Tutorial on Bosonic Codes

For details and references, see:

- arXiv:2211.05714
- errorcorrectionzoo.org/c/oscillators

Advances in Quantum Coding Theory Workshop

CONTINUOUS-VARIABLE (CV or "BOSONIC") SYSTEMS

- Characterized by continuous degrees of freedom, such as **position** and **momentum** of a mechanical oscillator or **quadrature components** for an electromagnetic field mode.
- We already use them:
 - Communication (A)
 - Excitations of current systems (C)
- We **should study** them:
 - Long natural lifetimes (C, E)
 - Extra degrees of freedom (B, C)
 - Different geometry, states, operations (binary vs. lattices)

A. Optical fibers, free space

C. Microwave cavities + superconducting circuits

B. Vibrations of atoms/molecules

D. Free-electron–light interactions

nanobeam OMC		coupling waveguide
	h	
acoustic shielding		<u>2 μm</u>

E. Mechanical/acoustic resonators

O. Painter, M. Mirhosseini, A. Faraon, J. Teufel, M. Spiropulu, R. Schoelkopf, M. Devoret, J. Home, I. Kaminer groups, many more

∞ DIMENSIONS circumvents NO-GO THMS

1. GKP states are powerful **non-Gaussian resources**

GKP QEC + Gaussian states = universal computation (no magic-state distill.) arXiv:1903.00012 Protecting against small shifts in a logical mode (no-go thm in DV) arXiv:1903.12615

2. Continuous-parameter families of **transversal gates** (Eastin-Knill no-go thm in DV). arXiv:1902.07714 and many others

3. Hamiltonian-based bias-preserving gates (no-go thm in DV). arXiv:1905.00450 (cat code CNOT gate)

4. Q-simulation; commuting-projector models for **chiral topological phases** (no-go thm in DV). arXiv:1902.06756, 1906.08270, 2107.02817 (e.g., fractional quantum Hall on the lattice)

5. Hardware efficiency: small CV codes ≥ small DV codes; cat codes > 1D Ising repetition code arXiv:2205.09767 (cat codes + 2D classical Ising model)

6. Single-mode codes do not have thresholds, but concatenation can **improve qubit thresholds**. arXiv:2107.13589 and refs. therein WHAT IS A qu-MODE?

QUANTIZING SIGNALS

- Pick some basis of normal modes for your signal (either in space or time).
- Classical signal is continuous! Can be expanded as linear combination of normal modes.
- In quantum state space, signal corresponds to tensor product of coherent states:

 $\psi(t) = \sum_{j=1}^{n} \alpha_j f_j(t)$, $\alpha_j \in \mathbb{C}$ Shannon 1947

$$|\psi\rangle = \bigotimes_{j=1}^n |\alpha_j\rangle \in \ell^2(\mathbb{R}^n)$$

Blow Loudon Phoenix Shapherd 1992, Banaszek Kunz Jachura Jarzyna 2020, Thesis – N. Fabre 2021

WHAT IS A qu-MODE???

Find normal modes
 of Laplace's equation
 for a box (either in
 space or time).

 Quantum mode, or qu-mode, arises from quantizing the **amplitude** of **each** (classical) normal mode.

This allows us to consider
 superpositions of coherent states...

Blow Loudon Phoenix Shapherd 1992, Banaszek Kunz Jachura Jarzyna 2020, Thesis – N. Fabre 2021

CLASSICAL

Classical codewords pack space in well-separated way, protecting from **bit-flip errors**.

*nonuniform superpositions yield "non-CSS" codes

QUANTUM Quantum codewords are superposed classical codewords.*

 $|\overline{1}\rangle = \sum_{\alpha \in \bigcirc} |\alpha\rangle$

 $|\overline{0}\rangle = \sum |\alpha\rangle$

[[3,1]] quantum repetition

0

quantum lattice (GKP)

quantum spherical (QSC)

GENERAL STATES

- → More generally, a (single-mode) quantum state $|\psi\rangle \in L^2(\mathbb{R})$ is a vector with finite occupation-number moments.
 - $\checkmark \left< \psi \right| \hat{n}^{\ell} \left| \psi \right> < \infty \text{ for all } \ell \geq 0.$
 - ✓ Such states form **Schwartz space** $S(\mathbb{R})$.
- ➤ Ideal CV codewords are often not in L²(ℝ), but "regularized" versions in S(ℝ) yield the same basic protection.

- Each is a "basis" for **states**.
- Each offers ways to **construct** new codes and **embed** old ones.
- Each conjugate pair comes with an **error basis** for operators.

CARTESIAN CODES

CARTESIAN ERROR BASIS

Position/momentum displacement operators $D(\gamma)$ are the closest $D(\gamma) \equiv \exp(\gamma a - \gamma^* a^{\dagger})$ analogues of **Pauli strings**.

They form a complete and "orthonormal" **basis**.

Any physical (bounded) error operator can be **expanded**:

$$\operatorname{tr}\left(D(\gamma)D(\eta)^{\dagger}\right) = \pi\delta^{2}(\gamma - \eta)$$

$$U(\theta) = \frac{1}{\pi} \int d^2 \gamma \ u_{\theta}(\gamma) D(\gamma)$$

Two notions of distance:

- 1. Hamming weight, $\Delta(\alpha)$
 - \rightarrow analogous to Pauli weight

ANALOG STABILIZER CODES

Lloyd, Slotine, Braunstein late 1990s; see errorcorrectionzoo.org/c/analog_stabilizer

CARTESIAN ERROR BASIS

Position/momentum displacement operators $D(\gamma)$ are the closest analogues of Pauli strings.

They form a complete and "orthonormal" basis.

Any physical (bounded) operator can be expanded:

$$D(\gamma) \equiv \exp\left(\gamma a - \gamma^* a^\dagger\right)$$

$$\operatorname{tr}\left(D(\gamma)D(\eta)^{\dagger}\right) = \pi\delta^{2}(\gamma - \eta)$$

$$U(\theta) = \frac{1}{\pi} \int d^2 \gamma \ u_{\theta}(\gamma) D(\gamma)$$

Two notions of distance:

1. Hamming weight, $\Delta(\alpha)$ \rightarrow analogous to Pauli weight 2. Displacement length, $||\alpha||_2$ \rightarrow relevant to GKP codes

GKP CODES: POSITION STATE FORMULATION

- Stabilizer group is infinite, but **discrete**.
- Finite-dimensional (qudit) codespace
- Protect against small position and momentum displacements.

$$\mathsf{S}_{\mathrm{GKP}} = \langle S_1, S_2 \rangle = \langle e^{i\sqrt{2\pi N}\hat{x}}, e^{-i\sqrt{2\pi N}\hat{p}} \rangle = \{S_1^a S_2^b \,|\, a, b \in \mathbb{Z}\}$$

Codewords form 1D lattices w/ position states (but form 2D lattice w/ coherent states!).

$$|0_{\text{GKP}}\rangle = \sum_{\ell \in \mathbb{Z}} |(2\ell)\sqrt{\pi}\rangle$$
 and $|1_{\text{GKP}}\rangle = \sum_{\ell \in \mathbb{Z}} |(2\ell+1)\sqrt{\pi}\rangle$

Same picture holds in momentum space.

Gottesman, Preskill, Kitaev; see errorcorrectionzoo.org/c/gkp

GKP-STABILIZER CODES

- Consider a GKP code and **remove** some of the stabilizers -> degenerate lattice
- GKP-stabilizer codes encode one logical mode into physical modes
- Protect infinite-dim state space against small displacements.

Noh, Girvin, Jiang; see errorcorrectionzoo.org/c/gkp-stabilizer

ANGULAR CODES

- Each is a "basis" for **states**.
- Each offers ways to **construct** new codes and **embed** old ones.
- Each conjugate pair comes with an "operator basis" for errors.

THE BIG THREE STATE SPACES

Qubit ____

Discrete position states $|0\rangle$, $|1\rangle$

Real position states $|x\rangle$

10000

Planar rotor

Angle position states $|\phi\rangle$

Discrete momentum states |±⟩

Pauli/Clifford groups

Real momentum states $|p\rangle$

Displacements & Gaussian ops.

Integer momentum states $|\ell\rangle$

rotor Pauli/Clifford groups arxiv:2311.07679

NUMBER-PHASE "ROTOR"

- **Phase** and **Fock states** are position and momentum states of a "rotor" with **no negative momentum**.
- "Momentum" kicks and Fock-space rotations mimc the momentum kicks and position shifts of a rotor.

"Momentum" kicks (photon loss/gain)

$$\hat{E}_{\ell} = \begin{cases} \sum_{n \ge 0} |n+\ell\rangle \langle n| & \ell \ge 0\\ \sum_{n \ge 0} |n\rangle \langle n+|\ell|| = \hat{E}_{|\ell|}^{\dagger} & \ell < 0 \end{cases} \quad \text{for} \quad \ell \in \mathbb{Z}$$

Position shifts (rotations)

$$e^{i\phi\hat{n}} = \sum_{n\geq 0} e^{i\phi n} |n\rangle\langle n|$$

- Their products form a complete **basis**.
- Any physical (bounded) error operator can be **expanded**.

Pegg, Barnett, Susskind, Glogouwer, etc.; see arXiv:2211.05714, see also arXiv:2311.13670

ROTOR GKP CODES

- GKP codes can be similarly constructed for the rotor:
 line → circle
- Correct against
 - small shifts in the angular position
 - small kicks in angular momentum.

NUMBER-PHASE CODES

- **CV analogues** of bona-fide rotor GKP codes
- Spaced apart in **both** phase-state and Fock-state basis.
- Protect against Fock-space rotations and "momentum" kicks (photon losses/gains).

 $|0_{\text{num-ph}}\rangle = \left(|\phi = 0\rangle + \left|\phi = \frac{2\pi}{3}\right\rangle + \left|\phi = \frac{4\pi}{3}\right\rangle\right)/\sqrt{3}$ $|1_{\text{num-ph}}\rangle = \left(\left|\phi = \frac{\pi}{3}\right\rangle + \left|\phi = \pi\right\rangle + \left|\phi = \frac{5\pi}{3}\right\rangle\right)/\sqrt{3}$

 Number-phase codes come with a set of "stabilizers", but it is no longer a group:

$$\mathsf{S}_{\text{num-phase}} = \{ e^{i\frac{2\pi}{N}\hat{n}a} \hat{E}_{2Nb}^{\dagger} \mid a \in \mathbb{Z}_N, b \in \mathbb{N}_0 \}$$

Combes, Baragiola, Grimsmo; see errorcorrectionzoo.org/c/number_phase

CAT CODES are regularized NUMBER-PHASE CODES

Cat codes ~ "regularized" number-phase codes.

$$|\phi\rangle \propto \sum_{n\geq 0} e^{i\phi n} |n\rangle \quad \rightarrow \quad e^{-\frac{1}{2}\alpha^2} \sum_{n\geq 0} \frac{\alpha^n}{\sqrt{n!}} e^{i\phi n} |n\rangle$$

and $|\overline{1}\rangle = |-\alpha\rangle$, "stabilized" by **quantum double well** Lindbladian master eqn.

Cochrane, Milburn, Munro 1999, Leghtas et al 2013; see errorcorrectionzoo.org/c/cat

SINGLE-MODE CAT CODES

> Two-component cat codes:

- 1. Hardware-efficient CV version of repetition code.
- 2. Self-correcting classical memory (vs. dephasing).
- 3. Several stabilization schemes (realized).
- 4. Practical X-type gates (<u>realized</u>).
- 5. Bias-preserving gates.

Four-component cat codes:

- 1. Protection vs. loss in concatenated schemes.
- 2. Fault-tolerant syndrome msmnt (realized).
- Track errors without correcting (<u>realized</u>)
 1st break-even QEC

errorcorrectionzoo.org/c/cat **Ecc** arXiv:1207.0679 arXiv:1207.0679, <u>1311.2534</u>, <u>1803.00102</u>

arXiv:1311.2534

arXiv:1312.2017, <u>1412.4633</u>, 1605.09408, <u>1907.12131</u>

arXiv:1312.2017, <u>1705.02401</u>

arXiv:1904.09474, 1905.00450

FOCK-STATE CODES

FOUR-QUBIT CODE \rightarrow BINOMIAL CODE

> Add up individual binary labels of the [[4,1,2]] code of each basis state for each codeword:

$$|0_L\rangle = \frac{1}{\sqrt{2}} \left(|0000\rangle + |1111\rangle\right) \longrightarrow |0_{\text{bin}}\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |4\rangle\right)$$

$$|1_L\rangle = \frac{1}{\sqrt{2}} \left(|0011\rangle + |1100\rangle\right) \longrightarrow |1_{\text{bin}}\rangle = |2\rangle$$

- \succ Finite-support version of the cat code.
- > Maintains the same spacing in Fock space as before.

$$|0/1_{\rm bin}\rangle = \frac{1}{2^{D/2}} \sum_{m \sim \text{even/odd}} \sqrt{\binom{D+1}{m}} |Nm\rangle$$

Michael et al 2015; see errorcorrectionzoo.org/c/binomial

FOCK-STATE CODES

Finite-support codes

 $|\overline{0}
angle=rac{1}{\sqrt{3}}(|003
angle+|030
angle+|300
angle)$

 $|\overline{1}
angle = |111
angle$

Codewords expressed conveniently w/ Fock states.

• Penrose tilings

SYNDROMES

ERROR SYNDROMES

- Measuring linear or angular basis is TMI \rightarrow syndromes are **modular**.
- Codes with continuous syndromes require **continuous** ancilla msmnts, large ancillas.
 - In theory! Yale expts went beyond break even with first bit of syndrome.

Bosonic code	Encoding	Check operators
analog stabilizer	logical modes	nullifiers
GKP	logical qudits	modular position & modular momentum
GKP-stabilizer	logical modes	modular position & modular momentum
number-phase	logical qudits	modular number & modular phase
cat	logical qudits	modular number
binomial & Chebyshev	logical qudits	modular number
dual-rail	logical qubit	number (error-detecting only)
CLY	logical qudit	number

BOSONIC EXPERIMENTS

modes	Name	Platforms
	Niset-Andersen-	
4	Cerf	Photonics (Anderson group)
	Lloyd-Slotine	
9	analog	Photonics (Furusawa group)
		Microwave cavities (Devoret,
1	Binomial	Sun groups)
1	Two-legged cat	Microwave cavities (Devoret, Leghtas, Wang groups, Alice & Bob)
		Microwave cavities (Schoelkopf
1	Four-legged cat	group; break-even QEC)
		Trapped ions (Home group),
		Microwave cavities (Devoret
		group; beyond break-even),
1	GKP	Photonics (Furusawa group)

COMMERCIAL PROPOSALS

Evaluate ideas quickly and don't get attached.

arXiv:2012.04108, 2103.06994 https://youtu.be/fN5-UO2fy0c Cat/GKP + rep-n/surface AWS Caltech

arXiv:2010.02905 https://youtu.be/vzc53S3ACWw GKP + cluster states $X \land N \land D U$

For references, see: https://errorcorrectionzoo.org/list/realizations FBQC arXiv:2101.09310, Interleaving arXiv:2103.08612, https://youtu.be/E_dD1XUTaq4 **Dual-rail + fusion-based QC W PsiQuantum**

Yale

repetition

ALICE & BOB

arXiv:1907.11729

arXiv:2204.09128

en in in its in the internet internet in the internet inter

microware

q[c]i

Hashing bound vs. loss rate γ for codes with energy constraint $\overline{n} \leq 10$

GKP vs. PHOTON LOSS

• Consider a **particular (non-optimal) recovery operation** --- (A) amplification + (B) conventional GKP recovery.

- But GKP codes can handle displacement!
- They achieve capacity up to constant* against loss channel
- Achieve hashing bound of displacement (AGWN) channel.

VVA, Noh, ... Jiang; arXiv:1708.05010v2; see also Cerf, Leuchs, Polzik book and Caruso Giovanetti Holevo, arXiv:quant-ph/0609013 *arXiv:quant-ph/0105058,arXiv:1708.07257,arXiv:1801.04731,arXiv:1801.07271; see L. Jiang's BBQ2024 talk

WRAPPING UP

Chuang-Leung-Yamamoto, binomial, chisquared, Ouyang-Chao permutationinvariant, matrix-model, pair-cat

MANY OF THEM ARE GROUPS...

GKP

GKPstabilizer

Homological number-phase (*n*-mode)

arXiv:1911.00099 errorcorrectionzoo.org/c/group_gkp

Space	G	H	Related code
n qubits	\mathbb{Z}_2^n	\mathbb{Z}_2^m	qubit CSS
n modular qudits	\mathbb{Z}_q^n	\mathbb{Z}_q^m	modular-qudit CSS
n modes	\mathbb{R}^n	\mathbb{R}^m	analog stabilizer
n modes	\mathbb{R}^n	\mathbb{Z}^n	multimode GKP
n modes	\mathbb{R}^{n}	$\mathbb{Z}^{m < n}$	GKP-stabilizer
planar rotor	U(1)	\mathbb{Z}_n	rotor GKP
rigid body	SO(3)	point group	molecular

Table I: Special cases of group GKP codes

...BUT SOME ARE NOT!

	Classical codewords are elements of an alphabet.	Quantum codewords are functions of an alphabet.
$\mathbb{Z}_2^n = \mathbb{F}_2^n$ \mathbb{F}^n	bits a-ary strings	qubits Galois qudits
\mathbb{Z}_q^n	q -ary strings over \mathbb{Z}_q	modular qudits
$\mathbb{R}^{\hat{n}}$ G	reals finite group	oscillators group-valued qudit

Spheres?

Two-pt homogeneous spaces? More general?

FUTURE DIRECTIONS

- 1. Encodings utilizing the entire **multi**mode space.
- **2.** "Non-CSS" encodings \rightarrow non-uniform superpositions.
 - Non-symplectic lattice codes?
 - Non-CSS spherical codes? See next talk!
- 3. Code **bounds**, can they encompass all codes?
- 4. Understanding soft (average-energy) cutoffs.
- 5. Mapping **qubit primitives**:
 - Chain-complex industry
 - Qubit-inspired Fock-state codes
 - Designs [arXiv:2211.05127]
 - Schur-Weyl-Howe duality
 - Clifford hierarchy (for rotors?)
 - Spacetime circuits
- 6. There are more codes and **code classes** to explore.

I'm interested in **small codes** that make a **difference**.

This week's talks (paraphrasing)

A bosonic code encoding one qubit in one mode will only have a **limited amount** of error-correction capability One worthwhile approach ... is to find bosonic codes that use multiple modes **without requiring concatenation.**

arXiv:2210.15844

A drink that makes you live **300 years**, but makes you function **10 times** slower.

(emphasis mine)