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Quantum error correction

� Quantum error correction is needed to reduce the error rates

of physical devices

� Space overhead

� Choice of code: code parameters

� Time overhead

� Implementing logical gates

� Decoding algorithm

� How can we achieve fault-tolerant quantum computation with

the lowest overhead?
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Outline

1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes

• Decoding good quantum LDPC codes (arXiv:2206.06557)

• Single-shot decoding (arXiv:2306.12470)

3. Conclusions and open problems

3



Outline

1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes

• Decoding good quantum LDPC codes (arXiv:2206.06557)

• Single-shot decoding (arXiv:2306.12470)

3. Conclusions and open problems

4



The surface code

Pros

� Geometrically local stabilizers

� Know how to implement, decode,

perform logic, etc.

Cons

� Poor code parameters: [[n, k = 1, d = Θ(
√
n)]] = [[L2, 1, L]]

� High overhead for fault-tolerance

https://quantumai.google/cirq/experiments/toric_code/toric_code_ground_state
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LDPC codes

� Bravyi-Poulin-Terhal bound [BPT10]: kd2 = O(n) in 2D

� Relax condition on geometric locality

� Low-density parity-check: stabilizers are constant weight

� Low weight checks are easier to measure

� Important for fault-tolerance

� Best possible parameters for LDPC codes?
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History of quantum LDPC codes

Code k (Dim) d (Dist)

Surface code [Kit03]

� Geometrically local checks
1 Θ(

√
n)

Hypergraph product codes [TZ14, BH14]

� Uses tools from algebraic topology
Θ(n) Θ(

√
n)

Fibre bundle codes [HHO21] Θ̃(n3/5) Ω̃(n3/5)

Lifted product codes [PK22b] Θ̃(nα) Ω̃(n1−α/2)

Balanced product codes [BE21] Θ(n4/5) Ω(n3/5)

Expander lifted product codes [PK22a]

� First good quantum LDPC code
Θ(n) Θ(n)

Quantum Tanner codes [LZ22] Θ(n) Θ(n)

DHLV codes [DHLV22] Θ(n) Θ(n)
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Constant space overhead

� Gottesman [Got14]: LDPC code with

parameters [[n, k = Θ(n), d = Ω(nα)]]

=⇒ constant space overhead

� Implementing long-range interactions

� Only geometrically local

couplings [PKP23]

� All-to-all

connectivity [XAP+23, VYL+23]

� Limited number of long-range

connections [BCG+23]

� Need efficient decoder

https://arxiv.org/abs/2303.04798

https://arxiv.org/abs/2308.08648

https://arxiv.org/abs/2308.07915

8
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Outline

1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes

• Decoding good quantum LDPC codes (arXiv:2206.06557)

• Single-shot decoding (arXiv:2306.12470)
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How to correct errors: the decoding problem

� Unknown error e applied to a code state

� Extract syndrome by measuring stabilizers

� Input: syndrome σ of an error e

� Output: a correction f̂

� Succeed if e + f̂ is a stabilizer

11
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Finding efficient decoders

� Should decode faster than errors accumulate

� Need to know Pauli frame for certain logical operations

� Intractable problem in general (NP/#P complete)

� Two settings for decoding

� Adversarial noise: decode any error of weight up to a constant

fraction of the distance

� Stochastic noise: decode random noise with high probability
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Lightning overview of quantum Tanner codes [LZ22]

� Left-right Cayley complex
(two-dimensional expanding object)

� Vertices V = VX ⊔ VZ

� Edges E

� Squares Q

� Qubits placed on squares Q

� SX generated by checks on faces

incident to vertices in VX

� SZ generated by checks on faces

incident to vertices in VZ

� Gives a code with parameters

[[n, k = Θ(n), d = Θ(n)]]
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Decoding quantum Tanner codes

� Consider X error e of low weight

� Local check at vertex v =⇒ high

weight around v to satisfy checks

� e may satisfy all checks in its “bulk”

� Many violations near its “boundary”

� Flipping qubits at the boundary of e

will result in more satisfied checks
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Potential-based decoder [GPT23]

1. For each v ∈ VZ , determine a
candidate correction εv on the qubits
in its neighbourhood

� Choose εv to have minimal weight

while satisfying all local checks at v

2. Compute a potential function

U =
∑

v∈VZ
|εv |

3. At every step, flip qubits in a local

region to decrease U

All stabilizer checks are satisfied when U = 0.

15
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Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters

[[n,Θ(n),Θ(n)]] such that the potential-based decoder can correct

all errors of weight |e| ≤ p∗n, where p∗ is a constant. The time

complexity is O(n).

� First decoder to correct adversarial errors of weight O(n)

� Previous best [EKZ22]: O(
√
n log n)

16
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Stochastic errors: existence of threshold

Corollary

For i.i.d. errors with probability p < p∗, the decoder succeeds with

probability 1− O(e−an) with a > 0.

Proof.

� By our main theorem, the decoder succeeds if |e| ≤ p∗n

� Hoeffding’s inequality: Pr (|e| > p∗n) < e−2n(p∗−p)2

17
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Outline

1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes
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Dealing with measurement noise

� What if syndrome σ is corrupted?

� Standard procedures

� Repeat measurement rounds [Sho96]: large time overhead

� Prepare ancilla offline [Ste97]: large space overhead

� Alternative approach: single-shot quantum error
correction [Bom15]

� Make progress in decoding with noisy syndrome data

� Can also consider adversarial or stochastic noise

19
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Existing single-shot decoders

� Topological codes

� 4D toric code [BDMT17], 3D subsystem

toric code [KV22], 3D gauge colour

code [Bom15]

� Use redundancy of checks

� Expansion based LDPC code

� Quantum expander codes [FGL18]

� Expansion provides single-shot property

� Arbitrary stabilizer codes can be made
single-shot [Cam19]

� May not keep LDPC property

https://www.nature.com/articles/s41467-022-33923-4/figures/7

https://arxiv.org/abs/2208.01002

20
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Definition of single-shot

Setup

� Input: noisy syndrome σ̃

� Data error e

� Syndrome error D

� Output: a correction f̂

Definition

A decoder is (α, β)-single-shot if for sufficiently low-weight errors,

|e + f̂ |R ≤ α|e|R + β|D| .

21



Mismatch decomposition decoder [LZ23]

U = 4

Z = 2

U = 2

Z = 2

� Also a local greedy decoder, but uses the mismatch

Z =
∣∣∣∑v∈VZ

εv

∣∣∣ instead of the potential U =
∑

v∈VZ
|εv |

� At every step, flip qubits in some local region to decrease Z

� Stop when no more flips possible

� The algorithm can be run sequentially or in parallel

� Sequential decoder: O(n) runtime

� Parallel decoder: O(log n) runtime

22
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Why is this decoder single-shot?

� Recall: intuition that valid

corrections are near the

“boundary” of the error region

� Expansion =⇒ large boundary

=⇒ many candidate corrections

� Syndrome noise can affect a

limited number of these corrections

23



Main results for single-shot decoding

Theorem (Single-shot property [GTC+23])

There exists a constants β such that we have the following:

1. The sequential decoder is (α = 0, β)-single-shot.

2. The parallel decoder with k-iterations is

(α = 2−Ω(k), β)-single-shot.

(Recall: (α, β)-single-shot means |e + f̂ |R ≤ α|e|R + β|D|.)

24



Multiple rounds of errors (stochastic setting)

� For i.i.d. errors (ei ,Di ) with probability p < p∗, quantum

information is maintained for Ω(ean) rounds with probability

1− O(e−bn) with a, b > 0

� Generalizes to space/time correlated errors

� E.g. circuit noise

25
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Constant-time decoding of quantum Tanner codes

� The k-iteration parallel decoder is (α = 2−Ω(k), β)-single-shot

� Choose k a sufficiently large constant

� During the computation: residual errors are small (nonzero)

� Last round: measure all qubits in the Z basis

� Treat measurement errors as X qubit errors

� Use ideal O(log n)-iteration parallel decoder or sequential

decoder to recover information exactly

(|e + f̂ |R ≤ α|e|R + β|D| with α = 0 and |D| = 0)

� Constant time overhead using quantum Tanner codes

26
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Conclusions

Summary

� Provably correct and efficient decoders for quantum Tanner codes

� Single-shot property of the sequential and parallel decoders

� Quantum error correction with constant space and time overhead

Next steps

� Logical gates for LDPC codes

� How to choose the right LDPC code to use?

� Decrease constants involved in the good code constructions

� General framework for analyzing local greedy decoders

28
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