distance >1 has a finite set of transvsersal gates
- For bosonic codes, each irrep of $\mathrm{SU}(2)$ has multiplicity 1
\Longrightarrow there's a single code, and this is the dual-rail encoding
- what about multiqubit codes?
- multiplicity of 2-dim irrep in tensor product representation is very large!

$$
\begin{gathered}
\mathrm{n}=1 \Longrightarrow \mathrm{M}=1, \quad \mathrm{n}=3 \Longrightarrow \mathrm{M}=2, \quad \mathrm{n}=5 \Longrightarrow \mathrm{M}=5 \\
\mathrm{n}=7 \Longrightarrow \mathrm{M}=14, \quad \mathrm{n}=2 \mathrm{p}+1 \Longrightarrow \mathrm{M} \approx \frac{2^{\mathrm{n}}}{\sqrt{2 \pi n}}
\end{gathered}
$$

- the multiplicity isn't sufficient to say that a code with good distance exists
- $\mathrm{U}=$ Schur transform
- the error $\sum_{\mathrm{i}} \mathrm{P}_{\mathrm{i}}$ acts trivially on the multiplicity space

Summary

- general formalism to design "codes" with specific physical representation of logical gates
- recovers the standard bosonic codes (GKP, cat codes) without fine tuning
- new multimode bosonic codes with reasonably nice universal gate set
- for qubit codes: can recover the standard (small) codes, but if you know where to look
- very general: qudits, oscillators, rotors for both logical and physical systems
- is this formalism a curiosity or can it be useful?
- how to find the codes with good parameters?
- logical state preparation? error correction?

Summary

- general formalism to design "codes" with specific physical representation of logical gates
- recovers the standard bosonic codes (GKP, cat codes) without fine tuning
- new multimode bosonic codes with reasonably nice universal gate set
- for qubit codes: can recover the standard (small) codes, but if you know where to look
- very general: qudits, oscillators, rotors for both logical and physical systems

Many questions

- is this formalism a curiosity or can it be useful?
- how to find the codes with good parameters?
- logical state preparation? error correction?

Thanks!

