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For details and references, see:
• arXiv:2211.05714 
• errorcorrectionzoo.org/c/oscillators



O. Painter, M. Mirhosseini, A. Faraon, J. Teufel, M. Spiropulu, R. Schoelkopf, M. Devoret, J. Home, I. Kaminer groups, many more

• Characterized by continuous degrees 
of freedom, such as position and 
momentum of a mechanical 
oscillator or quadrature components 
for an electromagnetic field mode.

• We already use them: 

➢ Communication (A)

➢ Excitations of current systems (C)

• We should study them: 

➢ Long natural lifetimes (C, E) 

➢ Extra degrees of freedom (B, C)

➢ Different geometry, states, 
operations (binary vs. lattices)

C. Microwave cavities +
superconducting circuits

B. Vibrations of atoms/molecules

E. Mechanical/acoustic resonators

D. Free-electron–light interactions

A. Optical fibers, free space



1. GKP states are powerful non-Gaussian resources
 GKP QEC + Gaussian states = universal computation (no magic-state distill.) arXiv:1903.00012

 Protecting against small shifts in a logical mode (no-go thm in DV) arXiv:1903.12615

2. Continuous-parameter families of transversal gates (Eastin-Knill no-go thm in DV).
 arXiv:1902.07714 and many others

3. Hamiltonian-based bias-preserving gates (no-go thm in DV).
 arXiv:1905.00450 (cat code CNOT gate)

4. Q-simulation; commuting-projector models for chiral topological phases (no-go thm in DV).
 arXiv:1902.06756, 1906.08270, 2107.02817 (e.g., fractional quantum Hall on the lattice)

5. Hardware efficiency: small CV codes ≥ small DV codes; cat codes > 1D Ising repetition code
 arXiv:2205.09767 (cat codes + 2D classical Ising model)

6. Single-mode codes do not have thresholds, but concatenation can improve qubit thresholds.
 arXiv:2107.13589 and refs. therein





• Pick some basis of 
normal modes for 
your signal (either in 
space or time).

• Classical signal is 
continuous! Can be 
expanded as linear 
combination of 
normal modes.

• In quantum state space, 
signal corresponds to 
tensor product of 
coherent states:

Blow Loudon Phoenix Shapherd 1992, Banaszek Kunz Jachura Jarzyna 2020, Thesis – N. Fabre 2021
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𝛼𝑗𝑓𝑗(𝑡) , 𝛼𝑗 ∈ ℂ Shannon 1947



• Find normal modes 
of Laplace’s equation 
for a box (either in 
space or time).

• Quantum mode, or qu-mode, arises 
from quantizing the amplitude of each 
(classical) normal mode.

• This allows us to consider 
superpositions of coherent states...

1 photon

Blow Loudon Phoenix Shapherd 1992, Banaszek Kunz Jachura Jarzyna 2020, Thesis – N. Fabre 2021



Classical codewords pack space in well-separated 
way, protecting from bit-flip errors.

Quantum codewords are 
superposed classical codewords.*

[[3,1]] quantum repetition

quantum lattice (GKP)quantum spherical (QSC)lattice

[3,1,2] repetition

spherical code

[4,3,2] single parity check [[4,2,2]]

*nonuniform superpositions yield “non-CSS” codes



1 photon

➢ More generally, a (single-mode) quantum 
state 𝜓 ∈ 𝐿2 ℝ  is a vector with finite 
occupation-number moments. 

✓ 𝜓 ො𝑛ℓ 𝜓 < ∞ for all ℓ ≥ 0. 

✓ Such states form Schwartz space 𝑆 ℝ .

➢ Ideal CV codewords are often not in 𝐿2 ℝ , 
but “regularized” versions in 𝑆 ℝ  yield 
the same basic protection.

arXiv:2211.05714 



Coherent 
states |𝛼⟩

Position states
|𝑥⟩

Momentum states
|𝑝⟩

Cartesian conjugate bases

Fock states
|𝑛⟩

Phase states
|𝜙⟩

Angular “conjugate” bases

• Each is a “basis” for states.
• Each offers ways to construct new codes and embed old ones.
• Each conjugate pair comes with an error basis for operators.





Position/momentum displacement 
operators 𝐷(𝜸) are the closest 
analogues of Pauli strings.

They form a complete and 
“orthonormal” basis.

Two notions of distance:
1. Hamming weight, Δ(𝜶) 
 → analogous to Pauli weight

Any physical (bounded) error 
operator can be expanded:

errorcorrectionzoo.org/c/oscillators



Stabilizer group is 
continuous, can look at Lie 
algebra (a.k.a. nullifiers):

Stabilizer 
“generators”

[[4,1,2]] qubit

codewords

[[4,1,2]]ℝ CV

Lloyd, Slotine, Braunstein late 1990s; see errorcorrectionzoo.org/c/analog_stabilizer



Any physical (bounded) 
operator can be expanded:

Position/momentum displacement 
operators 𝐷(𝜸) are the closest 
analogues of Pauli strings.

They form a complete and 
“orthonormal” basis.

Two notions of distance:
1. Hamming weight, Δ(𝜶) 
 → analogous to Pauli weight

2. Displacement length, ||𝜶||2 
 → relevant to GKP codes



▪ Stabilizer group is infinite, but discrete.
▪ Finite-dimensional (qudit) codespace
▪ Protect against small position and momentum displacements.

▪ Codewords form 1D lattices w/ position states (but form 2D lattice w/ coherent states!).

▪ Same picture holds in momentum space.

Gottesman, Preskill, Kitaev; see errorcorrectionzoo.org/c/gkp



▪ Consider a GKP code and remove some of the stabilizers -> degenerate lattice
▪ GKP-stabilizer codes encode one logical mode into physical modes 
▪ Protect infinite-dim state space against small displacements.

x = 0

x = 0

GKP

GKP

Noh, Girvin, Jiang; see errorcorrectionzoo.org/c/gkp-stabilizer





Fock states
|𝑛⟩

Phase states
|𝜙⟩

Cartesian conjugate bases Angular “conjugate” bases

• Each is a “basis” for states.
• Each offers ways to construct new codes and embed old ones.
• Each conjugate pair comes with an “operator basis” for errors.

Position states
|𝑥⟩

Momentum states
|𝑝⟩

Cartesian conjugate bases

Coherent 
states |𝛼⟩



THE BIG THREE STATE SPACES

Real momentum 
states |𝑝⟩

Discrete momentum 
states |±⟩

Displacements & 
Gaussian ops.

Pauli/Clifford 
groups

Real position 
states |𝑥⟩

CVQubit

Discrete position 
states |0⟩, |1⟩

Integer momentum 
states ℓ

rotor Pauli/Clifford 
groups

arxiv:2311.07679

Angle position 
states |𝜙⟩

Planar rotor



“Momentum” kicks (photon loss/gain)

𝑒𝑖𝜙 ො𝑛 = 

𝑛≥0

𝑒𝑖𝜙𝑛|𝑛⟩⟨𝑛| 

Position shifts (rotations)

• Phase and Fock states are position and momentum 
states of a “rotor” with no negative momentum.

• “Momentum” kicks and Fock-space rotations mimc 
the momentum kicks and position shifts of a rotor.

• Their products form a 
complete basis. 

• Any physical (bounded) error 
operator can be expanded.

Pegg, Barnett, Susskind, Glogouwer, etc.; see arXiv:2211.05714, see also arXiv:2311.13670



▪ GKP codes can be similarly constructed for the rotor: 
line → circle

▪ Correct against 
➢ small shifts in the angular position 
➢ small kicks in angular momentum.

see errorcorrectionzoo.org/c/rotor_gkp



▪ CV analogues of bona-fide rotor GKP codes
▪ Spaced apart in both phase-state and Fock-state basis.
▪ Protect against Fock-space rotations and “momentum” kicks (photon losses/gains).

▪ Number-phase codes come 
with a set of “stabilizers”, but 
it is no longer a group:

Combes, Baragiola, Grimsmo; see errorcorrectionzoo.org/c/number_phase



▪ Cat codes ∼ “regularized” number-phase codes.

 Two-component cat code, |0⟩ = 𝛼  

and |1⟩ = −𝛼 , “stabilized” by 
quantum double well Lindbladian 
master eqn.

𝜕𝜌

𝜕𝑡
=

Cochrane, Milburn, Munro 1999, Leghtas et al 2013; see errorcorrectionzoo.org/c/cat



➢ Two-component cat codes:
1. Hardware-efficient CV version of repetition code.
2. Self-correcting classical memory (vs. dephasing).
3. Several stabilization schemes (realized).
4. Practical X-type gates (realized).
5. Bias-preserving gates.

arXiv:2008.02816, 2205.09767

arXiv:1904.09474, 1905.00450

arXiv:1312.2017, 1705.02401

arXiv:1312.2017, 1412.4633, 1605.09408, 1907.12131

errorcorrectionzoo.org/c/two-legged-cat

➢ Four-component cat codes:
1. Protection vs. loss in concatenated schemes.
2. Fault-tolerant syndrome msmnt (realized).
3. Track errors without correcting (realized) 

1st break-even QEC

errorcorrectionzoo.org/c/cat

arXiv:1207.0679

arXiv:1207.0679, 1311.2534, 1803.00102

arXiv:1311.2534





➢ Add up individual binary labels of the [ 4,1,2 ] code of each basis state for each codeword:

➢ Finite-support version of the cat code.
➢ Maintains the same spacing in Fock space as before. 

Michael et al 2015; see errorcorrectionzoo.org/c/binomial



• Finite-support codes 
• Codewords expressed conveniently w/ Fock states.

Binomial

Chuang-Leung-Yamamoto

•

•

•

|10⟩ |01⟩

|Dicke𝑁𝑚
𝑛 ⟩

see errorcorrectionzoo.org/c/fock_state





• Measuring linear or angular basis is TMI → syndromes are modular.
• Codes with continuous syndromes require continuous ancilla 

msmnts, large ancillas.
➢ In theory! Yale expts went beyond break even with first bit of 

syndrome.



modes Name Platforms

4
Niset-Andersen-
Cerf Photonics (Anderson group)

9
Lloyd-Slotine 
analog Photonics (Furusawa group)

1 Binomial
Microwave cavities (Devoret, 
Sun groups)

1 Two-legged cat

Microwave cavities (Devoret, 
Leghtas, Wang groups, Alice & 
Bob)

1 Four-legged cat
Microwave cavities (Schoelkopf 
group; break-even QEC)

1 GKP

Trapped ions (Home group), 
Microwave cavities (Devoret
group; beyond break-even),
Photonics (Furusawa group)

GKP + cluster states

arXiv:2010.02905
https://youtu.be/vzc53S3ACWw 

Evaluate ideas 
quickly and don’t 

get attached.

Cat/GKP + rep-n/surface

arXiv:2012.04108, 2103.06994
https://youtu.be/fN5-UO2fy0c

Cat + repetition

arXiv:1907.11729
arXiv:2204.09128

Dual-rail + fusion-based QC

FBQC arXiv:2101.09310,
Interleaving arXiv:2103.08612, 
https://youtu.be/E_dD1XUTaq4

For references, see:
https://errorcorrectionzoo.org/list/realizations





Microwave cavities 
+ superconducting circuits Motion of trapped ionsNano-acoustic resonators

Optical fibers
& cavities

Kraus form

Loss/attenuation Displacement/AGWN Dephasing



Hashing bound vs. loss rate 𝛾 for codes with energy constraint 𝑛 ≤ 10

39

GKP outperforms everyone: 
what’s going on?

arXiv:1708.05010
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44

• Consider a particular (non-optimal) recovery operation --- (A) amplification + (B) 
conventional GKP recovery.

• But GKP codes can handle displacement!

• They achieve capacity up to constant* against loss channel

• Achieve hashing bound of displacement (AGWN) channel.

VVA, Noh, ... Jiang; arXiv:1708.05010v2; see also Cerf, Leuchs, Polzik book and Caruso Giovanetti Holevo, arXiv:quant-ph/0609013
*arXiv:quant-ph/0105058,arXiv:1708.07257,arXiv:1801.04731,arXiv:1801.07271; see L. Jiang’s BBQ2024 talk

(1) Pure loss   +   (2) Amplification   =   (3) Displacement noise

|0⟩

𝑛 ≡ ⟨ ො𝑛⟩

|0⟩

(1) Pure loss

|0⟩

(2) Amplification





Quantum 
spherical
(𝑛-mode)

Homological 
number-phase
(𝑛-mode)

Number-phase 
(1 mode)

Angular

Fock-state

Chuang-Leung-Yamamoto, binomial, chi-
squared, Ouyang-Chao permutation-
invariant, matrix-model, pair-cat

GKP

GKP-
stabilizer

Analog

Cartesian

(degenerate lattice)



GKP

GKP-
stabilizer

Analog

Homological 
number-phase
(𝑛-mode)

arXiv:1911.00099
errorcorrectionzoo.org/c/group_gkp

Number-phase 
(1 mode)



Classical codewords are 
elements of an alphabet.

Quantum codewords are 
functions of an alphabet.

⋮ ⋮
Spheres?
Two-pt homogeneous spaces?
More general?



1. Encodings utilizing the entire multimode space.

2. “Non-CSS” encodings → non-uniform superpositions.

➢ Non-symplectic lattice codes?

➢ Non-CSS spherical codes? See next talk!

3. Code bounds, can they encompass all codes?

4. Understanding soft (average-energy) cutoffs.

5. Mapping qubit primitives:

➢ Chain-complex industry

➢ Qubit-inspired Fock-state codes

➢ Designs [arXiv:2211.05127]

➢ Schur-Weyl-Howe duality

➢ Clifford hierarchy (for rotors?)

➢ Spacetime circuits

6. There are more codes and code classes to explore.

arXiv:2210.15844

A bosonic code encoding one qubit in one 
mode will only have a limited amount of 
error-correction capability … . One 
worthwhile approach … is to find bosonic 
codes that use multiple modes without 
requiring concatenation. 

I’m interested in 
small codes that 
make a difference. 

This week’s talks
(paraphrasing)

A drink that makes 
you live 300 years, but 
makes you function 10 
times slower.

(emphasis mine)
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