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l. Introduction

Introduction



Stabilizer vs Floquet codes

Toric/surface code:
Repeat measurement of stabilizers (parity checks) for time ~ 0(d):
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» Geometrically local stabilizer codes (in d < 3) always require some sort of repetition.



Stabilizer vs Floquet codes

Compare:
Hastings-Haah honeycomb code, [Quantum 5, 564 (2021)]:
repeat measurements of low-weight checks (that anticommute between different rounds) for time ~ 0(d),
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xx ~ TCy 7 » Detects errors (‘spacetime detectors’
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Stabilizer vs Floquet codes

Floquet code:
Periodic sequence of low-weight measurements (different rounds do not commute) that:

» Preserves logical information from round to round

» Detects errors = extracts syndromes (‘spacetime detectors’; Delfosse Paetznick '23)

Measurement sequence can be thought of as incorporating syndrome extraction and
evolving the code, simultaneously.



logical operations

Want to achieve fault-tolerant universal quantum computation on encoded information.

Pauli stabilizer codes

* Transversal gates:
— no universal transversal gateset in the same code

[Eastin-Knill ‘09]
— 2D: at most Clifford gates Code switching
— 3D: 31 level of Clifford hierarchy | 2D < 3D

[Bravyi Koenig ‘“12]

 Lattice surgery; twist defects (Clifford gates)

» Magic state injection (non-Clifford gates)



logical operations

Want to achieve fault-tolerant universal quantum computation on encoded information.

Pauli stabilizer codes Floquet codes

» Instantaneous stabilizer —» can adapt methods
from stabilizer codes

* lattice surgery; Haah Hastings arXiv:2110.09545

* Transversal gates:
— no universal transversal gateset in the same code

[Eastin-Knill ‘09] - defect braiding; Ellison et al. arXiv:2306.08027
_  transversal gates

— 2D: at most Clifford gates Code switching

— 3D: 3 level of Clifford hierarchy | 2D < 3D

[Bravyi Koenig ‘“12]

« Can absorb gates into code’s “evolution”
Isyndrome extraction circuit

 Lattice surgery; twist defects (Clifford gates)
* dynamic automorphism codes

* Magic state injection (non-Clifford gates)



ll. Automorphisms



Topological quantum error-correcting codes

This talk: Floquet codes whose instantaneous stabilizer group S(t) = {s;} is that of a
topological quantum code.

Information encoded in the ground states of a ‘topologically ordered’ Hamiltonian

H=—ZSL'

i AN COCOl

States locally indistinguishable — protection

Excitations = anyons (endpoints of strings in 2D)

(Pauli) logical operators are generated by wrapping anyons along nontrivial cycles

Examples: toric code (TC), color code, Kitaev quantum doubles



Automorphisms

(also: topological symmetries; anyon permutation symmetries)

« Permutations of anyons that preserve topological order (fusion, braiding).

« Consequently, they permute respective logical operators, i.e. quantum gates.



e-m automorphism of the toric code (TC)

consider square lattice toric code xZ' =
SR P R
e-m automorphism W,_y, :
preserves the stabilizer group but swaps e
ENG

excitations and logical operators:
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Lattice details don’t matter!
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Automorphisms

« Permutations of anyons that preserve topological order (fusion, braiding).

« Consequently, they permute respective logical operators, i.e. quantum gates.

Examples:
* e-m automorphism of the toric code f,_p, « symmetries of two toric codes=color code
e e ch—m m m (‘ e Y o
“\/o <—> \/0 rx|ry|rz| |im|em|el rx|ry|lrz| |lm|em|el
gx|gy|gz| = [mm[ff |ee gx|gy|gz| = mm|ff|ee
bx|by|[bz| |ml|me|ie bx|by|bz| [mlime|le

[|>

“Pc-m \ - E
S < <
rx|ry|rz Im|em|el
nggygz mmffee:)

bx|by|bz| |[ml|me|le
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Domain walls

Automorphism can occur across a domain wall in spacetime (“symmetry defect”).

If the domain wall is temporal = we applied a logical gate.
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lll. Automorhipsms in Floquet codes



e-m automorphism in the honeycomb code

[Hastings, Haah, Quantum 5, 564 (2021)]
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Anyon condensation

Parent code:

- Sp4g contains all plaquette stabilizers from every
round

- Lpar contains logical operators from every round

Instantaneous/child codes:

- obtained by anyon condensation
from the parent model.



Anyon condensation

Honeycomb code example:

Parent model: color code CC

qubits @ vertices
stabilizer group S = {plaq,(X), plag(Z)}

Kesselring et al 22

CC=TCxTC

[Kubica, et al NJP 17.8 (2015): 083026.]

anyon table
CC TC x TC
rx|ry|rz Im|em|el
gX |8y |gZ £ mm|ff|ee
bx|by|bz ml|me|le

rows: rx XryXrz = ImXemXel =1

1
columns: rx X gy Xbz =1 ImXmmXml = 1



e-m automorphism from anyon condensation  honeycomb code:

t=1, rx

shared anyon/
logical string

t=2, gy

e-m automorphism:
rz < bx
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Anyon condensation

Lattice doesn’t matter (again).

For example,

CcC (vanilla) TC x TC

NN CON DN
Ses
OTTR

Can both be parent models for the "honeycomb code’

(the stabilizer and check weights might vary)

also see Bauer ’23



Transversal gates and domain walls

Symmetry defect in spacetime = logical operation

e TC(r»)

Tc(b2)

Tc Dwe,m/{ TC(oy)
TC _TC (fx)
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The family of honeycomb codes:

ry bx gz
L ] @ ®
bZ. gyl rxl
gX rz by
@ ® @

condensation graph

Vertices are instantaneous codes;
labeled by the anyon condensed from the
parent model

Edges are reversible transitions
(conserve logical information)

Honeycomb codes: torus!

Loops are labeled by automorphisms



The family of honeycomb codes:

e-m automorphism
Hastings-Haah

condensation graph

trivial automorphism
any contractible cycle

trivial automorphism
of the CSS honeycomb
code (both cycles)
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More logical operations?

« e-m automorphism of the honeycomb
code is a Hadamard-like logical gate” Gl

Logical )Tz Logical Z_1

 How do we get more gates? Find a
Floquet code where instantaneous code
has more automorphisms = gates

* technically, itis (H @ H) SWAP



Dynamic automorphism codes

(non-periodic) generalization of Floquet codes that can do logical operations

General condensation graph:

| |
-1

O z
V \
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\ \&
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For a desired gate, choose one loop.

Some general parent code
Vertices are instantaneous codes;
Edges are information-preserving transitions

Closed loops labeled by automorphisms/gates

For computation, ' '

combine them: |\
]

Dynamic code that stores information, but also computes
all by short measurement sequences.



IV. Dynamic automorphism codes



Logical operations in dynamic codes
What are the possibilities?

(1) Child models = Pauli stabilizer codes 70710953

* 2D: anyon strings — logical Pauli operators X;,Y;, Z,

» Anyon permutations = (at most) Clifford gates

dynamic automorphism color code

« 72 auts. of the color code
» Clifford group on a stack of triangles

arXiv:2307.10353
« 3D: anyon strings — logical Pauli Z;,

flux membranes — Pauli X;

“Cheshire excitations™ — Clifford S; /CZ;;

3D dynamic automorphism color code

« Non-Pauli measurements —
non-Clifford (CCZ) gate

(2) Beyond Pauli stabilizer codes?

Yes!

* non-Abelian 2D models (weird algebra of anyon sirings)

« FT non-Clifford gates in 2D — universal fault-tolerant QC

* [upcoming work w/ B. Brown, A.Bauer, J.C. Magdalena de la
Fuente, D. Williamson...]

* see also H. Bombin [1810.09571], B. Brown [sciadv.aay4929]

** earlier works:
Cong, Cheng, Wang ‘17

Laubscher, Loss, Wootton’ 18



V. Dynamic automorphism color codes




Dynamic automorphism codes,

parent measurerrlents types and Possible Auts. Gates from
model child codes Auts.
CcC TC
(2D) {1; <pe—m} One gate
honeycomb e.g. TC(rx) 3 . " "
codes x % S': ™ TT— . > T
CC x CC = CC 72 auts of the CC
2D dynamic
automorphism rx|ry|rz
| d
Color code gx|gy|gz
bx|by|bz




Automorphisms of the CC =TC x TC

Symmetries of the anyon table

rx|ry|rz

gX|8Y|8<
bx|by|bz

72 automorphisms :



Automorphisms of the CC =TC x TC

Symmetries of the anyon table

Generators:

» e-min each copy of the TC (~ H, and H,-like) * row permutation/color swap (~ CNOT gate-like)

rx|ry|rz| |im|em|el rx|ry|rz| |[lm|em|el rXjryjr= . lmjem|el
gx|gy|gz| = (mm|£f|ee ox|gv|gz| = |mm|£f |ee nggygz=mmffee)
bx|by|bz| |mlime(ie bx|by|bz| |milme|le bx|by|bz| |ml|me|le



row permutation / g-b swap / CNOT gate*

row permutation/color swap (~ CNOT gate-like)

rx|ry|rz Imfemjel
gx|gy|gz| = |mm|ff|ee
( bx|by|bz| [mlime|le

TN

TC(rx) X TC(bx) Qiqg  TCrx) X TC(bx)

~N S

TC(bz) X TC(rz)

*technically, it is CNOT,, CNOT,, for 4 qubits on the torus



row permutation / g-b swap / CNOT gate*

row permutation/color swap (~ CNOT gate-like)

rx|ry|rz Imfemjel
gx|gy|gz| = |mm|ff|ee
( bx|by|bz| [mlime|le

TN

TC(rx) X TC(gx) Db TC(rx) X TC(bx)

~N S

TC(bz) X TC(rz)

*technically, it is CNOT,, CNOT,, for 4 qubits on the torus



Dynamic automorphism codes,

parent measurements types and Possible Auts Gates from
model child codes ' Auts.
CC TC
(2D) {1; <pe—m} One gate
honeycomb e.g. TC(rx) 3 . " "
codes x X S': e TT— . > T
CC x CC = CC 72 auts of the CC w/boundaries: full
2D dynamic Clifford group
automorphism rx|ry|rz

color code
5 gX |8y &2
> bx|by|bz

3DCC x3DCC TCxTC x TC =~ 3DCC X - XS
_ x 3DCC automorphism
3D dynamic measurements: (involving ‘cluster state’ excitation ~ non-Clifford gate
automorphism > -body Pad <« X “iord g
-body Pauli "
color code 2-body Clifford " ~CCZ
SX
XS_-»




Non-Clifford gate in 3D: analogous recipe to 2D

Caveat: need to insert a round of Pauli feedback
to fix Z-stabilizers to +1

TN

TC(rx) X TC(bx) Qiqg  TCrx) X TC(bx)

~N S

TC(bz) X TC(rz)



Dynamic automorphism codes,

parent measurements types and Possible Auts Gates from
model child codes ' Auts.
CC TC
(2D) {1; <pe—m} One gate
honeycomb e.g. TC(rx) 3 . " "
codes x X S': e TT— . > T
CC x CC = CC 72 auts of the CC w/boundaries: full
2D dynamic Clifford group
automorphism rx|ry|rz

color code
5 gX |8y &2
> bx|by|bz

3DCC x3DCC TCxTC x TC =~ 3DCC X - XS
_ x 3DCC automorphism
3D dynamic measurements: (involving ‘cluster state’ excitation ~ non-Clifford gate
automorphism > -body Pad <« X “iord g
-body Pauli "
color code 2-body Clifford " ~CCZ
SX
XS_-»




VI. Outlook & conclusions



New view on Floquet/dynamic codes?

Break down syndrome extraction circuit to low-weight measurements (anticommuting between
different rounds), such that the syndrome extraction itself can implement logical

operations.

g
/T fem

T (x) meas
oYYy




(1)

Logical operations in dynamic codes

Child models = Pauli stabilizer codes

arXiv:2307.10353

* 2D: anyon strings — logical Pauli operators X;,Y;, Z

» Anyon permutations = (at most) Clifford gates

dynamic automorphism color code

72 auts. of the color code
Clifford group on a stack of triangles

arXiv:2307.10353

« 3D: anyon strings — logical Pauli Z,

flux membranes — Pauli X;, Clifford S;/CZ;;

3D dynamic automorphism color code

non-Clifford (CCZ) gate

(2) Beyond stabilizer codes?

Yes!
» 2D: non-Abelian models (weird algebra of anyon strings)
« Transitions between Abelian and non-Abelian models

* FT non-Clifford gates in 2D — universal FT QC

[upcoming work w/ B. Brown, A.Bauer, J.C. Magdalena de la
Fuente, D. Williamson...]

see also H. Bombin [1810.09571], B. Brown [sciadv.aay4929]




What’s next?

Universal quantum computation Non-Abelian DA codes;
in dynamic codes framework new generalizations

General theory of fault- ”WANTE” Dynamic codes beyond manifolds?
tolerance; spacetime -DEAD o ALIVE LDPC dynamic codes?
overheads -3 Gates?
DA CODES
. DECODER

Decoders for DA codes

REWARDS $1,000,000

Thank you for your attention!
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