Viderman's Algorithm for Quantum LDPC Codes

Anirudh Krishna

Stanford University (>>IBM)

Inbal Livni Navon

Stanford University

Mary Wootters Stanford University

Simons workshop 2024

In This Talk

- Motivation and background
- Decoding classical LDPC codes
- Hypergraph product code
- Viderman's algorithm for hypergraph product codes
- Proof high-level
- Summary and future directions

Motivation

- Need quantum error correction Qubits+gates imperfect^{1,2,3,4}.
- Error correction is resource intensive.
- Quantum LDPC codes may be one path to efficient quantum computers^{5,6}.
- Today: new decoding algorithm for Hypergraph Product codes.

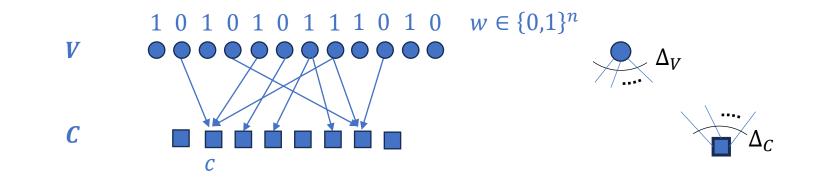
³Knill, Laflamme, Zurek 1998 ⁴Aliferis, Gottesman, Preskill 2005 ⁵Kovalev, Pryadko 2013 ⁶Gottesman 2014

Classical LDPC Codes

- Classical $\llbracket n, k, d \rrbracket$ code $C \subset \{0,1\}^n$ encodes k bits with distance d.
- LDPC code parity checks bits graph is sparse.

$$w \in C$$

$$\Leftrightarrow c \in C, \bigoplus_{i \leftrightarrow c} w_i = 0$$



Quantum LDPC Codes

• Quantum $\llbracket N, K, D \rrbracket$ LDPC code \mathcal{H} encodes K qubits in N qubits with "distance" D.

 $\boldsymbol{Q} = [\boldsymbol{N}]$

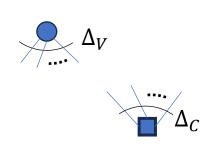
7.

- Created by two classical ECC \mathcal{C}_X , \mathcal{C}_Z such that $\mathcal{C}_X^{\perp} \subseteq \mathcal{C}_Z$.
- LDPC code each vertex has a constant degree.
- Reduced *Z*-type error $\mathcal{E} w \in \mathcal{C}_Z^{\perp}$: $|\mathcal{E}| \leq |\mathcal{E} \oplus w|$

Expansion

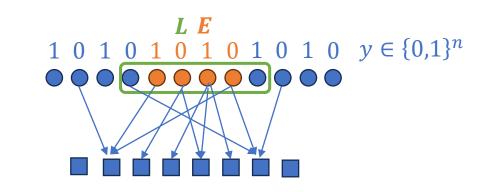
- A graph $G = (V \cup C, E)$ is an (α, ϵ) -expander if $\forall S \subseteq V$, $|S| \leq \alpha n$ \Downarrow $|\Gamma(S)| \geq (1 - \epsilon)\Delta_V |S|$
- Bidirectional if it holds also for $S \subseteq C$.





Decoding Classical LDPC codes

- Flip algorithm¹: decoding based on bit flips.
- Flip bits to reduce unsatisfied parity checks.
- Viderman's algorithm²: converts errors to erasure.
- Given $y \in \{0,1\}^V$ when $y = w + 1^E$, $w \in C$, |E| is small.
- Returns $L \supset \overline{E}$.



¹Sipser, Spielman 1996 ²Viderman 2013

Viderman's Algorithm

Init:

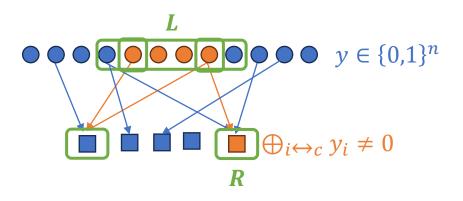
• $L \leftarrow \emptyset, R \leftarrow \text{UNSAT}.$

Iteration:

- While exists v with $|\Gamma(v) \cap R| \ge h$:
 - $L \leftarrow L \cup \{v\}$.
 - $R \leftarrow R \cup \Gamma(v)$.

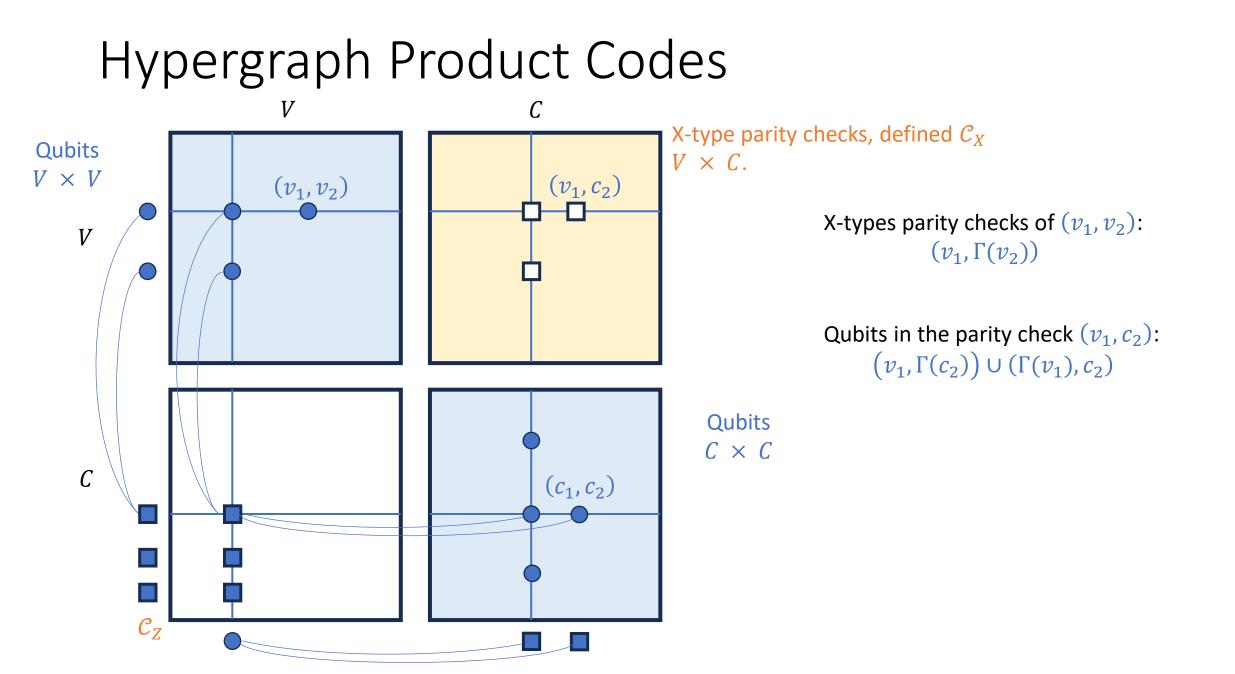
Output *L*.

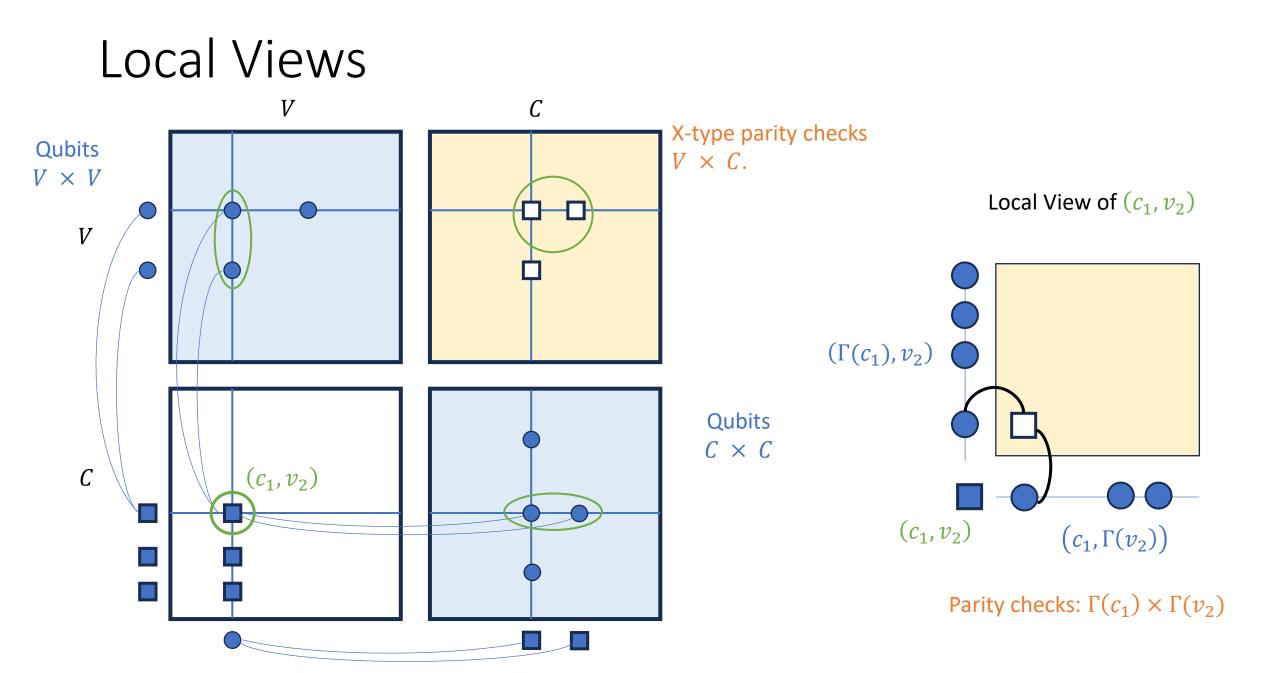
Promise: if *E* is not too large, $E \subseteq L$, $|L| \leq \gamma |E|$.



Hypergraph Product Codes

- HGP¹ is an $[[N, K = \Theta(N), D = \Theta(\sqrt{N})]]$ quantum LDPC codes.
- Constructed from bidirectional expander graph.
- Quantum parity check graph is a product of two classical expander graphs.





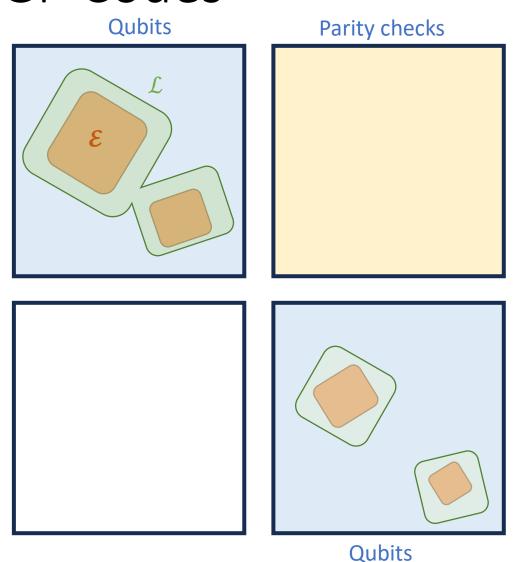
Decoding the Hypergraph Product Codes

- Goal: correct $\Theta(D)$ errors.
- Small-Set-Flip¹: a quantum decoding algorithm for HGP codes.
- Quantum version of the Flip algorithm² uses bit flips.
- Can we correct $\Theta(D)$ errors with erasure conversion algorithm?

¹Leverrier, Tillich, Zémor 2015 ²Sipser, Spielman 1996

Viderman's Algorithm for HGP Codes

- Can we generalize VIDERMAN to the quantum setting?
- We want an envelope $\boldsymbol{\mathcal{L}}$
- Containing the error: $\mathcal{E} \subset \mathcal{L}$
- Not too large: $|\mathcal{L}| \leq \gamma |\mathcal{E}|$



Our Results: Small-Set-Find

Theorem (informal): Let \mathcal{H} be an $\llbracket N, K, D \rrbracket$ hypergraph product code. Given an error \mathcal{E} , $|\mathcal{E}| \leq \frac{1}{\gamma} D(1 - o(1))$, Small-Set-Find returns an envelope \mathcal{L} such that $\mathcal{E} \subset \mathcal{L}$ and $|\mathcal{L}| \leq \gamma |\mathcal{E}|$.

- Highlights:
 - New decoding algorithm!
 - Small-Set-Find is a $\Theta(N)$ -time algorithm.
 - Can handle $\Theta(D)$ -sized errors.
- Note: quantum erasure decoding is not $\Theta(N)$ -time.

Small-Set-Find Algorithm – High Level

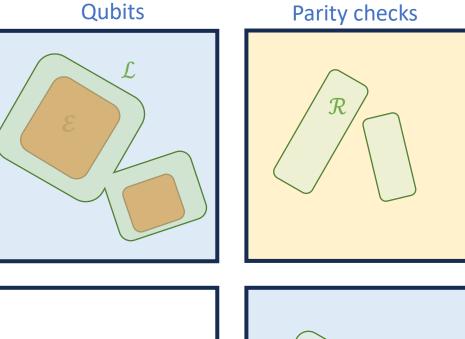
Init:

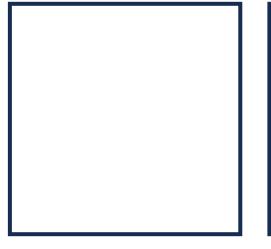
- $\mathcal{L} \leftarrow \emptyset, \mathcal{R} \leftarrow \text{UNSAT}.$
- $\mathcal{S} \leftarrow$ collection of small sets of qubits.

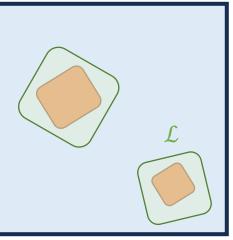
Step:

- While exists $\mathcal{F} \in \mathcal{S}$ with score $(\mathcal{F}) \leq h$:
 - $\mathcal{L} \leftarrow \mathcal{L} \cup \mathcal{F}$.
 - $\mathcal{R} \leftarrow \mathcal{R} \cup \Gamma(\mathcal{F}).$

Output *L*.





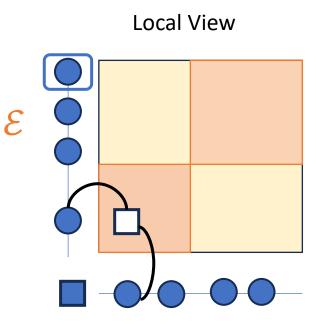


Qubits

Why Small Sets?

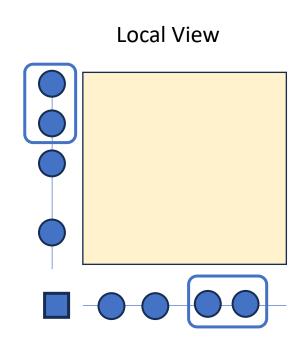
• The classical Viderman's algorithm iterates over single bits: $|\Gamma(v) \cap R| \ge h \Longrightarrow L \leftarrow L \cup \{v\}.$

- Problem: underlying graph is not expanding.
- For \mathcal{E} = half the local view, need to set $h = \frac{1}{2}\Delta$.
- This threshold is too low to bound $|\mathcal{L}|$.



The Small Sets

- Solution: consider small sets \mathcal{F} .
- Define \mathcal{S} : all reduced sets \mathcal{F} in all local views.
- \mathcal{F} is reduced: $\|\mathcal{F}\| \leq \frac{1}{2} \|\text{local view qubits}\|.$
- We have:
 - $|\mathcal{S}| = \Theta(N).$
 - Decompose non-expanding sets are covered by \mathcal{S} .



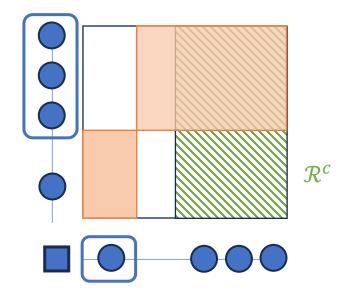
The Score Function

• When is $\mathcal{F} \in \mathcal{S}$ suspicious?

$$\operatorname{score}(\mathcal{F}) = \frac{\left|\Gamma^{(u)}(\mathcal{F}) \cap \mathcal{R}^{c}\right|}{\|\mathcal{F}\|} \le h$$

The score function is:

- Uses unique neighborhood.
- Intersection with \mathcal{R}^c .
- Normalized by size of \mathcal{F} .



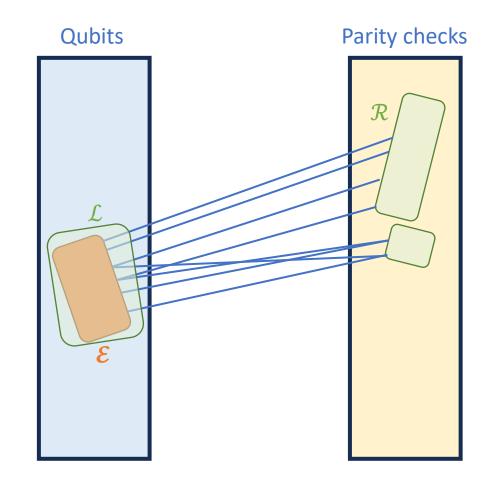
Comparing to Union Find

- UNION FIND
 - Erasure conversion algorithm for surface codes¹.
 - Does not directly generalize to HGP codes.
 - For Hypergraph Product Codes ² achieve decoding radius $O(D^{\beta})$ where $\beta < 1$.
- Key difference: Viderman's algorithm does not try to find explanation for the syndrome.

¹Delfosse, Nickerson 2021 ²Delfosse, Beverland, Londe 2022

Algorithm Intuition

- Parity check in $\Gamma(\mathcal{E})$ is either UNSAT or adjacent to multiple errors.
- Graph is expanding many errors are adjacent to UNSAT parity checks.



Proof Overview

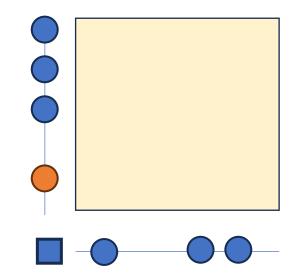
The proof has two parts:

Claim 1: the envelope \mathcal{L} covers the error: $\mathcal{E} \subset \mathcal{L}$.

If the algorithm stopped and $\mathcal{E} \not\subseteq \mathcal{L}$:

- Exists a local view with $\mathcal{E} \setminus \mathcal{L}$ and few external interactions.
- Exists $\mathcal{F} \in \mathcal{S}$ with score $(\mathcal{F}) \leq h$.

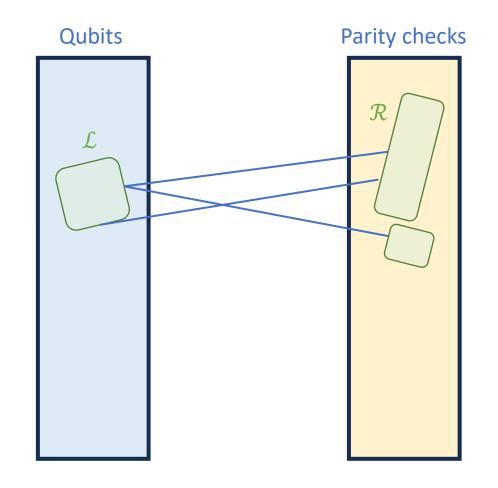
Local View



Proof Overview

Claim 2: the envelope \mathcal{L} is not too large: $|\mathcal{L}| \leq \frac{1}{\gamma} |\mathcal{E}|.$

- Every set \mathcal{F} we add to \mathcal{L} has small $|\Gamma^{(u)}(\mathcal{F}) \cap \mathcal{R}^c|$.
- The graph is expanding: $\Gamma(\mathcal{L}) \geq \frac{1}{2}(1-\epsilon)\Delta|\mathcal{L}|.$



Comparing FLIP Algorithm

- HPG code on a bipartite graph with:
 - Degrees Δ_V , Δ_C . Ratio $r = \frac{\Delta_V}{\Delta_C} < 1$.
 - (α, ϵ) expander.

Algorithm	Decoding Radius	Minimal Expansion
SSFlip [LTZ15] ¹	$\frac{1}{3(1+\Delta_C)}D$	$\epsilon < \frac{1}{6}$
SSFlip [FGL18] ²	$\frac{2r(1-8\epsilon)}{4+2r(1-8\epsilon)}\frac{r}{\sqrt{1+r^2}}D$	$\epsilon < \frac{1}{8}$
Viderman's Algorithm	$\frac{1-10\epsilon}{4}rD$	$\epsilon < \frac{1}{10}$

¹Leverrier, Tillich, Zémor 2015 ²Fawzi, Grospellier, Leverrier 2018

Summary and Outlook

- Summary:
 - Linear-time erasure-conversion algorithm for Hypergraph Product codes.
- Future questions:
 - Can we improve the parameters?
 - Can we generalize to good LDPC codes i.e. codes with $D = \Theta(N)$?
 - Are there linear-time erasure decoding algorithms?

