Tutorial on Bosonic Codes

For details and references, see:

- arXiv:2211.05714
- errorcorrectionzoo.org/c/oscillators

Advances in Quantum
Coding Theory Workshop

Presented by Victor V. Albect

JOINT CENTER FOR
AND COMPUTER SCIENCE
NGT

CONTINUOUS-VARIABLE (CV or "BOSONIC") SYSTEMS

- Characterized by continuous degrees of freedom, such as position and momentum of a mechanical oscillator or quadrature components for an electromagnetic field mode.
- We already use them:
$>$ Communication (A)
> Excitations of current systems (C)
- We should study them:
> Long natural lifetimes (C, E)
$>$ Extra degrees of freedom (B, C)
> Different geometry, states, operations (binary vs. lattices)

A. Optical fibers, free space

C. Microwave cavities + superconducting circuits

D. Free-electron-light interactions

E. Mechanical/acoustic resonators

∞ DIMENSIONS circumvents NO-GO THMS

1. GKP states are powerful non-Gaussian resources

GKP QEC + Gaussian states = universal computation (no magic-state distill.) arXiv:1903.00012 Protecting against small shifts in a logical mode (no-go thm in DV) arXiv:1903.12615
2. Continuous-parameter families of transversal gates (Eastin-Knill no-go thm in DV). arXiv:1902.07714 and many others
3. Hamiltonian-based bias-preserving gates (no-go thm in DV).
arXiv:1905.00450 (cat code CNOT gate)
4. Q-simulation; commuting-projector models for chiral topological phases (no-go thm in DV). arXiv:1902.06756, 1906.08270, 2107.02817 (e.g., fractional quantum Hall on the lattice)
5. Hardware efficiency: small CV codes \geq small DV codes; cat codes $>$ 1D Ising repetition code arXiv:2205.09767 (cat codes + 2D classical Ising model)
6. Single-mode codes do not have thresholds, but concatenation can improve qubit thresholds. arXiv:2107.13589 and refs. therein

WHAT IS A qu-MODE?

QUANTIZING SIGNALS

- Pick some basis of normal modes for your signal (either in space or time).

$$
f_{1} \quad f_{2} \quad f_{3}
$$

- Classical signal is continuous! Can be expanded as linear combination of

$$
\psi(t)=\sum_{j=1}^{n} \alpha_{j} f_{j}(t), \quad \alpha_{j} \in \mathbb{C}
$$ normal modes.

- In quantum state space, signal corresponds to tensor product of coherent states:

$$
|\psi\rangle=\bigotimes_{j=1}^{n}\left|\alpha_{j}\right\rangle \in \quad \ell^{2}\left(\mathbb{R}^{n}\right)
$$

WHAT IS A qu-MODE???

- Find normal modes of Laplace's equation for a box (either in space or time).

f
- Quantum mode, or qu-mode, arises from quantizing the amplitude of each (classical) normal mode.
- This allows us to consider superpositions of coherent states...

CLASSICAL

Classical codewords pack space in well-separated way, protecting from bit-flip errors.

[3,1,2] repetition

spherical code

[4,3,2] single parity check

QUANTUM
$|\overline{0}\rangle=\sum_{\alpha \in \boldsymbol{\Theta}}|\alpha\rangle$
Quantum codewords are superposed classical codewords.*
$|\overline{1}\rangle=\sum_{\alpha \in \bigcirc}|\alpha\rangle$

[[3,1]] quantum repetition

quantum spherical (QSC)

quantum lattice (GKP)

GENERAL STATES

$>$ More generally, a (single-mode) quantum state $|\psi\rangle \in L^{2}(\mathbb{R})$ is a vector with finite occupation-number moments.
$\checkmark\langle\psi| \hat{n}^{\ell}|\psi\rangle<\infty$ for all $\ell \geq 0$.
\checkmark Such states form Schwartz space $S(\mathbb{R})$.
$>$ Ideal CV codewords are often not in $L^{2}(\mathbb{R})$, but "regularized" versions in $S(\mathbb{R})$ yield the same basic protection.

Coherent states $|\alpha\rangle$

Cartesian conjugate bases

Angular "conjugate" bases

Fock states
$|n\rangle$

Phase states $|\phi\rangle$

- Each is a "basis" for states.
- Each offers ways to construct new codes and embed old ones.
- Each conjugate pair comes with an error basis for operators.

CARTESIAN CODES

CARTESIAN ERROR BASIS

Position/momentum displacement operators $D(\gamma)$ are the closest

$$
D(\gamma) \equiv \exp \left(\gamma a-\gamma^{*} a^{\dagger}\right)
$$

 analogues of Pauli strings.

They form a complete and "orthonormal" basis.

Any physical (bounded) error operator can be expanded:

Two notions of distance:

1. Hamming weight, $\Delta(\boldsymbol{\alpha})$
\rightarrow analogous to Pauli weight

ANALOG STABILIZER CODES
$\left.\mathbb{Z}_{w^{\alpha}} \quad[44,1,2]\right]$ cubit
$\mathbb{R} \quad[[4,1,2]]_{\mathbb{R}} \mathrm{CV}$
$\left.\left.\left.\right|^{v^{\alpha}}\right)^{\alpha}=\left(\sum_{y \in Z_{2}}(-1)^{x y} \mid y\right)^{\otimes \alpha)^{\otimes \alpha}}\right)^{\text {codewords }}|\dot{x}\rangle=\left(\int_{R}^{d y} e^{i x y} \mid y y^{\otimes^{\alpha}}\right)^{\alpha \alpha}$

Stabilizer group is
continuous, can look at Lie
$\hat{x}_{1}-\hat{x}_{2}, \hat{x}_{3}-\hat{x}_{4}$, and $\hat{p}_{1}+\hat{p}_{2}-\hat{p}_{3}-\hat{p}_{4}$
algebra (a.k.a. nullifies):
$\left(\hat{x}_{1}-\hat{x}_{2}\right)\left|x_{\text {four-mode }}\right\rangle=\int_{\mathbb{R}} \mathrm{d} y \int_{\mathbb{R}} \mathrm{d} z e^{i x(y+z)}(y-y)|y, y, z, z\rangle=0$
os; see errorcorrectionzoo.org/c/analog stabilizer
Lloyd, Slotine, Braunstein late 1990s; see errorcorrectionzoo.org/c/analog stabilizer

Position/momentum displacement

 operators $D(\gamma)$ are the closest analogues of Pauli strings.They form a complete and "orthonormal" basis.

Any physical (bounded)
operator can be expanded:

CARTESIAN ERROR BASIS

$$
D(\gamma) \equiv \exp \left(\gamma a-\gamma^{*} a^{\dagger}\right)
$$

Position states

$$
|x\rangle
$$

$$
\operatorname{tr}\left(D(\gamma) D(\eta)^{\dagger}\right)=\pi \delta^{2}(\gamma-\eta)
$$

$$
U(\theta)=\frac{1}{\pi} \int d^{2} \gamma u_{\theta}(\gamma) D(\gamma)
$$

Two notions of distance:

1. Hamming weight, $\Delta(\boldsymbol{\alpha})$ \rightarrow analogous to Pauli weight
2. Displacement length, $\|\boldsymbol{\alpha}\|_{2}$ \rightarrow relevant to GKP codes

GKP CODES: POSITION STATE FORMULATION

- Stabilizer group is infinite, but discrete.
- Finite-dimensional (qudit) codespace
- Protect against small position and momentum displacements.

$$
\mathrm{S}_{\mathrm{GKP}}=\left\langle S_{1}, S_{2}\right\rangle=\left\langle e^{i \sqrt{2 \pi N} \hat{x}}, e^{-i \sqrt{2 \pi N} \hat{p}}\right\rangle=\left\{S_{1}^{a} S_{2}^{b} \mid a, b \in \mathbb{Z}\right\}
$$

- Codewords form 1D lattices w/ position states (but form 2D lattice w/ coherent states!).

$$
\left|0_{\mathrm{GKP}}\right\rangle=\sum_{\ell \in \mathbb{Z}}|(2 \ell) \sqrt{\pi}\rangle \quad \text { and } \quad\left|1_{\mathrm{GKP}}\right\rangle=\sum_{\ell \in \mathbb{Z}}|(2 \ell+1) \sqrt{\pi}\rangle
$$

- Same picture holds in momentum space.

(b) GKP

GKP-STABILIZER CODES

- Consider a GKP code and remove some of the stabilizers -> degenerate lattice
- GKP-stabilizer codes encode one logical mode into physical modes
- Protect infinite-dim state space against small displacements.

ANGULAR CODES

OTHER CV "BASES"

Coherent states $|\alpha\rangle$

Cartesian conjugate bases

Angular "conjugate" bases

Fock states
$|n\rangle$

Phase states $|\phi\rangle$

- Each is a "basis" for states.
- Each offers ways to construct new codes and embed old ones.
- Each conjugate pair comes with an "operator basis" for errors.

THE BIG THREE STATE SPACES

Qubit	CV	Real position
Discrete position	Angle position	
states $\|0\rangle,\|1\rangle$	states $\|x\rangle$	states $\|\phi\rangle$
Discrete momentum	Real momentum	Integer momentum
states $\| \pm\rangle$	states $\|p\rangle$	states $\|\ell\rangle$
Pauli/Clifford	Displacements \&	rotor Pauli/Clifford
groups	Gaussian ops.	groups

NUMBER-PHASE "ROTOR"

- Phase and Fock states are position and momentum states of a "rotor" with no negative momentum.
- "Momentum" kicks and Fock-space rotations mimc the momentum kicks and position shifts of a rotor.

"Momentum" kicks (photon loss/gain)

$$
\hat{E}_{\ell}=\left\{\begin{array}{ll}
\sum_{n \geq 0}|n+\ell\rangle\langle n| & \ell \geq 0 \\
\sum_{n \geq 0}|n\rangle\langle n+| \ell| |=\hat{E}_{|\ell|}^{\dagger} & \ell<0
\end{array} \text { for } \quad \ell \in \mathbb{Z}\right.
$$

Position shifts (rotations)

- Their products form a complete basis.
- Any physical (bounded) error operator can be expanded.

ROTOR GKP CODES

- GKP codes can be similarly constructed for the rotor: line \rightarrow circle
- Correct against
$>$ small shifts in the angular position
$>$ small kicks in angular momentum.

NUMBER-PHASE CODES

- CV analogues of bona-fide rotor GKP codes
- Spaced apart in both phase-state and Fock-state basis.
- Protect against Fock-space rotations and "momentum" kicks (photon losses/gains).
$\left|0_{\text {num-ph }}\right\rangle=\left(|\phi=0\rangle+\left|\phi=\frac{2 \pi}{3}\right\rangle+\left|\phi=\frac{4 \pi}{3}\right\rangle\right) / \sqrt{3}$
$\left|1_{\text {num-ph }}\right\rangle=\left(\left|\phi=\frac{\pi}{3}\right\rangle+|\phi=\pi\rangle+\left|\phi=\frac{5 \pi}{3}\right\rangle\right) / \sqrt{3}$
$|\phi\rangle$

$$
\begin{aligned}
& \left|+_{\text {num-ph }}\right\rangle=\left(\left|0_{\text {num-ph }}\right\rangle+\left|1_{\text {num-ph }}\right\rangle\right) / \sqrt{2} \propto \sum_{n \geq 0}|6 n\rangle \\
& \left|-_{\text {num-ph }}\right\rangle=\left(\left|0_{\text {num-ph }}\right\rangle-\left|1_{\text {num-ph }}\right\rangle\right) / \sqrt{2} \propto \sum_{n \geq 0}|6 n+3\rangle
\end{aligned}
$$

$|n\rangle$

- Number-phase codes come with a set of "stabilizers", but it is no longer a group:

$$
\mathrm{S}_{\text {num-phase }}=\left\{\left.e^{i \frac{2 \pi}{N} \hat{n} a} \hat{E}_{2 N b}^{\dagger} \right\rvert\, a \in \mathbb{Z}_{N}, b \in \mathbb{N}_{0}\right\}
$$

CAT CODES are regularized NUMBER-PHASE CODES

- Cat codes ~ "regularized" number-phase codes.
$|\phi\rangle \propto \sum_{n \geq 0} e^{i \phi n}|n\rangle \quad \rightarrow \quad e^{-\frac{1}{2} \alpha^{2}} \sum_{n \geq 0} \frac{\alpha^{n}}{\sqrt{n!}} e^{i \phi n}|n\rangle$

(a) phase state

(b) coherent state
(Two-component cat code, $|\overline{0}\rangle=|\alpha\rangle$
 and $|\overline{1}\rangle=|-\alpha\rangle$, "stabilized" by quantum double well Lindbladian master eqn.

$$
\begin{aligned}
\frac{\partial \rho}{\partial t}=\mathcal{L}(\rho) & =2 F \rho F^{\dagger}-F^{\dagger} F \rho-\rho F^{\dagger} F \\
F & =a^{2}-\alpha^{2}
\end{aligned}
$$

SINGLE-MODE CAT CODES

$>$ Two-component cat codes:
$\begin{array}{ll}\text { errorcorrectionzoo.org/c/two-legged-cat } & \begin{array}{l}\mathrm{E}_{\mathrm{C}} \\ \text { zoo }\end{array}\end{array}$

1. Hardware-efficient CV version of repetition code.
2. Self-correcting classical memory (vs. dephasing). arXiv:2008.02816, 2205.09767
3. Several stabilization schemes (realized).
4. Practical X-type gates (realized).
5. Bias-preserving gates.
arXiv:1312.2017, $1412.4633,1605.09408,1907.12131$
arXiv:1312.2017, $\underline{1705.02401}$
arXiv:1904.09474, 1905.00450

Four-component cat codes: errorcorrectionzoo.org/c/cat $\begin{aligned} & \text { EC } \\ & \text { zoo }\end{aligned}$

1. Protection vs. loss in concatenated schemes.
arXiv:1207.0679
2. Fault-tolerant syndrome msmnt (realized).
arXiv:1207.0679, 1311.2534, 1803.00102
3. Track errors without correcting (realized) $1^{\text {st }}$ break-even QEC

FOCK-STATE CODES

FOUR-QUBIT CODE \rightarrow BINOMIAL CODE

$>$ Add up individual binary labels of the $[[4,1,2]]$ code of each basis state for each codeword:

$$
\begin{aligned}
\left|0_{L}\right\rangle=\frac{1}{\sqrt{2}}(|0000\rangle+|1111\rangle) \quad \longrightarrow \quad\left|0_{\text {bin }}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|4\rangle) \\
\left|1_{L}\right\rangle=\frac{1}{\sqrt{2}}(|0011\rangle+|1100\rangle) \quad \longrightarrow \quad\left|1_{\text {bin }}\right\rangle=|2\rangle
\end{aligned}
$$

$>$ Finite-support version of the cat code.
$>$ Maintains the same spacing in Fock space as before.

$$
\left|0 / 1_{\text {bin }}\right\rangle=\frac{1}{2^{D / 2}} \sum_{m \sim \text { even } / \text { odd }} \sqrt{\binom{D+1}{m}}|N m\rangle
$$

FOCK－STATE CODES

－Finite－support codes
－Codewords expressed conveniently w／Fock states．

Binomial

$$
\forall \rightarrow m \Rightarrow N \rightarrow r \rightarrow 0
$$

$$
\left|0 / 1_{\text {bin }}\right\rangle=\frac{1}{2^{D / 2}} \sum_{m \sim \text { even } / \text { odd }} \sqrt{\binom{D+1}{m}}|N m\rangle
$$

Chuang－Leung－Yamamoto
$|\overline{0}\rangle=\frac{1}{\sqrt{2}}(|40\rangle+|04\rangle)$
$|\overline{1}\rangle=|22\rangle$ ．
4031221304 $\begin{array}{llll}30 & 21 & 12 & 03\end{array}$
 vトリト 1001 00

GNU code

Dual－rail：$|10\rangle$ and $|01\rangle$
Even more exotic codes：
－Matrix－model（Swingle et al）
－RG Cat
－Penrose tilings
$|\overline{0}\rangle=\frac{1}{\sqrt{3}}(|003\rangle+|030\rangle+|300\rangle)$
$|\overline{1}\rangle=|111\rangle$

SYNDROMES

ERROR SYNDROMES

- Measuring linear or angular basis is TMI \rightarrow syndromes are modular.
- Codes with continuous syndromes require continuous ancilla msmnts, large ancillas.
$>$ In theory! Yale expts went beyond break even with first bit of syndrome.

Bosonic code	Encoding	Check operators
analog stabilizer	logical modes	nullifiers
GKP	logical qudits	modular position \& modular momentum
GKP-stabilizer	logical modes	modular position \& modular momentum
number-phase	logical qudits	modular number \& modular phase
cat	logical qudits	modular number
binomial \& Chebyshev	logical qudits	modular number
dual-rail	logical qubit	number (error-detecting only)
CLY	logical qudit	number

BOSONIC EXPERIMENTS

COMMERCIAL PROPOSALS

modes	Name	Platforms
4	Niset-Andersen- Cerf	Lloyd-Slotine
analog	Photonics (Anderson group)	
1	Binomial	Microwave cavities (Devoret, Sun groups)
1	Two-legged cat	Microwave cavities (Devoret, Bob)
1	Four-legged cat	Microwave cavities (Schoelkopf group; break-even QEC)
1	GKP	Trapped ions (Home group),
Microwave cavities (Devoret		
group; beyond break-even),		

For references, see:
https://errorcorrectionzoo.org/list/realizations

FBQC arXiv:2101.09310,
Interleaving arXiv:2103.08612,
https://youtu.be/E_dD1XUTaq4
o̊ Dual-rail + fusion-based QC

Ψ PsiQuantum

NOISE

NOISE MODELS

$$
\mathcal{N}(\rho)=\sum_{\ell} N_{\ell} \rho N_{\ell}^{\dagger}
$$

Hashing bound vs. loss rate γ for codes with energy constraint $\bar{n} \leq 10$

GKP vs. PHOTON LOSS

- Consider a particular (non-optimal) recovery operation --- (A) amplification + (B) conventional GKP recovery.

- But GKP codes can handle displacement!
- They achieve capacity up to constant* against loss channel
- Achieve hashing bound of displacement (AGWN) channel.

WRAPPING UP

MANY THINGS FIT INTO CV SYSTEMS!

Cartesian

MANY OF THEM ARE GROUPS...

arXiv:1911.00099
errorcorrectionzoo.org/c/group_gkp

Space	G	H	Related code
n qubits	\mathbb{Z}_{2}^{n}	\mathbb{Z}_{2}^{m}	qubit CSS
n modular qudits	\mathbb{Z}_{q}^{n}	\mathbb{Z}_{q}^{m}	modular-qudit CSS
n modes	\mathbb{R}^{n}	\mathbb{R}^{m}	analog stabilizer
n modes	\mathbb{R}^{n}	\mathbb{Z}^{n}	multimode GKP
n modes	\mathbb{R}^{n}	$\mathbb{Z}^{m<n}$	GKP-stabilizer
planar rotor	$U(1)$	\mathbb{Z}_{n}	rotor GKP
rigid body	$S O(3)$	point group	molecular

Table I: Special cases of group GKP codes

...BUT SOME ARE NOT!

Classical codewords are elements of an alphabet.

Quantum codewords are functions of an alphabet.

qubits

Galois qudits
modular qudits
oscillators
group-valued qudit

FUTURE DIRECTIONS

1. Encodings utilizing the entire multimode space.
2. "Non-CSS" encodings \rightarrow non-uniform superpositions. $>$ Non-symplectic lattice codes?
> Non-CSS spherical codes? See next talk!
3. Code bounds, can they encompass all codes?
4. Understanding soft (average-energy) cutoffs.
5. Mapping qubit primitives:
$>$ Chain-complex industry
> Qubit-inspired Fock-state codes
> Designs [arXiv:2211.05127]
> Schur-Weyl-Howe duality
$>$ Clifford hierarchy (for rotors?)
> Spacetime circuits
6. There are more codes and code classes to explore.

A bosonic code encoding one qubit in one mode will only have a limited amount of error-correction capability One worthwhile approach ... is to find bosonic codes that use multiple modes without requiring concatenation.

