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• Need quantum error correction – Qubits+gates imperfect1,2,3,4.

• Error correction is resource intensive.

• Quantum LDPC codes may be one path to efficient quantum 
computers5,6.

• Today: new decoding algorithm for Hypergraph Product codes.

Motivation

1Aharonov, Ben-Or 1997
2Kitaev 1997

3Knill, Laflamme, Zurek 1998
4Aliferis, Gottesman, Preskill 2005

5Kovalev, Pryadko 2013
6Gottesman 2014



• Classical 𝑛, 𝑘, 𝑑 code 𝒞 ⊂ 0,1 𝑛 encodes 
𝑘 bits with distance 𝑑.

• LDPC code – parity checks bits graph is 
sparse.
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Quantum LDPC Codes

• Quantum 𝑁, 𝐾, 𝐷 LDPC code ℋ encodes 𝐾 qubits in 𝑁 qubits with 
“distance” 𝐷.

• Created by two classical ECC 𝒞𝑋, 𝒞𝑍 such that 𝒞𝑋
⊥ ⊆ 𝒞𝑍.

• LDPC code – each vertex has a constant degree.

• Reduced 𝑍-type error ℰ – 𝑤 ∈ 𝒞𝑍
⊥: 

ℰ ≤ ℰ ⊕ 𝑤 𝓠 = [𝑵]

𝓧

𝓩
𝒛



Expansion

• A graph 𝐺 = (𝑉 ∪ 𝐶, 𝐸) is an (𝛼, 𝜖)-expander if ∀ 𝑆 ⊆ 𝑉,

• Bidirectional if it holds also for 𝑆 ⊆ 𝐶.
𝑺
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• Flip algorithm1: decoding based on bit flips.

• Flip bits to reduce unsatisfied parity checks.

• Viderman’s algorithm2: converts errors to erasure.

• Given 𝑦 ∈ 0,1 𝑉 when 𝑦 = 𝑤 + 1𝐸, 𝑤 ∈ 𝒞, |𝐸| is small.

• Returns 𝐿 ⊃ 𝐸.
101 0 1 0 1 0 1 0 1 0

Decoding Classical LDPC codes

𝑦 ∈ 0,1 𝑛
𝑳

1Sipser, Spielman 1996
2Viderman 2013

𝑬



Viderman’s Algorithm

Init:

• 𝐿 ← ∅, 𝑅 ← UNSAT.

Iteration:

• While exists 𝑣 with Γ 𝑣 ∩ 𝑅 ≥ ℎ:
• 𝐿 ← 𝐿 ∪ 𝑣 .

• 𝑅 ← 𝑅 ∪ Γ(𝑣).

Output 𝐿.

Promise: if 𝐸 is not too large, 𝐸 ⊆ 𝐿, 𝐿 ≤ 𝛾 𝐸 .

𝑦 ∈ 0,1 𝑛

⊕𝑖 𝑐 𝑦𝑖 ≠ 0

𝑳

𝑹



Hypergraph Product Codes

• HGP1 is an 𝑁, K = Θ 𝑁 , 𝐷 = Θ 𝑁 quantum LDPC codes.

• Constructed from bidirectional expander graph.

• Quantum parity check graph is a product of two classical expander 
graphs.

1Tillich, Zémor 2009



Hypergraph Product Codes
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Local Views
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Decoding the Hypergraph Product Codes

• Goal: correct Θ(𝐷) errors.

• Small-Set-Flip1: a quantum decoding algorithm for HGP codes.

• Quantum version of the Flip algorithm2 – uses bit flips.

• Can we correct Θ(𝐷) errors with erasure conversion algorithm?

1Leverrier, Tillich, Zémor 2015
2Sipser, Spielman 1996



Viderman’s Algorithm for HGP Codes

• Can we generalize VIDERMAN to the 
quantum setting?

• We want an envelope ℒ

• Containing the error: ℰ ⊂ ℒ

• Not too large: ℒ ≤ 𝛾 ℰ

Qubits

ℒ

𝓔

Qubits

Parity checks



Our Results: Small-Set-Find

Theorem (informal): Let ℋ be an 𝑁, 𝐾, 𝐷 hypergraph product code. 
Given an error ℰ, ℰ ≤

1

𝛾
𝐷(1 − o 1 ), Small-Set-Find returns an 

envelope ℒ such that ℰ ⊂ ℒ and ℒ ≤ 𝛾 ℰ .

• Highlights:
• New decoding algorithm!
• Small-Set-Find is a Θ 𝑁 -time algorithm.
• Can handle Θ(𝐷)-sized errors.

• Note: quantum erasure decoding is not Θ 𝑁 -time.



Small-Set-Find Algorithm – High Level

Init:

• ℒ ← ∅, ℛ ← UNSAT.

• 𝒮 ← collection of small sets of qubits.

Step:

• While exists ℱ ∈ 𝒮 with score ℱ ≤ ℎ:
• ℒ ← ℒ ∪ ℱ.

• ℛ ← ℛ ∪ Γ ℱ .

Output ℒ.

Qubits

ℒ

𝓔

Qubits

Parity checks

ℛ

ℒ



Why Small Sets?

• The classical Viderman’s algorithm iterates over 
single bits:

Γ 𝑣 ∩ 𝑅 ≥ ℎ ⟹ 𝐿 ← 𝐿 ∪ 𝑣 .

• Problem: underlying graph is not expanding. 

• For ℰ= half the local view, need to set ℎ =
1

2
Δ.

• This threshold is too low to bound ℒ .

Local View

ℰ



The Small Sets

• Solution: consider small sets ℱ.

• Define 𝒮: all reduced sets ℱ in all local views.

• ℱ is reduced: ℱ ≤
1

2
local view qubits .

• We have:
• 𝒮 = Θ(𝑁).

• Decompose non-expanding sets are covered by 𝒮.

Local View



The Score Function

• When is ℱ ∈ 𝒮 suspicious?

The score function is:

• Uses unique neighborhood.

• Intersection with ℛ𝑐.

• Normalized by size of ℱ.

score ℱ =
Γ 𝑢 ℱ ∩ ℛ𝑐

ℱ
≤ ℎ

ℛ𝑐



Comparing to Union Find

• UNION FIND
• Erasure conversion algorithm for surface codes1.

• Does not directly generalize to HGP codes.

• For Hypergraph Product Codes 2 – achieve decoding radius 𝑂 𝐷𝛽 where
𝛽 < 1.

• Key difference: Viderman’s algorithm does not try to find explanation 
for the syndrome.

1Delfosse, Nickerson 2021
2Delfosse, Beverland, Londe 2022



Algorithm Intuition

• Parity check in Γ(ℰ) is either UNSAT
or adjacent to multiple errors.

• Graph is expanding – many errors 
are adjacent to UNSAT parity checks.

Qubits Parity checks

ℛ

ℒ

𝓔



Proof Overview

The proof has two parts:

Claim 1: the envelope ℒ covers the error: ℰ ⊂ ℒ.

If the algorithm stopped and ℰ ⊈ ℒ:

• Exists a local view with ℰ ∖ ℒ and few external 
interactions.

• Exists ℱ ∈ 𝒮 with score ℱ ≤ ℎ.

Local View



Proof Overview

Claim 2: the envelope ℒ is not too large: 

ℒ ≤
1

𝛾
|ℰ|.

• Every set ℱ we add to ℒ has small 
Γ 𝑢 ℱ ∩ ℛ𝑐 .

• The graph is expanding: 

Γ ℒ ≥
1

2
1 − 𝜖 Δ ℒ .

Qubits Parity checks

ℛ
ℒ



Comparing FLIP Algorithm

• HPG code on a bipartite graph with:

• Degrees Δ𝑉 , Δ𝐶. Ratio 𝑟 =
Δ𝑉

Δ𝐶
< 1.

• (𝛼, 𝜖) expander.

1Leverrier, Tillich, Zémor 2015
2Fawzi, Grospellier, Leverrier 2018

Algorithm Decoding Radius Minimal Expansion

SSFlip [LTZ15]1 1

3 1 + Δ𝐶
𝐷 𝜖 <

1

6

SSFlip [FGL18]2 2𝑟 1 − 8𝜖

4 + 2𝑟 1 − 8𝜖

𝑟

1 + 𝑟2
D 𝜖 <

1

8

Viderman’s Algorithm 1 − 10𝜖

4
𝑟𝐷 𝜖 <

1

10



Summary and Outlook

• Summary:
• Linear-time erasure-conversion algorithm for Hypergraph Product codes.

• Future questions:
• Can we improve the parameters? 

• Can we generalize to good LDPC codes i.e. codes with 𝐷 = Θ 𝑁 ?

• Are there linear-time erasure decoding algorithms?

Thank you!
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