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Motivation: reducing QEC overhead

● Fault-tolerant applications require 

millions of qubits

● Surface codes and honeycomb 

codes incur an enormous overhead

[1] Gidney, Craig, et al. "A fault-tolerant honeycomb memory." Quantum 5 (2021): 605.

Figure from [1]



Potential solution: LDPC codes

Code Dimension k Distance d

Toric 2 ϴ(√n)

Hypergraph product ϴ(n) ϴ(√n)

Good qLDPC ϴ(n) ϴ(n)

Hyperbolic ϴ(n) ϴ(log n)

For practical purposes, we care about finite system size performance, not asymptotics



Toric code Hyperbolic surface code

[1] Breuckmann, Nikolas P., and Barbara M. Terhal. "Constructions and noise threshold of hyperbolic surface codes." IEEE transactions on Information Theory 62.6 (2016): 3731-3744.

Background: hyperbolic surface codes

Genus = 1 Genus scales with area



In practice we need a circuit, not just a code

Quantum circuit constrained by:
● Idling, gate and measurement noise
● Native physical operations
● Qubit connectivity



Previous work: subsystem hyperbolic codes

● Subsystem hyperbolic codes [2]:

○ Weight-3 checks

○ 4.3x saving for circuit noise

○ Pseudo-thresholds >0.5%

○ Flexibility arises from allowing ISG 

to vary

○ Can we do better?

[1] Breuckmann, Nikolas P., and Barbara M. Terhal. "Constructions and noise threshold of hyperbolic surface codes." IEEE transactions on Information Theory 62.6 (2016): 3731-3744.
[2] Higgott, Oscar, and Nikolas P. Breuckmann. "Subsystem codes with high thresholds by gauge fixing and reduced qubit overhead." Physical Review X 11.3 (2021): 031039.



This talk

5x-50x more efficient

Properties:
● Weight-two checks
● Degree-three connectivity
● Biplanar & modular
● Efficient decoder (MWPM/UF)
● High threshold (pair measurements)



Floquet codes

● Defined on three-colourable lattice

○ Each edge is the colour of the 

faces it connects

● Measure weight-two anti-commuting 

checks

○ XX on red, YY on green, ZZ on 

blue

[1] Hastings, Matthew B., and Jeongwan Haah. "Dynamically generated logical qubits." Quantum 5 (2021): 564.

Qubits on vertices



Empty subsystem code

● Treat each edge as a gauge 

generator

● Stabilisers are cycles of edge 

operators

○ Including homologically 

non-trivial loops!

● With all stabilisers fixed, no logical 

degrees of freedom

“Inner logical” commutes 
with checks



Floquet code schedule

● Measure:
○ XX on red edges
○ YY on green edges
○ ZZ on blue edges

● Can show this only measures bi-coloured 
cycles

● But bi-coloured cycles are homologically 
trivial

● Homologically non-trivial cycles 
preserved (“inner logical operators”)

[1] Hastings, Matthew B., and Jeongwan Haah. "Dynamically generated logical qubits." Quantum 5 (2021): 564.
[2] Vuillot, Christophe. "Planar floquet codes." arXiv preprint arXiv:2110.05348 (2021).

Figure from [2]



The embedded homological code

● Each edge projected into a one-qubit 
subspace after measurement

● This forms an effective qubit in an 
embedded homological code



Logical operators for the toric honeycomb code



Decoding floquet codes

● Each “detector” compares a 

stabiliser in consecutive rounds

● Detectors formed from the parity 

of 12 edge measurements 

spanning 5 sub-rounds

● Can decode with MWPM or UF

[1] Kesselring, Markus S., et al. "Anyon condensation and the color code." arXiv preprint arXiv:2212.00042 (2022).

Figure from [1]



Floquet codes from hyperbolic tilings

● Can construct a floquet code from 
any colour code tiling [1,2]

● Vuillot [2] proposed using hyperbolic 
colour code tilings

● Asymptotic parameter scaling:
○ Finite encoding rate k/n
○ Distance: log(n)
○ kd2/n=log2(n)

● Explicit examples not previously 
studied

[1] Hastings, Matthew B., and Jeongwan Haah. "Dynamically generated logical qubits." Quantum 5 (2021): 564.
[2] Vuillot, Christophe. "Planar floquet codes." arXiv preprint arXiv:2110.05348 (2021).



Hyperbolic colour code tilings

Wythoff’s kaleidoscopic construction:

● Tiling generated through reflections 

across the sides of a triangle

● Can generate r.g.b uniform tiling 

from triangle group Δ(r/2,g/2,b/2)

● Finite tilings generated from 

quotients of Δ(r/2,g/2,b/2)

● Hyperbolic if 1/r + 1/g + 1/b < 1/2

4.8.10 uniform tiling



Families of uniform tilings we construct



Embedded homological codes of 8.8.8 Floquet codes

Red restricted lattice Green restricted lattice Blue restricted lattice

Definition: The embedded distance is the minimum distance of any of the three embedded homological codes



Small example: Bolza Floquet code

● Floquet code from 8.8.8 tiling of 

the genus-2 Bolza surface

● Opposite sides are identified

● Encodes four logical qubits into 

16 physical qubits



Logical operators of the Bolza code



Movement of the logical operators

● No static generating set of logical 

operators for Floquet codes

● After C sub-round, for C in {R,G,B}:

○ Multiply C-checks into logical 

operator if they lie within 

homologically non-trivial logical 

path



Semi-hyperbolic Floquet codes

● So far: logarithmic distance
● Need 10-12 logical error rates
● Can weaken curvature using 

semi-hyperbolic lattices
● Distance scales as √n
● Can achieve n/k = cd2 for smaller c

[1] Breuckmann, Nikolas P., et al. "Hyperbolic and semi-hyperbolic surface codes for quantum storage." Quantum Science and Technology 2.3 (2017): 035007.



Parameter improvement for semi-hyperbolic families

● Does fine-graining reduce 

advantage relative to honeycomb 

codes?

● Each line is a semi-hyperbolic 

code family

● Small (or no) reduction as 

distance scaled up with 

fine-graining



Logical qubits protected with embedded distance at least 6

Parameter improvement over 

planar honeycomb codes is:

● 6x using 300 qubits

● 10x-15x using 600 qubits

● 27x using 1400 qubits

Simulations 
of this code



Circuits and noise models

EM3 [1,2]

● Direct XX, YY and ZZ measurements

● Two-qubit depolarising noise correlated with measurement error

● Majorana-inspired [1]

SD6 [2]

● Standard circuit-level depolarising noise

● Use an ancilla and CNOTs for each edge measurement

[1] Chao, Rui, et al. "Optimization of the surface code design for Majorana-based qubits." Quantum 4 (2020): 352.
[2] Gidney, Craig, et al. "A fault-tolerant honeycomb memory." Quantum 5 (2021): 605.



Small example: Bolza code, four logicals (EM3)

96 qubits

16 qubits



Medium-sized example: encoding 32 logicals (EM3)

● 4.10.10 tiling

● Hyperbolic: 600 qubits, d=6

● Honeycomb: 6,912 qubits

● ~12x improvement over honeycomb

● >20x improvement over surface



Large example: 674 logical qubits
EM3

● 48x fewer qubits than 

honeycomb codes

● 21,504 physical qubits

● Teraquop footprint of 32 

physical per logical

● Distance 12

SD6

● 30x fewer qubits than honeycomb 

codes

● 53,760 physical qubits

● 5.6x fewer qubits than surface 

codes

● Distance ~21



Semi-hyperbolic threshold: Bolza surface

● 1.5%-2% threshold with 

EM3 noise

● Consistent with honeycomb 

code



How to implement hyperbolic connectivity?

Two-qubit gates local on hyperbolic 

surface. We propose two 

architectures:

● Biplanar

● Modular



Background: thin planar architecture [1]

● Use few layers of couplers

● Couplers within each layer do not 

cross, but may be long-range

● Number of layers given by 

thickness of qubit connectivity 

graph

[1] Tremblay, Maxime A., Nicolas Delfosse, and Michael E. Beverland. "Constant-overhead quantum error correction with thin planar connectivity." Physical Review Letters 129.5 (2022): 050504.
[2] Halton, John H. "On the thickness of graphs of given degree." Information Sciences 54.3 (1991): 219-238.

Figure from [1]



Background: graph thickness results

● The thickness of a graph is the minimum number of planar subgraphs 

into which the graph can be decomposed 

● Any graph of degree d has thickness at most ceil(d/2) [1, Corollary 5]

● Any planar graph always has a planar representation in which the nodes 

are placed in arbitrary positions [1, Theorem 8]

[1] Halton, John H. "On the thickness of graphs of given degree." Information Sciences 54.3 (1991): 219-238.



Biplanar architecture

● Floquet code circuits are degree 3

● Can use two layers of couplers between 

qubits

● Couplers within each layer do not cross 

(planar graph) but may be long-range



Modular architecture

● Small modules with Euclidean 

connectivity

● Long-range connections between 

modules

● Tolerance to noisy links between 

modules? [1,2]

[1] Fowler, Austin G., et al. "Surface code quantum communication." Physical review letters 104.18 (2010): 180503.
[2] Ramette, Joshua, et al. "Fault-Tolerant Connection of Error-Corrected Qubits with Noisy Links." arXiv preprint arXiv:2302.01296 (2023).



Comparison with other recent work on LDPC codes

● Practical implementations of hypergraph and lifted product codes in [1,2]

● [1,2] perform better for standard depolarising noise (larger savings for 

smaller system sizes)

● Hyperbolic Floquet codes perform better for pair measurements

● [3] also constructs hyperbolic Floquet codes, uses a different noise model 

and contains new examples

[1] Bravyi, Sergey, et al. "High-threshold and low-overhead fault-tolerant quantum memory." arXiv preprint arXiv:2308.07915 (2023).
[2] Xu, Qian, et al. "Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays." arXiv preprint arXiv:2308.08648 (2023)
[3] Fahimniya, Ali, et al. "Fault-tolerant hyperbolic Floquet quantum error correcting codes." arXiv preprint arXiv:2309.10033 (2023).



Comparison with IBM’s Bivariate Bicycle codes

Bivariate Bicycle [1] Hyperbolic Floquet

Overhead reduction: ~13x ~12x

System size: 288 qubits 600 qubits

Noise model: Standard circuit-level Pair measurements

Connectivity degree: 6 3

Decoder: BP+OSD (cubic runtime) MWPM (linear runtime)

[1] Bravyi, Sergey, et al. "High-threshold and low-overhead fault-tolerant quantum memory." arXiv preprint arXiv:2308.07915 (2023).



Future work: logical gates

Adapt techniques for hyperbolic codes:

● Dehn twists & lattice surgery [1]

○ Constant cumulative degree?

○ Preserve biplanarity?

● Fold-transversal gates [2]

[1] Breuckmann, Nikolas P., et al. "Hyperbolic and semi-hyperbolic surface codes for quantum storage." Quantum Science and Technology 2.3 (2017): 035007.
[2] Breuckmann, Nikolas P., and Simon Burton. "Fold-transversal Clifford gates for quantum codes." arXiv preprint arXiv:2202.06647 (2022).



Conclusions

● Constructed Floquet codes from hyperbolic and semi-hyperbolic tilings

● For pair measurement architectures (EM3):

○ >48x more efficient than honeycomb and surface codes

○ Reach teraquop regime with 32 physical qubits per logical qubit

● Small examples with as few as 16 qubits, experimentally feasible

● All constructions implementable in biplanar or modular architectures

● Efficient to decode with MWPM or UF



Thank you


