Logical operations in Floquet codes

Margarita Davydova (MIT)

Advances in Quantum Coding Theory, Simons Institute, 14 Feb 2024

arXiv:2307.10353

Nat Tantivasadakarn (Caltech, MS Station Q)

Shankar Balasubramanian (MIT)

Dave Aasen (MS Station Q)

I. Introduction

Introduction

Floquet codes & Auts.

Dynamic color code

3D & non-Clifford

rd What

What's next 0

Conclusions

Stabilizer vs Floquet codes

Toric/surface code:

Repeat measurement of stabilizers (parity checks) for time $\sim O(d)$:

to guarantee
$$\Pr(\text{failure}) \le \left(\frac{p}{p_{th}}\right)^{O(d)}$$

• Geometrically local stabilizer codes (in $d \le 3$) always require some sort of repetition.

Stabilizer vs Floquet codes

Compare:

Hastings-Haah honeycomb code, [Quantum 5, 564 (2021)]:

repeat measurements of low-weight checks (that anticommute between different rounds) for time $\sim O(d)$,

- Instantaneous stabilizer group (ISG) of the toric code at each step
- Detects errors ('spacetime detectors' Kesselring et al '22, Delfosse Paetznick '23)
- e-m automorphism (logical $\overline{X} \leftrightarrow \overline{Z}$) each period

Stabilizer vs Floquet codes

Floquet code:

Periodic sequence of low-weight measurements (different rounds do not commute) that:

- Preserves logical information from round to round
- Detects errors = extracts syndromes ('spacetime detectors'; Delfosse Paetznick '23)

Measurement sequence can be thought of as incorporating syndrome extraction and evolving the code, simultaneously.

Stabilizer vs Floquet codes: logical operations

Want to achieve fault-tolerant universal quantum computation on encoded information.

Pauli stabilizer codes

• Transversal gates:

[Bravyi Koenig '12]

- no universal transversal gateset in the same code [Eastin-Knill '09]
- 2D: at most Clifford gates

Code switching - 3D: 3^{rd} level of Clifford hierarchy $2D \leftrightarrow 3D$

- Lattice surgery; twist defects (Clifford gates)
- Magic state injection (non-Clifford gates)

Stabilizer vs Floquet codes: logical operations

Want to achieve fault-tolerant universal quantum computation on encoded information.

Pauli stabilizer codes

• Transversal gates:

[Bravyi Koenig '12]

- no universal transversal gateset in the same code [Eastin-Knill '09]
- 2D: at most Clifford gates

Code switching - 3D: 3rd level of Clifford hierarchy $2D \leftrightarrow 3D$

- Lattice surgery; twist defects (Clifford gates)
- Magic state injection (non-Clifford gates)

Floquet codes

- Instantaneous stabilizer \rightarrow can adapt methods from stabilizer codes
 - lattice surgery; Haah Hastings arXiv:2110.09545
 - defect braiding; Ellison et al. arXiv:2306.08027
 - transversal gates

- Can absorb gates into code's "evolution" /syndrome extraction circuit
 - dynamic automorphism codes

II. Automorphisms

Topological quantum error-correcting codes

This talk: Floquet codes whose instantaneous stabilizer group $S(t) = \{s_i\}$ is that of a **topological quantum code.**

Information encoded in the ground states of a 'topologically ordered' Hamiltonian

 $H = -\sum_{i} s_{i} \qquad \text{local}$

- States locally indistinguishable \rightarrow protection
- Excitations = anyons (endpoints of strings in 2D)
- (Pauli) logical operators are generated by wrapping anyons along nontrivial cycles
- Examples: toric code (TC), color code, Kitaev quantum doubles

Automorphisms of the topological order

(also: topological symmetries; anyon permutation symmetries)

- Permutations of anyons that preserve topological order (fusion, braiding).
- Consequently, they permute respective logical operators, i.e. quantum gates.

e-m automorphism of the toric code (TC)

consider square lattice toric code

 $S_{TC} = \left\{ -\frac{|X^{\otimes 4}|}{|X^{\otimes 4}|}, |\overline{Z^{\otimes 4}|} \right\}$

e-m automorphism Ψ_{e-m} :

preserves the stabilizer group but swaps excitations and logical operators:

Lattice details don't matter! ("topological")

square lattice toric code

triangular lattice toric code

Automorphisms of the topological order

(also: topological symmetries; anyon permutation symmetries)

- Permutations of anyons that preserve topological order (fusion, braiding).
- Consequently, they permute respective logical operators, i.e. quantum gates.

Examples:

• e-m automorphism of the toric code φ_{e-m}

• symmetries of two toric codes=color code

Domain walls

Automorphism can occur across a domain wall in spacetime ("symmetry defect").

If the domain wall is temporal \equiv we applied a logical gate.

III. Automorhipsms in Floquet codes

e-m automorphism in the honeycomb code

[Hastings, Haah, Quantum 5, 564 (2021)]

Anyon condensation

Parent code:

- *S*_{PAR} contains all plaquette stabilizers from every round
- L_{PAR} contains logical operators from every round

Instantaneous/child codes:

- obtained by anyon condensation (measuring checks) from the parent model.

Kesselring et al '22

Anyon condensation

 $\mathbf{CC}\simeq\mathbf{TC}\times\mathbf{TC}$

[Kubica, et al NJP 17.8 (2015): 083026.]

Honeycomb code example:

Parent model: color code CC

qubits @ vertices

stabilizer group S = { $plaq_i(X)$, $plaq_i(Z)$ }

e-m automorphism from anyon condensation

honeycomb code:

Anyon condensation

Lattice doesn't matter (again).

For example,

Can both be parent models for the `honeycomb code'

(the stabilizer and check weights might vary)

also see Bauer '23

Transversal gates and domain walls

Symmetry defect in spacetime = logical operation

Putting all together: condensation graph

The family of honeycomb codes:

- Vertices are instantaneous codes; labeled by the anyon condensed from the parent model
- Edges are reversible transitions (conserve logical information)
- Honeycomb codes: torus!
- Loops are labeled by **automorphisms**

Putting all together: condensation graph

The family of honeycomb codes:

More logical operations?

 e-m automorphism of the honeycomb code is a Hadamard-like logical gate*

 How do we get more gates? Find a Floquet code where instantaneous code has more automorphisms = gates

* technically, it is $(H \otimes H)$ SWAP

Dynamic automorphism codes

(non-periodic) generalization of Floquet codes that can do logical operations General condensation graph:

- Some general parent code
- Vertices are instantaneous codes;
- **Edges** are information-preserving transitions
 - Closed loops labeled by automorphisms/gates

For a desired gate, choose one loop.

For computation, combine them:

Dynamic code that stores information, but also **computes all by short measurement sequences.**

IV. Dynamic automorphism codes

Logical operations in dynamic codes What are the possibilities?

- (1) Child models = Pauli stabilizer codes
 - **2D**: anyon strings \rightarrow logical Pauli operators X_i, Y_j, Z_k
 - Anyon permutations = (at most) Clifford gates

dynamic automorphism color code

- 72 auts. of the color code
- Clifford group on a stack of triangles

arXiv:2307.10353

arXiv:2307.10353

• **3D:** anyon strings \rightarrow logical Pauli Z_k

flux membranes \rightarrow Pauli X_i

"Cheshire excitations" \rightarrow Clifford S_j/CZ_{ij}

3D dynamic automorphism color code

• Non-Pauli measurements →

non-Clifford (CCZ) gate

(2) Beyond Pauli stabilizer codes?

Yes!

- non-Abelian 2D models (weird algebra of anyon strings)
- FT non-Clifford gates in 2D → **universal fault-tolerant QC**

* [upcoming work w/ B. Brown, A.Bauer, J.C. Magdalena de la Fuente, D. Williamson...]

* see also H. Bombin [1810.09571], B. Brown [sciadv.aay4929]

** earlier works:

Cong, Cheng, Wang '17

Laubscher, Loss, Wootton' 18

V. Dynamic automorphism <u>color</u> codes

Dynamic automorphism codes, arXiv:2307.10353

	parent model	measurements types and child codes	Possible Auts.	Gates from Auts.
(2D) honeycomb codes	CC	TC e.g. TC(rx)	$\{1, \varphi_{e-m}\}$	One gate $(H \otimes H)$ SWAP
2D dynamic automorphism color code	CC × CC	$TC \times TC \simeq CC$	72 auts of the CC rx ry rz gx gy gz bx by bz	

Automorphisms of the CC \simeq TC \times TC

Symmetries of the anyon table

72 automorphisms : $(S_3 \times S_3) \rtimes Z_2$

group structure: real Clifford on 2 qubits

Automorphisms of the CC \simeq TC \times TC

Symmetries of the anyon table

Generators:

£.

• e-m in each copy of the TC ($\sim H_1$ and H_2 -like)

row permutation/color swap (~ CNOT gate-like)

row permutation / g-b swap / CNOT gate*

row permutation/color swap (~ CNOT gate-like)

*technically, it is $CNOT_{12} CNOT_{34}$ for 4 qubits on the torus

row permutation / g-b swap / CNOT gate*

row permutation/color swap (~ CNOT gate-like)

*technically, it is $CNOT_{12} CNOT_{34}$ for 4 qubits on the torus

Dynamic automorphism codes, arXiv:2307.10353

	parent model	measurements types and child codes	Possible Auts.	Gates from Auts.
(2D) honeycomb codes	CC	TC e.g. TC(rx)	$\{1, \varphi_{e-m}\}$	One gate $(H \otimes H)$ SWAP
2D dynamic automorphism color code	CC × CC	$TC \times TC \simeq CC$	72 auts of the CC rx ry rz gx gy gz bx by bz	w/boundaries: full Clifford group
3D dynamic automorphism color code	3DCC ×3DCC × 3DCC	TC × TC × TC ≃ 3DCC measurements: 2-body Pauli 2-body Clifford	$\begin{array}{c} X \rightarrow XS \\ automorphism \\ (involving `cluster state' excitation \sim S) \end{array}$	non-Clifford gate ~ CCZ

Non-Clifford gate in 3D: analogous recipe to 2D

Caveat: need to insert a round of Pauli feedback to fix Z-stabilizers to +1

Dynamic automorphism codes, arXiv:2307.10353

	parent model	measurements types and child codes	Possible Auts.	Gates from Auts.
(2D) honeycomb codes	CC	TC e.g. TC(rx)	$\{1, \varphi_{e-m}\}$	One gate $(H \otimes H)$ SWAP
2D dynamic automorphism color code	CC × CC	$TC \times TC \simeq CC$	72 auts of the CC rx ry rz gx gy gz bx by bz	w/boundaries: full Clifford group
3D dynamic automorphism color code	3DCC ×3DCC × 3DCC	TC × TC × TC ≃ 3DCC measurements: 2-body Pauli 2-body Clifford	$\begin{array}{c} X \rightarrow XS \\ automorphism \\ (involving `cluster state' excitation \sim S) \end{array}$	non-Clifford gate ~ CCZ

VI. Outlook & conclusions

New view on Floquet/dynamic codes?

Break down syndrome extraction circuit to low-weight measurements (anticommuting between different rounds), such that **the syndrome extraction itself can implement logical operations.**

Logical operations in dynamic codes

- (1) Child models = Pauli stabilizer codes
 - **2D**: anyon strings \rightarrow logical Pauli operators X_i, Y_j, Z_k
 - Anyon permutations = (at most) Clifford gates

dynamic automorphism color code

- 72 auts. of the color code
- Clifford group on a stack of triangles

arXiv:2307.10353

arXiv:2307.10353

• **3D**: anyon strings \rightarrow logical Pauli Z_k

flux membranes \rightarrow Pauli X_i , Clifford S_j/CZ_{ij}

3D dynamic automorphism color code

• non-Clifford (CCZ) gate

(2) Beyond stabilizer codes?

Yes!

- 2D: non-Abelian models (weird algebra of anyon strings)
- Transitions between Abelian and non-Abelian models
- FT non-Clifford gates in 2D \rightarrow universal FT QC

[upcoming work w/ B. Brown, A.Bauer, J.C. Magdalena de la Fuente, D. Williamson...]

see also H. Bombin [1810.09571], B. Brown [sciadv.aay4929]

What's next?

Universal quantum computation in dynamic codes framework

Non-Abelian DA codes; new generalizations

General theory of faulttolerance; spacetime overheads

Decoders for DA codes

Thank you for your attention!