Bosonic (and other) codes with interesting gate sets

Anthony Leverrier Inria

Advances in Quantum Coding 16 February 2024

Ínría

arXiv:2306.11621 [pdf, other]

Multimode bosonic cat codes with an easily implementable universal gate set Aurélie Denys, Anthony Leverrier

A natural problem

- logical group G ⊆ SU(d)
 e.g., single-qubit Clifford group
- nice physical representation g → ρ(g)
 e.g., Gaussian unitaries, transversal gates ρ(g) = g^{⊗n}
- design a code where logical g is implemented with $\rho(g)$?

If you don't care about bosonic codes, you can think about this for the next 10 minutes.

A. Leverrier

Story of the result

initial idea: design multimode bosonic cat codes

didn't really work, but found a somewhat okay 2-mode bosonic qutrit arXiv:2210.16188 [pdf, other]

The 2*T*-qutrit, a two-mode bosonic qutrit Aurélie Denys, Anthony Leverrier Comments: 24 pages, python code available at this https URL, v3 published version Journal-ref: Quantum 7, 1032 (2023)

inspired a very comprehensive generalization

arXiv:2302.11593 [pdf, other] quant-ph cond-mat.mes-hall cs.IT math.MG Quantum spherical codes Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates

3 extension to arbitrary (non-bosonic) codes

Outline

1 initial idea: design multimode bosonic cat codes

didn't really work, but found a somewhat okay 2-mode bosonic qutrit arXiv:2210.16188 [pdf, other]

The 2*T*-qutrit, a two-mode bosonic qutrit Aurélie Denys, Anthony Leverrier Comments: 24 pages, python code available at this https URL, v3 published version Journal-ref: Quantum 7, 1032 (2023)

inspired a very comprehensive generalization

arXiv:2302.11593 [pdf, other] quant_ph cond-mat.mes-hall cs.IT math.MG Quantum spherical codes Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates

3 extension to arbitrary (non-bosonic) codes

The most-studied bosonic codes are single-mode

cat code, GKP, binomial code

Code fingerprint: Wigner function of $\frac{1}{2}(|\bar{0}\rangle\langle\bar{0}|+|\bar{1}\rangle\langle\bar{1}|)$

V. Albert et al, PRA 2019

not clear whether there are any other super smart single-mode bosonic codes to be found

what about multimode bosonic codes? They should give better performance...

A. Leverrier

Codewords chosen as superpositions of coherent states

Natural choices of constellations: additive vs multiplicative group structure

- lattice (square, hexagonal...) in phase-space of dimension 2m
 m-mode GKP code
- roots of unity in 2D \implies cat codes

strategy

• pick a nice constellation of size N in \mathbb{C}^2 (for 2-mode codes)

 \Rightarrow N-dimensional Hilbert space

tricky part: find a good qubit/qudit in that space

Codewords chosen as superpositions of coherent states

Natural choices of constellations: additive vs multiplicative group structure

- lattice (square, hexagonal...) in phase-space of dimension 2m
 m-mode GKP code
- roots of unity in 2D \implies cat codes

strategy

• pick a nice constellation of size N in \mathbb{C}^2 (for 2-mode codes)

 \implies N-dimensional Hilbert space

tricky part: find a good qubit/qudit in that space

1st try: 2-mode generalization of cat codes

arXiv:2210.16188 [pdf, other]

The 2T-qutrit, a two-mode bosonic qutrit

Aurélie Denys, Anthony Leverrier

Comments: 24 pages, python code available at this https URL, v3 published version Journal-ref: Quantum 7, 1032 (2023)

- ► constellation: 24 coherent states $|\alpha a_{\ell}\rangle |\alpha b_{\ell}\rangle$ where $a_{\ell}, b_{\ell} \in \mathbb{C}$ and $\{a_{\ell} + jb_{\ell}\}$ form the binary tetrahedral group 2T (Pauli + Hadamard)
- ▶ it defines a 24-dim subspace of the 2-mode Fock space
- how to find a good code (qubit or qudit)?
- numerical optimization of encoding/decoding doesn't lead anywhere
- in the end, we defined a qutrit with nice symmetry properties \implies 2T-qutrit

Fidelity of entanglement vs random codes

Performance for pure-loss channel, with loss parameter γ

▶ iterative numerical optimization (SDP) of decoding and encoding

- ▶ 2T-qutrit = fixed point \implies local optimum
- pretty competitive for low loss

Fidelity of entanglement vs single-mode cat qutrits

• free parameter of the code: amplitude $\alpha > 0$ of the coherent states

- sweet spot for specific value
- again pretty competitive for low loss
- additional feature: some nice logical gates (thanks to group structure)

A. Leverrier

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- ▶ idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2T-qutrit with better performance against loss => a bit depressing
- but the set of nice logical operations is a bit larger for the 2T-qutrit

new question: can we design bosonic codes with nice logical gate sets? answer: YES! with a nice systematic construction

A. Leverrier

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2T-qutrit with better performance against loss => a bit depressing
- but the set of nice logical operations is a bit larger for the 2T-qutrit

new question: can we design bosonic codes with nice logical gate sets? answer: YES! with a nice systematic construction

A. Leverrier

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2T-qutrit with better performance against loss => a bit depressing
- but the set of nice logical operations is a bit larger for the 2T-qutrit

new question: can we design bosonic codes with nice logical gate sets?

answer: YES! with a nice systematic construction

A. Leverrier

Shubham Jain, Joseph Iosue, Alexander Barg, Victor Albert arXiv:2302.11593

- idea: replace the group 2T by spherical designs
- nice error protection, also work out some logical gates
- even a variant of the 2T-qutrit with better performance against loss => a bit depressing
- but the set of nice logical operations is a bit larger for the 2T-qutrit

new question: can we design bosonic codes with nice logical gate sets? answer: YES! with a nice systematic construction

A. Leverrier

Outline

1 initial idea: design multimode bosonic cat codes

didn't really work, but found a somewhat okay 2-mode bosonic qutrit arXiv:2210.16188 [pdf, other]

The 2*T*-qutrit, a two-mode bosonic qutrit Aurélie Denys, Anthony Leverrier Comments: 24 pages, python code available at this https URL, v3 published version Journal-ref: Quantum 7, 1032 (2023)

inspired a very comprehensive generalization

arXiv:2302.11593 [pdf, other] quant-ph cond-mat.mes-hall cs.IT math.MG Quantum spherical codes Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates

3 extension to arbitrary (non-bosonic) codes

General idea

Standard strategy for designing quantum codes

- 1 find a code with good parameters (rate, distance)
- 2 understand how to perform gate fault-tolerantly

our appproach

- find a code family with nice logical gate set (easy)
- 2 optimize code distance / tolerance to noise (less easy?)

General idea

Standard strategy for designing quantum codes

- 1 find a code with good parameters (rate, distance)
- 2 understand how to perform gate fault-tolerantly

our appproach

- **1** find a code family with nice logical gate set (easy)
- 2 optimize code distance / tolerance to noise (less easy?)

Codes with nice logical gates

input

- group of logical gates $G \subseteq SU(2)$ (for a single logical qubit)
- ▶ nice physical representation on physical Hibert space: ρ : g ∈ G \mapsto ρ (g)

output: encoding: $\mathcal{E} : \mathbb{C}^2 \to \mathcal{H}_P$ such that

 $\mathcal{E}(\mathbf{g}|\psi\rangle) = \rho(\mathbf{g}) \mathcal{E}(|\psi\rangle)$

- this is always possible! Simple general construction
- main open question: how to get protection against noise

Previous work on this question (apologies to missing references!)

encoding qubits in spins

arXiv:2005.10910 [pdf, other] quant-ph doi 10.1103/PhysRevLett.127.010504 Encoding a qubit in a spin Authors: Jonathan A. Gross

arXiv:2304.08611 [pdf, ps, other] quant-ph doi 10.1103/PhysRevA.108.022424 Multispin Clifford codes for angular momentum errors in spin systems Authors: Sivaprasad Omanakuttan, Jonathan A. Gross

qubit codes with transversal gates

arXiv:2305.07023 [pdf, other] quant-ph doi 10.1103/PhysRevLett.131.240601 A Family of Quantum Codes with Exotic Transversal Gates Authors: Fric Kubischta, Ian Teixeira

arXiv:2310.17652 [pdf, other] quant-ph

The Not-So-Secret Fourth Parameter of Quantum Codes Authors: Eric Kubischta, Ian Teixeira

arXiv:2402.01638 [pdf, ps, other] quant-ph

Free Quantum Codes from Twisted Unitary *t*-groups Authors: Eric Kubischta, Ian Teixeira

codes with continuous symmetries

arXiv:1902.07725 [pdf, other] quant-ph math-ph doi 10.22331/q-2020-03-23-245

Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames

Authors: Mischa P. Woods, Álvaro M. Alhambra

arXiv:1902.07714 [pdf, other] [cuant_ph] cond-matstat-mech hep-th doi: 10.1102/PhysRexX.10.041018 Continuous symmetries and approximate quantum error correction

Authors: Philippe Faist, Sepehr Nezami, Victor V. Albert, Grant Salton, Fernando Pastawski, Patrick Hayden, John Preskill

General recipe

- group of logical gates $G \subseteq SU(d)$
- nice physical representation ρ on physical space \mathcal{H}_{P}
- ▶ pick any logical state $|\Sigma\rangle \in \mathbb{C}^d$ and any physical state $|\Phi\rangle \in \mathcal{H}_P$ (e.g. vacuum state)

Encoding map

slightly more general (useful for GKP, cat qudits):

- ▶ arbitrary group G
- d-dim representation $\rho_{\rm L}$: replace $\langle \Sigma | {\rm g}^{\dagger} | \psi \rangle$ by $\langle \Sigma | \rho_{\rm L} ({\rm g})^{\dagger} | \psi \rangle$
- need a bit of care if $\rho_{\rm L}$ is not irreducible

A. Leverrier

General recipe

- group of logical gates $G \subseteq SU(d)$
- nice physical representation ρ on physical space \mathcal{H}_{P}
- pick any logical state $|\Sigma\rangle \in \mathbb{C}^d$ and any physical state $|\Phi\rangle \in \mathcal{H}_P$ (e.g. vacuum state)

Encoding map

slightly more general (useful for GKP, cat qudits):

- ▶ arbitrary group G
- d-dim representation $\rho_{\rm L}$: replace $\langle \Sigma | {\rm g}^{\dagger} | \psi \rangle$ by $\langle \Sigma | \rho_{\rm L}({\rm g})^{\dagger} | \psi \rangle$
- need a bit of care if $\rho_{\rm L}$ is not irreducible

Elementary facts of representation theory

Representation \cong sum of irreducible representations

$$ho(\mathrm{g}) = \mathrm{U}\left(igoplus_{\mathrm{i}}
ho_{\mathrm{i}}(\mathrm{g}) \otimes \mathbb{1}_{\mathrm{M}_{\mathrm{i}}}
ight) \mathrm{U}^{\dagger}$$

- \triangleright ρ_i : irreducible representations of G
- M_i : multiplicity of ρ_i in $\rho(g)$

Orthogonality of irreps

$$\frac{d}{|G|} \sum_{g \in G} \rho_i(g)^{\dagger} \otimes \rho_j(g) = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ \sum_{p,q=0}^{d-1} |p\rangle \langle q| \otimes |q\rangle \langle p| = SWAP & \text{if } i = j \end{array} \right.$$

Projector onto (isotypic component) of ρ_i

$$\Pi = \frac{2}{|\mathbf{G}|} \sum_{\mathbf{g}} \operatorname{tr}(\mathbf{g}^{\dagger}) \otimes \rho(\mathbf{g})$$

A. Leverrier

Bosonic (and other) codes with interesting gate sets

16 Feb 2024 16 / 35

Elementary facts of representation theory

Representation \cong sum of irreducible representations

$$ho(\mathrm{g}) = \mathrm{U}\left(igoplus_{\mathrm{i}}
ho_{\mathrm{i}}(\mathrm{g}) \otimes \mathbb{1}_{\mathrm{M}_{\mathrm{i}}}
ight) \mathrm{U}^{\dagger}$$

- \triangleright ρ_i : irreducible representations of G
- M_i : multiplicity of ρ_i in $\rho(g)$

Orthogonality of irreps

$$\frac{d}{|G|} \sum_{g \in G} \rho_i(g)^{\dagger} \otimes \rho_j(g) = \begin{cases} 0 & \text{if } i \neq j \\ \sum_{p,q=0}^{d-1} |p\rangle \langle q| \otimes |q\rangle \langle p| = SWAP & \text{if } i = j \end{cases}$$

Projector onto (isotypic component) of ρ_i

$$\Pi = \frac{2}{|\mathbf{G}|} \sum_{\mathbf{g}} \operatorname{tr}(\mathbf{g}^{\dagger}) \otimes \rho(\mathbf{g})$$

A. Leverrier

Elementary facts of representation theory

Representation \cong sum of irreducible representations

$$ho(\mathrm{g}) = \mathrm{U}\left(igoplus_{\mathrm{i}}
ho_{\mathrm{i}}(\mathrm{g}) \otimes \mathbb{1}_{\mathrm{M}_{\mathrm{i}}}
ight) \mathrm{U}^{\dagger}$$

- \triangleright ρ_i : irreducible representations of G
- M_i : multiplicity of ρ_i in $\rho(g)$

Orthogonality of irreps

$$\frac{d}{|G|} \sum_{g \in G} \rho_i(g)^{\dagger} \otimes \rho_j(g) = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ \sum_{p,q=0}^{d-1} |p\rangle \langle q| \otimes |q\rangle \langle p| = SWAP & \text{if } i = j \end{array} \right.$$

Projector onto (isotypic component) of ρ_i

$$\Pi = \frac{2}{|\mathrm{G}|} \sum_{\mathrm{g}} \mathrm{tr}(\mathrm{g}^{\dagger}) \otimes \rho(\mathrm{g})$$

A. Leverrier

Bosonic (and other) codes with interesting gate sets

16 Feb 2024 16 / 35

Rewriting the encoding map

$$\mathcal{E}(|\psi\rangle) = \frac{d}{|G|} \sum_{g \in G} \langle \Sigma | g^{\dagger} | \psi \rangle \, \rho(g) | \Phi \rangle \qquad \rho(g) = U\left(\bigoplus_{i} \rho_{i}(g) \otimes \mathbb{1}_{M_{i}}\right) U^{\dagger}$$
$$\Pi = \frac{2}{|G|} \sum_{g} tr(g^{\dagger}) \otimes \rho(g) \qquad \text{projector onto isotypic component}$$

Rewriting the encoding map

$$\mathcal{E}(|\psi\rangle) = \frac{d}{|G|} \sum_{g \in G} \langle \Sigma | g^{\dagger} | \psi \rangle \, \rho(g) | \Phi \rangle \qquad \qquad \rho(g) = U\left(\bigoplus_{i} \rho_{i}(g) \otimes \mathbb{1}_{M_{i}}\right) U^{\dagger}$$
$$\Pi = \frac{2}{|G|} \sum_{g} tr(g^{\dagger}) \otimes \rho(g) \qquad \text{projector onto isotypic component}$$

Rewriting the encoding map

$$\mathcal{E}(|\psi\rangle) = \frac{d}{|G|} \sum_{g \in G} \langle \Sigma | g^{\dagger} | \psi \rangle \, \rho(g) | \Phi \rangle \qquad \rho(g) = U\left(\bigoplus_{i} \rho_{i}(g) \otimes \mathbb{1}_{M_{i}}\right) U^{\dagger}$$
$$\Pi = \frac{2}{|G|} \sum_{g} tr(g^{\dagger}) \otimes \rho(g) \qquad \text{projector onto isotypic component}$$

Proof of covariance

 $ho(g)\Pi = U(g \otimes \mathbb{1}_M)U^{\dagger}$

 $\mathcal{E}(\mathbf{g}|\psi\rangle) = \rho(\mathbf{g}) \mathcal{E}(|\psi\rangle) \qquad \forall \mathbf{g} \in \mathbf{G}$

A. Leverrier

Bosonic (and other) codes with interesting gate sets

16 Feb 2024 18 / 35

Proof of covariance

 $ho(g)\Pi = U(g \otimes \mathbb{1}_M)U^{\dagger}$

 $\mathcal{E}(\mathbf{g}|\psi\rangle) = \rho(\mathbf{g}) \mathcal{E}(|\psi\rangle) \qquad \forall \mathbf{g} \in \mathbf{G}$

A. Leverrier

Bosonic (and other) codes with interesting gate sets

16 Feb 2024 18 / 35

Proof of covariance

 $ho(g)\Pi = U(g \otimes \mathbb{1}_M)U^{\dagger}$

 $\mathcal{E}(\mathbf{g}|\psi\rangle) = \rho(\mathbf{g}) \mathcal{E}(|\psi\rangle) \qquad \forall \mathbf{g} \in \mathbf{G}$

A code for any $|\phi\rangle \in \mathcal{M}$:

 $\mathcal{E}_{\phi}(|\psi\rangle) = \mathrm{U}|\psi\rangle|\phi\rangle$

 $U : \mathbb{C}^{d} \otimes \mathcal{M} \to \mathcal{H}_{P}$ isometry, given by G and ρ

challenge: find the states $\ket{\phi}$ that give good protection against noise

A. Leverrier

A code for any $|\phi\rangle \in \mathcal{M}$:

 $\mathcal{E}_{\phi}(|\psi\rangle) = \mathrm{U}|\psi\rangle|\phi\rangle$

 ${
m U}:{\mathbb C}^{
m d}\otimes{\mathcal M} o{\mathcal H}_{
m P}$ isometry, given by ${
m G}$ and ho

challenge: find the states $\ket{\phi}$ that give good protection against noise

A. Leverrier

A code for any $|\phi\rangle \in \mathcal{M}$:

$$\mathcal{E}_{\phi}(|\psi\rangle) = \mathrm{U}|\psi\rangle|\phi\rangle$$

 $U:\mathbb{C}^d\otimes\mathcal{M}\to\mathcal{H}_P$ isometry, given by G and ρ

challenge: find the states $|\phi\rangle$ that give good protection against noise

A. Leverrier

A code for any $|\phi\rangle \in \mathcal{M}$:

$$\mathcal{E}_{\phi}(|\psi\rangle) = \mathrm{U}|\psi\rangle|\phi\rangle$$

 $U: \mathbb{C}^{d} \otimes \mathcal{M} \to \mathcal{H}_{P} \text{ isometry, given by G and } \rho$ challenge: find the states $|\phi\rangle$ that give good protection against noise A. Leverrier Bosonic (and other) codes with interesting gate sets Application to bosonic codes

The case of bosonic codes

Pick

- $|\Phi\rangle = |\vec{\alpha}\rangle$ a coherent state
- $\rho(g)$ Gaussian unitary: $\rho(g) |\vec{\alpha}\rangle = |g\vec{\alpha}\rangle$

$$\mathcal{E}(\ket{\psi}) = rac{2}{|\mathrm{G}|} \sum_{\mathrm{g}\in\mathrm{G}} \langle \Sigma | \mathrm{g}^{\dagger} | \psi
angle \ket{\mathrm{g}ec{lpha}}$$

is a superposition of coherent states.

 \implies generalization of quantum spherical codes, but with nice gate sets.

one can recover the usual suspects:

- ▶ GKP: Pauli group and displacements
- cat codes: $\langle \sigma_X \rangle$ and dephasing

and define new codes: for G = Pauli or Clifford group

The case of bosonic codes

Pick

- $|\Phi\rangle = |\vec{\alpha}\rangle$ a coherent state
- $\rho(g)$ Gaussian unitary: $\rho(g) |\vec{\alpha}\rangle = |g\vec{\alpha}\rangle$

$$\mathcal{E}(\ket{\psi}) = rac{2}{|\mathrm{G}|} \sum_{\mathrm{g}\in\mathrm{G}} \langle \Sigma | \mathrm{g}^{\dagger} | \psi
angle \ket{\mathrm{g}ec{lpha}}$$

is a superposition of coherent states.

 \implies generalization of quantum spherical codes, but with nice gate sets.

one can recover the usual suspects:

- ► GKP: Pauli group and displacements
- cat codes: $\langle \sigma_X \rangle$ and dephasing

and define new codes: for G = Pauli or Clifford group

Example 1: the GKP code

- encode a qubit in single-mode Fock space
- physical representation displacement operators:

 $G_{P} = \langle D(\alpha), D(\beta) \rangle$ with $D(\alpha) = e^{\alpha^* a^{\dagger} - \alpha a}$

$$D(\alpha)D(\beta) = -D(\beta)D(\alpha)$$
 if $\beta \alpha^* - \beta^* \alpha = i\pi$

standard square GKP lattice: $\alpha = \sqrt{\frac{\pi}{2}}, \beta = i\sqrt{\frac{\pi}{2}}$

- ▶ logical representation $\rho_{\rm L}({\rm D}(\alpha)) = \sigma_{\rm X}, \ \rho_{\rm L}({\rm D}(\beta)) = \sigma_{\rm Z} \implies$ Pauli group
- ▶ pick $|\Sigma\rangle = |0\rangle \in \mathbb{C}^2$, $|\Phi\rangle = |0\rangle \in \mathcal{H}_P$ (vacuum state)

Example 1: the GKP code

Let's compute

$$|\overline{0}
angle \propto \sum_{\mathrm{g}\in\mathrm{G}_{\mathrm{P}}} \langle 0|
ho_{\mathrm{L}}(\mathrm{g})^{\dagger}|0
angle \;\mathrm{g}|0
angle$$

The only nonzero coefficients $\langle 0|\rho_{L}(g)^{\dagger}|0\rangle \neq 0$ are for $\rho_{L}(g) \in \{\pm 1, \pm \sigma_{Z}\}$: i.e. $g = D(2p\alpha)D(q\beta) = (-1)^{pq}D(2p\alpha + q\beta)$ with $p, q \in \mathbb{Z}$

$$|\overline{0}
angle \propto \sum_{\mathrm{p},\mathrm{q}\in\mathbb{Z}}(-1)^{\mathrm{pq}}|2\mathrm{p}lpha+\mathrm{q}eta)
angle$$

$$egin{aligned} &|\overline{1}
angle \propto
ho(\sigma_{\mathrm{X}})|\overline{1}
angle \ \propto \mathrm{D}(lpha)|\overline{0}
angle \ \propto \sum_{\mathrm{p},\mathrm{q}\in\mathbb{Z}}(-1)^{\mathrm{pq}}(-\mathrm{i})^{\mathrm{q}}|(2\mathrm{p}+1)lpha+eta\mathrm{q}
angle \end{aligned}$$

 \implies recover GKP code without any fine-tuning

A. Leverrier

Example 2: the 2N-legged cat qubit

- $G = \langle e^{i\pi/N} \rangle$, cyclic group of order 2N
- logical representation $\rho_{\rm L}({\rm e}^{{\rm i}\pi/{\rm N}}) = \sigma_{\rm X}$
- physical representation with dephasing: $\rho(e^{i\pi/N}) = e^{i\pi\hat{n}/N}$
- ▶ pick $|\Sigma\rangle = |0\rangle \in \mathbb{C}^2$, $|\Phi\rangle = |\alpha\rangle \in \mathcal{H}_P$ (arbitrary coherent state)

$$\begin{split} |\overline{0}\rangle \propto & \sum_{g \in G_{P}} \langle 0 | \rho_{L}(g)^{\dagger} | 0 \rangle \rho(g) | \alpha \rangle \propto \sum_{k=0}^{2N-1} \delta_{k,even} e^{ki\pi \hat{n}/N} | \alpha \rangle \\ & \propto \sum_{k=0}^{N-1} | e^{2\pi i k/N} \alpha \rangle \end{split}$$

$$|\overline{1}\rangle =
ho(e^{i\pi/N})|\overline{0}
angle \propto \sum_{k=0}^{N-1} |e^{\pi i(2k+1)k/N}lpha
angle$$

 \implies this is the cat qubit

New code 1: G = Pauli group with Gaussian unitaries

- logical group: $G_L = \langle \sigma_X, \sigma_Z \rangle$
- \blacktriangleright \mathcal{H}_{P} : 2-mode Fock space
- physical representation: Gaussian unitary (beamsplitters and phase-shifts)

 $\rho\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) : |\alpha\rangle\beta\rangle \mapsto |a\alpha + b\beta\rangle |c\alpha + d\beta\rangle$

• pick $|\Sigma\rangle = |0\rangle \in \mathbb{C}^2$, $|\Phi\rangle = |\alpha\rangle |\beta\rangle \in \mathcal{H}_P$ (arbitrary coherent state)

 $egin{aligned} & |\overline{0}
angle \propto |\mathrm{c}_1(lpha)
angle |\mathrm{c}_0(eta)
angle \ & |\overline{1}
angle \propto |\mathrm{c}_0(eta)
angle |\mathrm{c}_1(lpha)
angle \end{aligned}$

with $|c_0(\alpha)\rangle = |\alpha\rangle + |-\alpha\rangle$, $|c_1(\alpha)\rangle = |\alpha\rangle - |-\alpha\rangle$

• recover the dual-rail encoding in the limit $\alpha \to 0$:

a single photon in 2 modes: $|\overline{0}\rangle = |1\rangle|0\rangle, \qquad |\overline{1}\rangle = |0\rangle|1\rangle$

New code 1: G = Pauli group with Gaussian unitaries

entanglement infidelity for pure-loss channel $\gamma = 10^{-2}$ dual-rail encoding: $\alpha = 0$

 \implies need to optimize the initial state $|\Phi\rangle \in \mathcal{H}_{P}$ (maximize the distance between the points of the constellation, same as for quantum spherical codes)

More interesting code: G = single-qubit Clifford group

2O group: binary octahedral group (aka single-qubit Clifford group)

$$2O = \langle S, H \rangle, \qquad |2O| = 48$$
$$S = \begin{bmatrix} \eta & 0\\ 0 & \eta^{-1} \end{bmatrix}, \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} \eta & \eta\\ -\eta^{-1} & \eta^{-1} \end{bmatrix} \in SU(2)$$
$$\rho\left(\begin{smallmatrix} a & b\\ c & d \end{smallmatrix}\right) : \ |\alpha\rangle|\beta\rangle \ \mapsto \ |a\alpha + b\beta\rangle|c\alpha + d\beta\rangle$$

 $\implies |\overline{0}\rangle, |\overline{1}\rangle$: superpositions of 40 coherent states in 2 modes

"relatively" easy to get a universal gate set with quartic Hamiltonians*

$$\overline{T} = \exp\left(i\frac{\pi}{16}(\hat{n}_1 - \hat{n}_2 - 1)^2\right), \qquad \overline{CZ} = \exp\left(i\frac{\pi}{4}(\hat{n}_1 - \hat{n}_2 - 1)(\hat{n}_3 - \hat{n}_4 - 1)\right)$$

- measurement in $\{|\overline{0}\rangle, |\overline{1}\rangle\}$ basis is easy
- state preparation and error correction??

(*) similar to CROT. e.g. rotation-symmetric bosonic codes (Grimsmo, Combes, Baragiola)

Outline

1 initial idea: design multimode bosonic cat codes

didn't really work, but found a somewhat okay 2-mode bosonic qutrit arXiv:2210.16188 [pdf, other]

The 2*T*-qutrit, a two-mode bosonic qutrit Aurélie Denys, Anthony Leverrier Comments: 24 pages, python code available at this https URL, v3 published version Journal-ref: Quantum 7, 1032 (2023)

inspired a very comprehensive generalization

arXiv:2302.11593 [pdf, other] quant-ph cond-mat.mes-hall cs.IT math.MG Quantum spherical codes Authors: Shubham P. Jain, Joseph T. Iosue, Alexander Barg, Victor V. Albert

2 follow-up: same thing with nice logical gates

3 extension to arbitrary (non-bosonic) codes

Beyond bosonic codes

The construction is very general:

$$\mathcal{H}_L = \mathbb{C}^d, \qquad \mathcal{H}_P = (\mathbb{C}^{d'})^{\otimes n}$$

Natural choices for the physical representation $\rho(g)$:

• transversal gates
$$\rho(g) = g^{\otimes n}$$

$$\blacktriangleright \ \rho(\mathbf{g}) = (\mathbf{g}^{\dagger})^{\otimes \mathbf{n}}$$

$$\blacktriangleright \ \rho(\mathbf{g}) = \mathbf{g}^{\otimes \mathbf{p}} \otimes (\mathbf{g}^{\dagger})^{\otimes (\mathbf{n}-\mathbf{p})}$$

Codes $[\![n,k]\!]$ with G = Pauli group and physical Pauli gates

$$\mathrm{G} = \mathcal{P}_{\mathrm{k}}$$
 and $ho(\mathrm{g}) \in \mathcal{P}_{\mathrm{n}}$
 $|\mathcal{P}_{\mathrm{k}}| = 2 \times 4^{\mathrm{k}}$ (only ± 1 phases)

Projector onto the irrep:
$$\Pi = \frac{2^{k}}{|G|} \sum_{g} tr(g^{\dagger})\rho(g)$$
$$= \frac{2^{k}}{2 \times 4^{k}} \sum_{g \in \{\pm 1\}} tr(g^{\dagger})\rho(g)$$
$$= \frac{2^{k}}{2 \times 4^{k}} \times (2 \times 2^{k} \mathbb{1}) = \mathbb{1}$$

- multiplicity space of maximal dimension
- ▶ unitary $U : (\mathbb{C}^2)^{\otimes k} \otimes (\mathbb{C}^2)^{\otimes (n-k)} \to (\mathbb{C}^2)^{\otimes n}$ can be chosen Clifford
- recover stabilizer codes: $|\psi\rangle \mapsto U|\psi\rangle|0\rangle^{\otimes (n-k)}$

Code $\llbracket 5,1 \rrbracket$ with transversal 2T

- ▶ 2T group: binary tetrahedral group, $2T = \langle Z, H \rangle = (Paulis + Hadamard), |2T| = 24$
- 3 irreps of dimension 2: ρ_4, ρ_4^*, ρ_5

▶ pick
$$\rho_{\rm L} = \rho_5$$
: $\rho_5({\rm Z}) = \begin{bmatrix} {\rm i} & 0\\ 0 & -{\rm i} \end{bmatrix}, \quad \rho_5({\rm H}) = \frac{{\rm e}^{{\rm i}\pi/4}}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ {\rm i} & -{\rm i} \end{bmatrix}$

- $\blacktriangleright \ \rho(g) = \rho_5(g)^{\otimes 5}$
- easy to compute that:

$$\rho = \rho_4^{\oplus 5} \oplus \rho_4^{* \oplus 5} \oplus \rho_5^{\oplus 6}$$

$$\mathrm{U}:\mathbb{C}^2\otimes\mathbb{C}^6\to(\mathbb{C}^2)^{\otimes 5}$$

▶ can find $|\phi\rangle \in \mathbb{C}^6$ such that

 $\operatorname{span}(\mathrm{U}|0\rangle|\phi\rangle,\mathrm{U}|1\rangle|\phi\rangle) = \llbracket 5,1,3 \rrbracket$

Recover the 5-qubit code, but need to choose $\ket{\phi}$ carefully.

Code $\llbracket 5,1 \rrbracket$ with transversal 2T

- ▶ 2T group: binary tetrahedral group, $2T = \langle Z, H \rangle = (Paulis + Hadamard), |2T| = 24$
- 3 irreps of dimension 2: ρ_4, ρ_4^*, ρ_5

▶ pick
$$\rho_{\rm L} = \rho_5$$
: $\rho_5({\rm Z}) = \begin{bmatrix} {\rm i} & 0\\ 0 & -{\rm i} \end{bmatrix}, \quad \rho_5({\rm H}) = \frac{{\rm e}^{{\rm i}\pi/4}}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ {\rm i} & -{\rm i} \end{bmatrix}$

- $\blacktriangleright \ \rho(g) = \rho_5(g)^{\otimes 5}$
- easy to compute that:

$$\rho = \rho_4^{\oplus 5} \oplus \rho_4^{* \oplus 5} \oplus \rho_5^{\oplus 6}$$

$$U: \mathbb{C}^2 \otimes \mathbb{C}^6 \to (\mathbb{C}^2)^{\otimes 5}$$

▶ can find $|\phi\rangle \in \mathbb{C}^6$ such that

 $\operatorname{span}(\mathrm{U}|0\rangle|\phi\rangle,\mathrm{U}|1\rangle|\phi\rangle) = \llbracket 5,1,3 \rrbracket$

Recover the 5-qubit code, but need to choose $|\phi\rangle$ carefully.

Code [[7,1]] with transversal Clifford group

2O group: binary octahedral group (aka single-qubit Clifford group)

$$2O = \langle S, H \rangle, \qquad |2O| = 48$$

$$\rho_{7}(\mathbf{S}) = \begin{bmatrix} \eta & 0\\ 0 & \eta^{-1} \end{bmatrix}, \qquad \rho_{7}(\mathbf{H}) = \frac{1}{\sqrt{2}} \begin{bmatrix} \eta & \eta\\ -\eta^{-1} & \eta^{-1} \end{bmatrix}$$
$$\rho_{\mathbf{L}} = \rho_{7} \qquad \rho_{7}^{\otimes 7} = \rho_{6}^{\oplus 7} \oplus \rho_{7}^{\oplus 15} \oplus \rho_{8}^{\oplus 21}$$

 ρ_6 , ρ_7 : dimension 2, ρ_8 : dimension 8

$$\rho(g) = \rho_7(g)^{\dagger \otimes 7} \implies \text{standard Steane code} [[7, 1, 3]]$$

 $\rho(g) = \rho_7(g)^{\otimes 7} \implies \text{Steane code with different labeling of the logical states}$

gain, the state in the multiplicity space \mathbb{C}^{15} should be chosen with care

A. Leverrier

Code [[7,1]] with transversal Clifford group

2O group: binary octahedral group (aka single-qubit Clifford group)

$$2O = \langle S, H \rangle, \qquad |2O| = 48$$

$$\rho_{7}(\mathbf{S}) = \begin{bmatrix} \eta & 0\\ 0 & \eta^{-1} \end{bmatrix}, \qquad \rho_{7}(\mathbf{H}) = \frac{1}{\sqrt{2}} \begin{bmatrix} \eta & \eta\\ -\eta^{-1} & \eta^{-1} \end{bmatrix}$$
$$\rho_{\mathbf{L}} = \rho_{7} \qquad \rho_{7}^{\otimes 7} = \rho_{6}^{\oplus 7} \oplus \rho_{7}^{\oplus 15} \oplus \rho_{8}^{\oplus 21}$$

 ρ_6 , ρ_7 : dimension 2, ρ_8 : dimension 8

$$\rho(g) = \rho_7(g)^{\dagger \otimes 7} \implies \text{standard Steane code} [[7, 1, 3]]$$

 $\rho(g) = \rho_7(g)^{\otimes 7} \implies \text{Steane code with different labeling of the logical states}$

again, the state in the multiplicity space \mathbb{C}^{15} should be chosen with care

What about the distance?

- not completely clear at the moment
- recent preprint by Kubischta, Teixeira (arXiv:2402.01638) constructs codes with distance t + 1 from twisted unitary t-groups
- one can write the Knill-Laflamme conditions for a code of distance d

$$|\mathbf{E}| < \mathbf{d} \qquad \Longrightarrow \ \Pi_{\mathbf{C}} \mathbf{E} \Pi_{\mathbf{C}} = \mathbf{c}_{\mathbf{E}} \Pi_{\mathbf{C}}$$

$$\Pi_{\mathrm{C}} = \mathrm{U}(\mathbb{1}_2 \otimes \phi) \mathrm{U}^{\dagger} \qquad ext{with} \qquad \phi := |\phi\rangle \langle \phi|$$

KL conditions become:

find
$$|\phi\rangle \in \mathbb{C}^{M}$$
 s.t. $\{(\mathbb{1}_{2} \otimes \phi) \cup^{\dagger} \mathrm{EU}(\mathbb{1}_{2} \otimes \phi) = \mathrm{c}_{\mathrm{E}}(\mathbb{1}_{2} \otimes \phi) : |\mathrm{E}| < \mathrm{d}\}$

(For the 5-qubit code, there exists a canonical choice of $|\phi\rangle$. The corresponding code satisfies 90 out of the 105 KL conditions for d = 3.)

Code with universal set of transversal gates?

- The same construction works for G = SU(2).
- Eastin-Knill theorem: a code of distance > 1 has a finite set of transvsersal gates
- ► For bosonic codes, each irrep of SU(2) has multiplicity 1
 - \implies there's a single code, and this is the dual-rail encoding
- what about multiqubit codes?

multiplicity of 2-dim irrep in tensor product representation is very large!

$$\begin{array}{ll} n=1 \implies M=1, & n=3 \implies M=2, & n=5 \implies M=5\\ n=7 \implies M=14, & n=2p+1 \implies M\approx \frac{2^n}{\sqrt{2\pi n}} \end{array}$$

- the multiplicity isn't sufficient to say that a code with good distance exists
- ▶ U = Schur transform
- the error $\sum_i P_i$ acts trivially on the multiplicity space

A. Leverrier

Code with universal set of transversal gates?

- The same construction works for G = SU(2).
- Eastin-Knill theorem: a code of distance > 1 has a finite set of transvsersal gates
- ▶ For bosonic codes, each irrep of SU(2) has multiplicity 1
 - \implies there's a single code, and this is the dual-rail encoding
- what about multiqubit codes?

multiplicity of 2-dim irrep in tensor product representation is very large!

$$\begin{split} \mathbf{n} &= 1 \implies \mathbf{M} = 1, \qquad \mathbf{n} = 3 \implies \mathbf{M} = 2, \qquad \mathbf{n} = 5 \implies \mathbf{M} = 5 \\ \mathbf{n} &= 7 \implies \mathbf{M} = 14, \qquad \mathbf{n} = 2\mathbf{p} + 1 \implies \mathbf{M} \approx \frac{2^{\mathbf{n}}}{\sqrt{2\pi\mathbf{n}}} \end{split}$$

- the multiplicity isn't sufficient to say that a code with good distance exists
- ▶ U = Schur transform
- the error $\sum_{i} P_{i}$ acts trivially on the multiplicity space

Summary

- general formalism to design "codes" with specific physical representation of logical gates
- recovers the standard bosonic codes (GKP, cat codes) without fine tuning
- new multimode bosonic codes with reasonably nice universal gate set
- ▶ for qubit codes: can recover the standard (small) codes, but if you know where to look
- very general: qudits, oscillators, rotors for both logical and physical systems

Many questions

- ▶ is this formalism a curiosity or can it be useful?
- how to find the codes with good parameters?
- logical state preparation? error correction?

Summary

- general formalism to design "codes" with specific physical representation of logical gates
- recovers the standard bosonic codes (GKP, cat codes) without fine tuning
- new multimode bosonic codes with reasonably nice universal gate set
- ▶ for qubit codes: can recover the standard (small) codes, but if you know where to look
- very general: qudits, oscillators, rotors for both logical and physical systems

Many questions

- is this formalism a curiosity or can it be useful?
- how to find the codes with good parameters?
- logical state preparation? error correction?

16 Feb 2024

35/35