Multiplicity Codes.
Simons Bootcomp

Prahlocth Howsta TIFR

Multiplicity Codes
Higher derivative variants of
Reed -Solomon Codes
Reed-Muller Codes

$$
\begin{aligned}
& p \longmapsto \begin{array}{ccc}
\alpha_{1} & \alpha_{2} & \alpha_{n} \\
\hline P^{(\beta 8)}\left(\alpha_{1}\right) \mid p^{(\alpha s)}\left(\alpha_{2}\right) / \cdots \cdots & p^{(\langle 8)}\left(\alpha_{n}\right) \mid
\end{array} \\
& p^{(\langle\beta)}(\alpha)=\left(\begin{array}{c}
p(\alpha) \\
p^{(11}(\alpha) \\
p^{(2)}(\alpha) \\
\vdots \\
p^{(\sigma-1)}(\alpha)
\end{array}\right)
\end{aligned}
$$

Talk Outline

- Definitions (univarrate a multivarrate)
- Conivariate Multiplicily Codes
* List-decoding apto capacity.

Maltivariate Multiplicity Codes

* Multiplicity Schwortr Eippel Lemma
* High-rate locally-decodable codes
- Cpen Questions

Polynomial Evaluation Codes.
Peed-Solomon Codes: Evaluations of univamile
F-field ; k-degree

$$
\begin{array}{ll}
S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\} \subseteq \mathbb{F} & P \mapsto \frac{p\left(\alpha_{1}\right) \mid p\left(\alpha_{2}\right)}{\alpha_{1}} \alpha_{2} \\
p \in \mathbb{K}_{k}[x] & P \mapsto\{p(\alpha)\}_{\alpha \in s} .
\end{array}
$$

$$
p \mapsto \frac{\left.\mid p\left(\alpha_{1}\right) / p\left(\alpha_{2}\right) / \cdots \cdot\left(\alpha_{n}\right)\right]}{\alpha_{1} \alpha_{2}}
$$

Reed-Muller Codes: Evaluations of multivariate Infield; d-degree m. dimension

$$
S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subseteq \mathbb{F}
$$

$$
\begin{aligned}
& F_{d \alpha}\left[x_{1} \ldots x_{m}\right] \rightarrow \mathbb{F}^{S^{m}} \\
& P \longmapsto\left\{p\left(\alpha_{1} \ldots \alpha_{n}\right)\right\rangle \\
& \alpha_{\varepsilon} \in S
\end{aligned}
$$

Polynomial Evaluation Codes. - Distance
Reed-Solomon Codes: Evaluations of univariote

Degree Mantra: $P \in \mathbb{F}_{k}[x], P \neq 0$ \# zeros $(p)<k$

Reed-Muller Codes: Evaluations of multivariate Schwartz- Expel Lemma

$$
\begin{aligned}
& p \in \mathbb{R}_{\leqslant d}\left[x_{1} \ldots x_{m}\right], p \neq 0 \\
& \operatorname{Pr}_{\bar{a} \in S^{m}}[p(\bar{a})=0] \leqslant \frac{d}{|S|}
\end{aligned}
$$

pobnomials

$$
\begin{aligned}
& F_{d \alpha}\left[x_{1} \ldots x_{m}\right] \rightarrow \mathbb{F}^{s^{m}} \\
& P \mapsto\left\{p\left(\alpha_{1} \ldots \alpha_{m}\right)\right\} \\
& \alpha_{\varepsilon} \in S
\end{aligned}
$$

Polynomial Evaluation Codes.
Reed-Solomon Codes: Evaluations of univariote
F-field ; k-degree

$$
S=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\} \subseteq \mathbb{F}
$$

$$
\begin{aligned}
& \mathbb{F}_{k k}[x] \rightarrow \mathbb{F} \\
& p \mapsto \begin{array}{ll}
& \rightarrow p\left(\alpha_{1}\right) / p\left(\alpha_{2}\right) / \cdots \\
\alpha_{1} \alpha_{2} & \left.\mid p\left(\alpha_{n}\right)\right] \\
p & \rightarrow p(\alpha)\}
\end{array} \\
& p=\{
\end{aligned}
$$

$$
\mathbb{F}_{k}[x] \rightarrow \mathbb{F}_{s}^{s} \text { phomomials }
$$

$$
p \in \mathbb{F}_{<k}[x]
$$

Folded Reed. Solomon Codes: $\mathbb{F}_{\alpha}[x] \rightarrow\left(\mathbb{F}^{8}\right)^{5}$

$$
\begin{aligned}
& r \in \mathbb{F}^{*} \\
& \text { (typically, generator) }
\end{aligned}
$$

Ideal Theoretic Viewpoint.
RS
RM
message
Codeword

$$
p \in \mathbb{F}_{<k}[x]
$$

$$
p\left(x_{1} \ldots x_{m}\right) \in \epsilon_{\varepsilon_{d}}\left[x_{1} \ldots x_{n}\right]
$$

$$
\{p(\alpha)\}_{\alpha \in S}
$$

$$
\{p(\bar{\alpha})\}_{\bar{\alpha} \in S^{m}}
$$

Alternate $\{p(x) \bmod \langle x-\alpha\rangle\}_{\alpha \in S}\left\{\begin{array}{l}\bmod \left(x_{1} . . x_{m}\right)\end{array}\right.$ View $\bar{\alpha} \in G^{m}$

Ideal Theoretic Viewpoint.
RS:

$$
\begin{aligned}
p \longmapsto & \{p(\alpha)\}_{\alpha \in S} \\
& \{p(x) \bmod \langle x-\alpha\rangle\}_{\alpha \in S}
\end{aligned}
$$

$$
\text { FRS: } p \rightarrow\left\{\left(\begin{array}{c}
p(\alpha) \\
p(r \alpha) \\
\vdots \\
p\left(r^{--1} \alpha\right)
\end{array}\right)\right\}_{\alpha \in S} \equiv\left\{\left(\begin{array}{c}
p(x) \bmod \langle x-\alpha\rangle \\
p(x) \bmod \langle x-\alpha\rangle \\
p(x) \bmod \left\langle x-r^{\beta-1}\right\rangle
\end{array}\right)\right\}_{\alpha \in S}
$$

Todeal- Theoretic Codes.

$$
\begin{aligned}
& p \in T_{<k}[x] \text {, } E_{1}(x), E_{2}(x) \ldots E_{n}(x) \in F_{-6}[x] \\
& P \longmapsto\left\{p(x) \bmod F_{i}(x)\right\}_{c=1}^{n} \\
& \mathbb{F}^{k} \cong \mathbb{F}_{<k}[x] \longrightarrow\left(\mathbb{F}_{<\alpha}[x]\right)^{n} \cong\left(\mathbb{F}^{3}\right)^{n}
\end{aligned}
$$

Toleal- Theoretic Codes.

$$
\begin{aligned}
p \in \mathbb{F}_{<k}[x], & E_{1}(x), E_{2}(x) \ldots E_{n}(x) \in F_{-8}[x] \\
p & \left\{p(x) \bmod E_{i}(x)\right\}_{c=1}^{n}
\end{aligned}
$$

Remareks:

1. All ideal-theoretc codes are MDS codes
2. (nique-decoding (to half. distance) - A la Berletamp-Wekh.
3. List-decoding (upto Johinson radias)

- A la Guruswami-Sudan [Bhandori- Harsha-kumar-Sicdan 21]

Toleal- Theoretic Codes.

$$
\begin{aligned}
& p \in \mathbb{F}_{k}[x], F_{1}(x), E_{2}(x), \ldots F_{n}(x) \in \mathbb{F}_{-6}[x] \\
& P\left\{p(x) \bmod F_{i}(x)\right\}_{<=1}^{n} \\
& \mathbb{F}^{k} \cong \mathbb{F}_{<k}[x] \longrightarrow\left(F_{<\beta}[x]\right)^{n} \cong\left(\mathbb{F}^{3}\right)^{n}
\end{aligned}
$$

Decoding beyond Johnson Radius?

Ideal- Theoretic Codes.

$$
\begin{aligned}
& p \in \mathbb{F}_{k}[x], E_{1}(x), E_{2}(x) \ldots E_{n}(x) \in F_{=8}[x] \\
& p \longmapsto\left\{p(x) \bmod E_{i}(x)\right\}_{c=1}^{n} \\
& \mathbb{F}^{k} \cong \mathbb{F}_{k}[x] \longrightarrow\left(\mathbb{F}_{<\alpha}[x]\right)^{n} \cong\left(\mathbb{F}^{3}\right)^{n}
\end{aligned}
$$

FRS codes: $\quad F_{i}(x)=\prod_{j=0}^{8-1}\left(x-r^{j} \alpha_{i}\right)$
Multiplicity: $E_{i}(x)=\left(x-\alpha_{i}\right)^{8}$
Codes

Univarrate Moltiplicity Codes [Rosenbloom. Tsfarman' '97 Nielsen 'or 7

Crivariate Multiplicity Codes.
FF - field

$$
\begin{array}{r}
S=\left\{\alpha_{1} \ldots, \alpha_{n}\right\} \leq \mathbb{F} \\
\text { inset of evaluation }
\end{array}
$$

coset of evaluation
k- degree
points)
b- multiplicity bound
Message Space $=\mathbb{F}^{k} \cong \mathbb{F}_{k \in}[x]$
Codeword Space $-\left(\mathbb{F}^{3}\right)^{n} \cong\left(\mathbb{F}_{<8}[x]\right)^{n}$
$p \mapsto\left\{p(x) \bmod \langle x-\alpha\rangle^{3}\right\}_{\alpha \in S}$

Crivariate Multiplicity Codes.
$P \mapsto\left\{P(x) \bmod \langle x-\alpha\rangle^{5}\right\}_{\alpha \in S}$
For each $\alpha \in S$, write $p(x)$ in the basis $1,(x-\alpha),(x-\alpha)^{2}, \ldots$.

$$
\begin{aligned}
& \text { The basis } p(x)=\sum_{c=0}^{\sum_{c=0}^{\delta-1} p^{(0)}(\alpha) \cdot(x-\alpha)^{c}+R(x)(x-\alpha)^{b}} \\
& p^{(<x)}(\alpha) \triangleq p(x) \bmod (x-\alpha)^{b}
\end{aligned}
$$

$p^{(i)}(\alpha)$ - Hose derivatives.

Multivariole Maltiplicity Codes [Kopparty Sareaf Yekhanin '11]

Multivariate Multiplicity Codes.
Ff -field

$$
S=\left\{\alpha_{1} \ldots, \alpha_{n}\right\} \leq \mathbb{F}
$$

coset of evaluation
k- degree
b- multiplicity bound
Message Space $=\mathbb{F}_{<d}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$
Codeword Spare $=\left(\mathbb{F}_{<\alpha}\left[x_{1} \ldots x_{m}\right]\right)^{n}$
$p\left(x_{1}, \ldots, x_{m}\right) \longmapsto\left\{P \bmod \left\langle x_{1}-\alpha_{1}, x_{2}-\alpha_{2}, \ldots, x_{m}-\alpha_{m}\right\rangle^{3}\right\}$

$$
\bar{\alpha} \in S^{m}
$$

Multivariate Multiplicity Codes.

$$
\begin{array}{r}
p\left(x_{1}, \ldots, x_{m}\right) \longmapsto\left\{\begin{array}{r}
P_{p} \bmod \left\langle x-\alpha_{1}, x-\alpha_{2}, \ldots, x-\alpha_{n}\right)^{3} \\
\bar{\alpha} \in S^{m}
\end{array}\right. \\
\text { For each } \bar{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in S^{m} \text { opproprate basss. }
\end{array}
$$ writing $p(\bar{x})$ in approprcate basss.

$$
\begin{aligned}
& \text { wrerting } p(\bar{x})=\sum^{\sum_{e=\left(e_{1} . e_{m}\right)}} P^{(\bar{x})}(\bar{\alpha}) \cdot \prod_{i=1}^{\prod_{i=1}\left(x_{i}-\alpha_{i}\right)^{\prime}}+R(\bar{x}) \cdot \prod_{i=1}^{m}\left(x_{i}-\alpha_{i}\right)^{3} \\
& 0 \leqslant \sum e_{i}<8 \\
& \underbrace{}_{P(\bar{x}) \bmod \left\langle\left(x_{1}-\alpha_{1}, \ldots, x_{m}-\alpha_{m}\right\rangle^{s}\right.} \triangleq P^{(\langle s)}(\bar{\alpha})
\end{aligned}
$$

$$
\begin{gathered}
\text { Rate }=\text { Distance of Moltolicily } \\
\text { Codes }
\end{gathered}
$$

Corivareate:

$$
p \mapsto\left\{p(x) \bmod \langle x-\alpha\rangle^{6}\right\}_{\alpha \in S}
$$

$$
\text { Rate }=\frac{R}{s / 51}
$$

Degree Mantra: $p \in \mathbb{T}_{k k}[x] ; p \neq 0$ \# zeros of $P<k$.

Rate $=$ Distance of Moltiplicrly
Codes
Chivarrate:

$$
p \mapsto\left\{p(x) \bmod \langle x-\alpha\rangle^{5}\right\}_{\alpha \in S}
$$

$$
\text { Rate }=\frac{R}{s|s|}
$$

Degree Mantra: $p \in T_{k}[x] ; p \neq 0$ \# zeros of P (counting wa/ maltiplicith)

Rate = Distance of Moltylicily
Corivarrate:

$$
p \mapsto\left\{p(x) \bmod \langle x-\alpha\rangle^{6}\right\}_{\alpha \in S}
$$

$$
\text { Rate }=\frac{R}{s|s|}
$$

Degree Mantra: $p \in \mathbb{F}_{k}[x] ; p \neq 0$ \# zeros of P (counting w/ maltiplicity)
Distance $>1-\frac{k}{b / S 1}$ MDS code!

Distance of Multivariate Multiplicity

$$
p\left(x_{1}, \ldots, x_{m}\right) \longmapsto\left\{\begin{array}{l}
\left.\left\{\bmod \bmod , x-\alpha_{2}, \ldots, \alpha_{m}\right)^{s}\right\rangle \\
\bar{\alpha} \in S^{m}
\end{array}\right.
$$

$B=1$: Reed Muller Codes.

Schwartz. Kipped Lemma $\left.p \in \mathbb{I s}^{\circ} d x, \ldots x_{m}\right], p \neq 0$

$$
P_{\bar{a} \in s}[P(\bar{a})=0] \leqslant \frac{d}{|s|}
$$

Multiplicity Variant (for lateen 8)

Multiplicity Schwartz-Eippel Lemma [Dvir-Kopparty-Saraf-Sudan O.]

Multiplicity Schwartz-Eippel Lemma Extend the notion of multiplicities to large dimensions

$$
P \in \mathbb{F}\left[x_{1}, x_{2} \ldots x_{m}\right] ; \quad \bar{a} \in \mathbb{F}^{m}
$$

malt $(P, \bar{a})=\{$ largest M bt t exponent \bar{e} $\omega_{t}(e)<M, p^{(e)}(\bar{a})=0$
Clasbical $S Z$ Lemma: $\mathbb{E} \quad[\mathbb{E} \mid P(a)=0]] \leqslant \frac{d}{|S|}$
Malt. SZ Lemma.

$$
\begin{aligned}
& Z \angle \text { Lemma } \\
& \bar{a} \underset{\leftarrow}{F S_{m}}[\text { mull }(P, \bar{a})] \leqslant \frac{d}{\mid S I}
\end{aligned}
$$

Drstance of multivaserate multopicerty
Code
Malt SZ Lemma

$$
\begin{aligned}
& z \operatorname{Lemma} \\
& \bar{a} \leqslant \mathbb{F}_{m}[\text { mult }(P, \bar{a})] \leqslant \frac{d}{151}
\end{aligned}
$$

Corollary; $P \neq Q \in \mathbb{F}_{\pi_{d}}\left[x_{1}, x_{2} \ldots x_{m}\right]$

$$
\begin{aligned}
& P_{r=m}\left[P^{(s s)}(\bar{a})=Q^{(<s)}(\bar{a})\right]=\operatorname{Pr}[\operatorname{malt}(\beta Q, \bar{a}) \\
& \geqslant 87 \\
& \text { Dretance } \geqslant 1-\frac{d}{8|s|}
\end{aligned}
$$

List-decoding Chivaserate Multiplicity Codes
[Kopparty ' 12 = Guruswomi-Wong'场
Problem: Given a received $r=\left\{\beta_{i}^{(<\Delta)} \in \mathbb{F}^{s}\right\}_{c=1}^{n}$ find all deg α polynomials P such that $\#\left\{i / p^{(<8)}\left(\alpha_{i}\right)=\beta_{i}^{(<8)}\right\} \geqslant t$ Goal: Make t as small as possible.

Latiodry yonne Mallory
Ligenemy in a

Theorem: $\forall R, \varepsilon \in(0,1)$, there is a multiplicity parameter \& such that the univarraile multiplicity code worth degree d, block length n, multiplicity 8 and rate $R=\frac{d}{8 n}$ over fields of characteristic $\geqslant \max \{d, n\}$ is list. decodable from $(1-R-\varepsilon)$ fraction of errors.
Cnivorrare Mull codes of barge enough molt are brot-blecodatie supt caponity.

Guruswomt. Wang Linear Algebraic Fomewort
Input: $r=\left\{\beta_{i}^{(<\sigma)} \in \mathbb{F}^{s}\right\}_{c=1}^{n}$
Step 1: Find an "algebraic explanation"
Find $Q\left(x, y_{0}, y_{1}, \ldots y_{m-1}\right)=A(x)+\sum_{c=0}^{m, 1} y_{i} \cdot B_{i}(x)$ satisfying $(A * A)$

Guruswamr- Wang Linear Algebraic Fromewort Conditions (A, A) are such that If polynomial $P \in \mathbb{F}_{k}[x]$ satisfies

$$
p^{(<z)}\left(\alpha_{i}\right)=\beta_{i}^{(<z)}
$$

then $R(x) \triangleq Q\left(x, P(x), P^{(i)}(x), \ldots, P^{(m-1)}(x)\right)$
has a root at α_{i} with multiplicity $8-m$

Guruswami- Wang Linear Algebraic Fromewort Conditions (A, A) are such that if polynomial $P \in \mathbb{F}_{k}[x]$ satisfies

$$
p^{(<s)}\left(\alpha_{i}\right)=\beta_{i}^{(<z)}
$$

then $R(x) \equiv Q\left(x, P(x), P^{(i)}(x), \ldots, P^{(m-1)}(x)\right)$
has a root at α_{i} with mulfplicity $\mathrm{s}-\mathrm{m}$
Corollary: If P \& \bar{r} agree on t point then $R(X)$ has $(s-m) t$ roots Cor: de $(R)<(\sigma-m) t \Rightarrow R \equiv 0$.

Guruswomr- Wang Linear Algebraic Framework
Input: $r=\left\{\beta_{i}^{(\delta \delta)} \in \mathbb{F}^{s}\right\}_{c=1}^{n}$
Step 1: Find an "algebraic explanation" for r
Find $Q\left(x, y_{0}, y_{2}, \ldots y_{m-1}\right)=A(x)+\sum_{i=0}^{m-1} y_{i} B_{i}(x)$ satustying $(A * A)$
Step 2: Solve the differential equation to find all polynomials P st $Q\left(x, P(x), P^{(1)}(x), \ldots, P^{(m-1)}(x)\right)=0$.

Gurvowamr - Wang Linear Algebraic Fomework
Remarks:

1. Determinstic Algoirthm that listdecoder to capacrity and outputs liots of sice $\leqslant 9^{m}$
2. Rưning [Kopparty-RonZewi-Garef- Wootlers '同] Randomized procedure to reduce list bige to constant $O_{c}(1)$
3. O(n.polylogn) - time algorn thim [Goyal - Horsha- Kumar-Shantar 247

Local-Decoding of Multivarnate

Local-Decoding of Multivarenate Multiplicily Codes. [Kopparty. Saroof Yetchonin it]

Theorem: For every $\varepsilon, \alpha \in(0,1)$ and $k \in \mathbb{Z}_{>0}$ there are multplicity codes of dimension k, rate $1-\alpha$ and locally-decodable from constont \left. fraction of errors in ${O_{c, \alpha}}^{(} k^{\varepsilon}\right)$ time [Alternate Construactions: Guo-Kopporly-Sudon'/3 Guo'13 Hemenway-Ostrovsty-Wooffer '/3

Local Decoding
Problem: Given $f: F^{m} \rightarrow F_{<8}\left[x, \ldots x_{m}\right]$ bit there exist $P \in \mathbb{E}_{\leqslant \alpha}\left[x_{1}, \ldots, x_{0}\right]$

$$
\begin{aligned}
& \left.\operatorname{Pr} \sum P^{(<8)}(a) \neq f(a)\right] \leqslant \delta_{0}=\frac{\delta}{8} \\
& a \in \mathbb{F}^{m} \\
= & \alpha \in \mathbb{F}^{m}
\end{aligned}
$$

$$
\begin{aligned}
& f: \mathbb{F}^{m} \rightarrow \mathbb{F}_{<s}\left[x_{1}, \ldots x_{m}\right] \\
& E-\text { error }=\left\{a l f^{\left.(a) \neq p^{(c s)}(a)\right\}}\right.
\end{aligned}
$$

Local Decoding Lkopparty. Sareaf- ethan" - Kopparty '/4 7

1. Let S SF Ge a ret of ripe 108^{2} Plat $a, b_{1} \ldots b_{m} \in_{R} F^{m}$

$$
B=\left\{a+\sum r_{i} b_{i} / r_{i} \in S\right\}
$$

2. For each $\beta \in B$ run univariate decoder along $l_{\beta}(t)=\alpha+t_{\beta}$ to obtain $p^{(e)}(\alpha+t \beta)$. (more precisely get the unvariate $P_{B, e}(T)$

Local Decoding LKopparty. Sareaf- Hethan"

- Kopporty is 7

(*) For most $a, 6, \ldots 6 m$ at least $2 / 3 \mathrm{~g}$ linss l_{β} saftofy

$$
Q_{\beta, e}(T)=p^{(e)}\left(\alpha+\beta^{(1)}\right)
$$

(A) Look at coefficent of T^{3} in above pobymal
degree ≤ 8, m-variate multplicrly ercodyy on set B.
Do globol atcoding to recover $p^{(c)}(\alpha)$. \quad e, arte)<s.

Open Questions
I. Decoding

Cnivarerote: What is list-decodiong radias
Ccurrent algoithims work only
for large A_{1} a chorocternstic)
Multivarrate:
Crigue-decoding LBhandari-Horsha

- Kumar-Shonkor 23$]$

List-decoding on grids [Bhonobri-Harsta

Open Questions
III Testring:
Are multplicity codes testable?
LKorkiner-Salama. ToShma ' 22 karlines. Ta Stima 22 \qquad
III Applications:
Crbalanced Exponders [Kalev. TaShma '22]

Multiplicity Codes
Kopparty, "Some Remortos an Multoplicity Codes", 2014

Speed Talks! Thursday/Friday!

- Tell us what you are excited about!
- Open Problems!
- Cool Results!
- Fun Techniques!
- "Hi my name is \qquad and here's a quick summary of what I work on!"
- Submit a talk title here!
- Link also on Zulip and in your inbox.

