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Motivation

* Need quantum error correction — Qubits+gates imperfect!?34,
* Error correction is resource intensive.

* Quantum LDPC codes may be one path to efficient quantum
computers>°,

* Today: new for Hypergraph Product codes.

1Aharonov, Ben-Or 1997 3Knill, Laflamme, Zurek 1998 >Kovalev, Pryadko 2013
2Kitaev 1997 4Aliferis, Gottesman, Preskill 2005 ®Gottesman 2014



Classical LDPC Codes

e Classical [n, k, d] code C < {0,1}" encodes

k bits with distance d. w E C

* LDPC code — parity checks bits graph is Ve € C, @ w; = 0

sparse.
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Quantum LDPC Codes

* Quantum [[N, K, D] LDPC code H encodes K qubits in N qubits with
“distance” D.

e Created by two classical ECC Cy, C, such that Cy € C,.

* LDPC code — each vertex has a constant degree.  ; pummEEEEE

e Reduced Z-type error £ —w € Cyz: /
O
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Expansion

* AgraphG = (W UC,E) isan (a,€)-expanderifVS C V,
S| < an
U
TSI = (1-e)aylS]

e Bidirectional if it holds also for § € C.
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Decoding Classical LDPC codes

* Flip algorithm?: decoding based on bit flips.

* Flip bits to reduce unsatisfied parity checks.

* Viderman’s algorithm?: converts errors to erasure.

* Giveny € {0,1}Y wheny =w + 1%, w € C, |£] is small.

e Returns . D .
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ISipser, Spielman 1996
2\Viderman 2013



Viderman’s Algorithm

Init:
L
L« @, R « UNSAT. eoo@ooo
Iteration:
O ]

* While exists v with |[I'(v) N R| = h:
* L « LU {v}
* R « RUT(v).

Output L.

Promise: if £ is not too large, £ € L, |L| < y|E].

® ye{01}"
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Hypergraph Product Codes
* HGP!is an |[N,K =0O(N),D = @(\/N)]] quantum LDPC codes.
* Constructed from bidirectional expander graph.

* Quantum parity check graph is a product of two classical expander
graphs.

Tillich, Zémor 2009
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Hypergraph Product Codes

X-type parity checks, defined Cy

V x C.

Qubits
C X C

X-types parity checks of (v, v,):
(771, F(UZ))

Qubits in the parity check (v, ¢,):

(771; F(Cz)) U (I'(vy), c2)



Local Views

|4 C
X-t ity check
Qubits § Z/(pecparl y checks
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Decoding the Hypergraph Product Codes

* Goal: correct O(D) errors.

* Small-Set-Flip*: a quantum decoding algorithm for HGP codes.
e Quantum version of the Flip algorithm? — uses bit flips.

* Can we correct O(D) errors with erasure conversion algorithm?

1Leverrier, Tillich, Zémor 2015
2Sipser, Spielman 1996



Viderman’s Algorithm for HGP Codes

* Can we generalize VIDERMAN to the
guantum setting?

* We want an envelope
e Containing the error: £ C
* Not too large: | 2] < y|€]|

Qubits

Parity checks

@

!

Qubits




Our Results: Small-Set-Find

Theorem (informal): Let?—[ be an [N, K, D] hypergraph product code.
Given an error &, |£] < = D(1 — 0(1)), Small-Set-Find returns an
envelope L such that £ € £ and |£]| < y|£].

* Highlights:
* New decoding algorithm!
* Small-Set-Find is a (N )-time algorithm.
* Can handle ©(D)-sized errors.

* Note: quantum erasure decoding is not ®@(N)-time.



Small-Set-Find Algorithm — High Level

Qubits Parity checks
Init: &
» L « (@, R « UNSAT. ﬁ@
* § « collection of small sets of qubits.
Step:

* While exists F € S with score(F) < h:

L« LUZF.
* R e« RUT(F). O
Output L. é

Qubits



Why Small Sets?

* The classical Viderman’s algorithm iterates over
single bits:
TWNR|=>=h= L« LUf{vhL

* Problem: underlying graph is not expanding.
* For £= half the local view, need to set h = %A.

* This threshold is too low to bound | Z|.

Local View




The Small Sets

* Solution: consider small sets F.

Local View

* Define &: all reduced sets F in all local views.

 F is reduced: || 7|| <5 [|local view qubits||.

 We have:
« |§] = O(N).

* Decompose non-expanding sets are covered by S. o "@




The Score Function

* When is F € & suspicious?

[T (F) n R

score(F) =
17|
The score function is:

e Uses unique neighborhood.
* Intersection with R°.

* Normalized by size of F.

. 000
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Comparing to Union Find

* UNION FIND
 Erasure conversion algorithm for surface codes?.
* Does not directly generalize to HGP codes.
* For Hypergraph Product Codes % — achieve decoding radius O(Dﬁ) where
f < 1.

 Key difference: Viderman’s algorithm does not try to find explanation
for the syndrome.

1Delfosse, Nickerson 2021
2Delfosse, Beverland, Londe 2022



Algorithm Intuition

Qubits Parity checks

* Parity check in I'(£) is either UNSAT R
or adjacent to multiple errors.

|

—_]

* Graph is expanding — many errors B

are adjacent to UNSAT parity checks. G

!




Proof Overview

The proof has two parts: Local View

Claim 1: the envelope L covers the error: £ C

If the algorithm stopped and £ &

* Exists a local view with £ \ L and few external

Interactions. H e Y
 Exists F € S with score(F) < h.




Proof Overview

Claim 2: the envelope L is not too large:
1

Ll < =[&].

L] <

* Every set F we add to L has small
[T (F) nRe.

* The graph is expanding:
[(L) =5 (1—€)AlL].

Qubits

Parity checks

RS




Comparing FLIP Algorithm

* HPG code on a bipartite graph with:

. A
* Degrees Ay, Aq. Ratior = A—V < 1.
C

* (a, €) expander.

Algorithm Decoding Radius Minimal Expansion

SSFlip [LTZ15]% L, 1
3(1+Ac) 6

SSFlip [FGL18]2 2r(1 — 8¢) T, ]
4+2r(1—8e)\/1+1r2 8

Viderman’s Algorithm 1- 1OErD . < 1
4 10

L everrier, Tillich, Zémor 2015
2Fawzi, Grospellier, Leverrier 2018



Summary and Outlook

* Summary:
* Linear-time erasure-conversion algorithm for Hypergraph Product codes.

* Future questions:
e Can we improve the parameters?
* Can we generalize to good LDPC codes i.e. codes with D = O(N)?
* Are there linear-time erasure decoding algorithms?

Thank you!
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