Probabilistic and Combinatorial Methods - Part 2

Error-Correcting Codes:Theory and Practice Boot Camp

Jonathan Mosheiff
Ben-Gurion University

Let's recall

Definition: A random code ensemble $C \subseteq \mathbb{F}_{q}^{n}$ is k-locally-similar to an RLC of rate R if

$$
\operatorname{Pr}\left[\left\{v_{1}, \ldots, v_{k}\right\} \subseteq C\right] \lesssim 2^{-(1-R) \cdot n \cdot \operatorname{dim}\left\{v_{1}, \ldots, v_{k}\right\}}
$$

$$
\text { for all } v_{1}, \ldots, v_{k} \in \mathbb{F}_{q}^{n}
$$

Let's recall

Definition: A random code ensemble $C \subseteq \mathbb{F}_{q}^{n}$ is k-locally-similar to an RLC of rate R if

$$
\operatorname{Pr}\left[\left\{v_{1}, \ldots, v_{k}\right\} \subseteq C\right] \lesssim 2^{-(1-R) \cdot n \cdot \operatorname{dim}\left\{v_{1}, \ldots, v_{k}\right\}}
$$

$$
\text { for all } v_{1}, \ldots, v_{k} \in \mathbb{F}_{q}^{n}
$$

Theorem: If a random code ensemble C is k-locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound and any other monotone, k-local and symmetric property of RLC codes with high probability.

Warm up: The generalized Wozencraft Ensemble

Definition: Let $n=2 m$. Let $\varphi: \mathbb{F}_{2^{m}} \rightarrow \mathbb{F}_{2}^{m}$ be the natural binary encoding.
Sample α uniformly at random from \mathbb{F}_{q}.

The Wozencraft ensemble is

$$
\left.C_{\alpha}=\left\{(\varphi(x), \varphi(\alpha x)) \mid x \in \mathbb{F}_{q}\right)\right\} \subseteq \mathbb{F}_{2}^{n}
$$

Warm up: The generalized Wozencraft Ensemble

Claim: C_{α} is 1-locally-similar to an RLC of rate $\frac{1}{2}$.

Warm up: The generalized Wozencraft Ensemble

Claim: C_{α} is 1-locally-similar to an RLC of rate $\frac{1}{2}$.

$$
\text { Proof: Let } y \in \mathbb{F}_{2}^{n} \backslash\{0\} \text {. }
$$

There is a unique way to write $y=(\varphi(x), \varphi(\beta x))$ for some $\beta \in \mathbb{F}_{2}^{n}$.
So $y \in \mathbb{C}_{\alpha}$ only if $\alpha=\beta$, which happens with probability $2^{-m}=2^{-\frac{n}{2}}$.

Warm up: The generalized Wozencraft Ensemble

Claim: C_{α} is 1-locally-similar to an RLC of rate $\frac{1}{2}$.

Corollary: The Wozencraft ensemble achieves the same 1-local properties as an RLC

$$
\text { of rate } \frac{1}{2}
$$

In particular, it achieves the GV-bound for minimal distance.

Warm up: The generalized Wozencraft Ensemble

Definition: Let $n=2 m$. Let $\varphi: \mathbb{F}_{2^{m}} \rightarrow \mathbb{F}_{2}^{m}$ be the natural binary encoding. Sample a uniformly random polynomial p of degree $<k$ from $\mathbb{F}_{q}[x]$.

The k-generalized Wozencraft ensemble is

$$
\left.C_{p}=\left\{(\varphi(x), \varphi(p(x))) \mid x \in \mathbb{F}_{q}\right)\right\} \subseteq \mathbb{F}_{2}^{n}
$$

Claim: C_{p} is k-locally-similar to an RLC of rate $\frac{1}{2}$.

Warm up: The generalized Wozencraft Ensemble

Claim: C_{p} is k-locally-similar to an RLC of rate $\frac{1}{2}$.

Warm up: The generalized Wozencraft Ensemble

Claim: C_{p} is k-locally-similar to an RLC of rate $\frac{1}{2}$.

Corollary: The Wozencraft ensemble achieves the same k-local properties as an RLC

$$
\text { of rate } \frac{1}{2}
$$

In particular, it achieves the list-decoding GV-bound for list size up to k.

Randomly Punctured Low-Bias codes

Theorem [Guruswami-M]: Let D be a low-bias code and let C be a random puncturing of D. Then C is k-locally similar to an RLC of similar rate.

Randomly Punctured Low-Bias codes

Theorem [Guruswami-M]: Let D be a low-bias code and let C be a random puncturing of D. Then C is k-locally similar to an RLC of similar rate.

Caveat: This theorem requires constant alphabet size.

Randomly Punctured Low-Bias codes

Partially derandomized by [Putterman-Pyne]

Theorem [Guruswami-M]: Let D be a low-bias code and let C be a random puncturing of D. Then C is k-locally similar to an RLC of similar rate.

Caveat: This theorem requires constant alphabet size.

Puncturing of Codes

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ create a new code $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ create a new code $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ create a new code $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ create a new code $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.
- If the punctured columns are chosen at random, C is said to be a random n-puncturing of D.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ create a new code $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.
- If the punctured columns are chosen at random, C is said to be a random n-puncturing of D.
- Example: An RLC of rate R in \mathbb{F}_{q}^{n} is a random puncturing of the Hadamard code $H \subseteq \mathbb{F}_{q}^{q^{n n}}$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ create a new code $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.
- If the punctured columns are chosen at random, C is said to be a random n-puncturing of D.
- Example: An RLC of rate R in \mathbb{F}_{q}^{n} is a random puncturing of the Hadamard code $H \subseteq \mathbb{F}_{q}^{q^{n n}}$.
- A Reed-Solomon code over a random evaluation set is a random puncturing of the full ReedSolomon code.

Puncturing of low-bias codes

Puncturing of low-bias codes

- Let's focus on $q=2$

Puncturing of low-bias codes

- Let's focus on $q=2$
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).

Puncturing of low-bias codes

- Let's focus on $q=2$
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- D can be, e.g., a dual- BCH code.

Puncturing of low-bias codes

- Let's focus on $q=2$
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- D can be, e.g., a dual- BCH code.
- Theorem: C is locally-similar to an RLC.

Puncturing of low-bias codes

- Let's focus on $q=2$
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- D can be, e.g., a dual- BCH code.
- Theorem: C is locally-similar to an RLC.
- Corollary: C is as list-decodable and listrecoverable as an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Drawbacks of the method

Drawbacks of the method

Locality is necessary

Drawbacks of the method

Locality is necessary

Open problem:
Let $C \subseteq \mathbb{F}_{q}^{n}$ be an RLC and fix $\epsilon>0$.
Prove that C is $\left(\frac{q}{2}, q^{R n} \cdot 2^{-n} \cdot(1+\epsilon)\right)$-list-recoverable with high probability.

Drawbacks of the method

Can only deal with " Σ_{1} " properties.

Drawbacks of the method

Can only deal with " Σ_{1} " properties.

Open problem:

Say that a code C is (ρ, L)-covering if every $x \in \mathbb{F}_{2}^{n}$ is ρ-close to at least L codewords of C.

Find the rate threshold for (ρ, L)-covering with regard to RLCs.

Drawbacks of the method

Local-similarity to RLC requires $\Omega(n)$ random bits

Drawbacks of the method

Local-similarity to RLC requires $\Omega(n)$ random bits

Open problem:

Construct a code achieving the GV bound with $o(n)$ random bits.

Drawbacks of the method

Alphabet cannot be large.

Drawbacks of the method

Alphabet cannot be large.

- Recall that the number of possible row distributions for a matrix in \mathbb{F}_{2}^{L} is roughly $n^{2^{L}}$. We need to union bound over this.

Drawbacks of the method

Alphabet cannot be large.

- Recall that the number of possible row distributions for a matrix in \mathbb{F}_{2}^{L} is roughly $n^{2^{L}}$. We need to union bound over this.
- For general q this is $n^{q^{L}}$.

Drawbacks of the method

Alphabet cannot be large.

- Recall that the number of possible row distributions for a matrix in \mathbb{F}_{2}^{L} is roughly $n^{2^{L}}$. We need to union bound over this.
- For general q this is $n^{q^{L}}$.
- Suppose $q=n$, then there are $n^{n^{L}}$ types! 8

Drawbacks of the method

Alphabet cannot be large.

Drawbacks of the method

Alphabet cannot be large.

- Is there any hope for reasoning about Reed-Solomon codes with this method?

Reed-Solomon codes

Reed-Solomon codes

- A Reed-Solomon (RS) code over \mathbb{F}_{q} is defined by:
- A rank $1 \leq k \leq q$
- An evaluation set $S \subseteq \mathbb{F}_{q}$.

Reed-Solomon codes

- A Reed-Solomon (RS) code over \mathbb{F}_{q} is defined by:
- A rank $1 \leq k \leq q$
- An evaluation set $S \subseteq \mathbb{F}_{q}$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_{q}[x]$ has degree $<k$.

Reed-Solomon codes

- A Reed-Solomon (RS) code over \mathbb{F}_{q} is defined by:
- A rank $1 \leq k \leq q$
- An evaluation set $S \subseteq \mathbb{F}_{q}$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_{q}[x]$ has degree $<k$.
- We denote $\mathrm{RS}[S, k]$.

Reed-Solomon codes

- A Reed-Solomon (RS) code over \mathbb{F}_{q} is defined by:
- A rank $1 \leq k \leq q$
- An evaluation set $S \subseteq \mathbb{F}_{q}$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_{q}[x]$ has degree $<k$.
- We denote $\mathrm{RS}[S, k]$.
- The code has dimension k and length $n=|S|$, so $R=\frac{k}{n}$.

Reed-Solomon codes

- A Reed-Solomon (RS) code over \mathbb{F}_{q} is defined by:
- A rank $1 \leq k \leq q$
- An evaluation set $S \subseteq \mathbb{F}_{q}$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_{q}[x]$ has degree $<k$.
- We denote $\mathrm{RS}[S, k]$.
- The code has dimension k and length $n=|S|$, so $R=\frac{k}{n}$.
- Note that $n \leq q$.

List-Decodability of RS codes

Problem:

Are there RS codes that achieve the list-decoding GV-bound?

How large does q need to be in terms of n ?

List-Decodability of RS codes

- Many works about list-decodability of $\mathrm{RS}[S, k]$ where $S \subseteq \mathbb{F}_{q}$ is random ("random RS code")
- [Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].

List-Decodability of RS codes

- Many works about list-decodability of $\mathrm{RS}[S, k]$ where $S \subseteq \mathbb{F}_{q}$ is random ("random RS code")
- [Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].
- Most recently:
- [BGM] - List-decoding GV-bound with $q=2^{O(n)}$
- [GZ] - List-decoding GV-bound with $q=O\left(n^{2}\right)$
- [AGL] - List-decoding GV-bound with $q=O(n)$

List-Decodability of RS codes

- Many works about list-decodability of $\mathrm{RS}[S, k]$ where $S \subseteq \mathbb{F}_{q}$ is random ("random RS code")
- [Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].
- Most recently:
- [BGM] - List-decoding GV-bound with $q=2^{O(n)}$
- [GZ] - List-decoding GV-bound with $q=O\left(n^{2}\right)$
- [AGL] - List-decoding GV-bound with $q=O(n)$
- Less is known for list-recovery.

List-Decodability of RS codes

- Many works about list-decodability of $\mathrm{RS}[S, k]$ where $S \subseteq \mathbb{F}_{q}$ is random ("random RS code")
- [Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].
- Most recently:
- [BGM] - List-decoding GV-bound with $q=2^{O(n)}$
- [GZ] - List-decoding GV-bound with $q=O\left(n^{2}\right)$
-

[AGL] - List-decoding GV-bound with $q=O(n)$

- Less is known for list-recovery.

Types for large alphabet

Types for large alphabet

- Suppose the columns of $A \in \mathbb{F}_{q}^{n \times(L+1)}$ are ρ-clustered.

- The row distribution of A contains too much information.

Types for large alphabet

- Suppose the columns of $A \in \mathbb{F}_{q}^{n \times(L+1)}$ are ρ-clustered.

- The row distribution of A contains too much information.
- For a given row, we only care about the identity relation.

Types for large alphabet

Types for large alphabet

Given $z \in \mathbb{F}_{q}^{L+1}$ let P_{z} denote the partition of

$$
\begin{aligned}
& \{1, \ldots, L+1\} \text { where } \\
& i \sim_{P_{z}} j \Longleftrightarrow z_{i}=z_{j}
\end{aligned}
$$

Types for large alphabet

Given $z \in \mathbb{F}_{q}^{L+1}$ let P_{z} denote the partition of

$$
\begin{aligned}
& \{1, \ldots, L+1\} \text { where } \\
& i \sim_{P_{z}} j \Longleftrightarrow \quad \Longleftrightarrow \quad z_{i}=z_{j}
\end{aligned}
$$

The type of a matrix $A \in \mathbb{F}_{q}^{n \times(L+1)}$ is a pair consisting of:
A list of partitions $\left(P_{A_{i}}\right)_{i=1}^{n}$
The row-span of A.

Types for large alphabet

Types for large alphabet

Observation:

If a matrix A is ρ-clustered then so are all matrices of the same type.

So the witnesses for non-list-decodability are a union
 of type classes.

List-recoverability can also be expressed this way. A property expressible by type classes is called a local identity property.

Types for large alphabet

Types for large alphabet

- How many types are there?

Types for large alphabet

- How many types are there?
- There are at most $(L+1)^{L+1}$ equivalence relations.

Types for large alphabet

- How many types are there?
- There are at most $(L+1)^{L+1}$ equivalence relations.
- So at most $q^{L^{2}} \cdot(L+1)^{n(L+1)}$ types.

Types for large alphabet

- How many types are there?
- There are at most $(L+1)^{L+1}$ equivalence relations.
- So at most $q^{L^{2}} \cdot(L+1)^{n(L+1)}$ types.
- For constant L and $q \geq L^{\frac{L}{\epsilon}}$, the above is at most $q^{\epsilon n}$ which is tiny!

Types for large alphabet

- How many types are there?
- There are at most $(L+1)^{L+1}$ equivalence relations.
- So at most $q^{L^{2}} \cdot(L+1)^{n(L+1)}$ types.
- For constant L and $q \geq L^{\frac{L}{\epsilon}}$, the above is at most $q^{\epsilon n}$ which is tiny!
- We can union bound over the ρ-clustered types.

Large alphabet types in RLCs - Intuition

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- Consider the type $T=\left(P=\left(P_{i}\right)_{i=1}^{n}, \mathbb{F}_{3}^{n}\right)$

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- Consider the type $T=\left(P=\left(P_{i}\right)_{i=1}^{n}, \mathbb{F}_{3}^{n}\right)$
- Will an RLC of rate R contain a matrix of type T ?

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- Consider the type $T=\left(P=\left(P_{i}\right)_{i=1}^{n}, \mathbb{F}_{3}^{n}\right)$
- Will an RLC of rate R contain a matrix of type T ?
- There are $q^{3 R n}$ triplets x_{1}, x_{2}, x_{3} of words in C.

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- Consider the type $T=\left(P=\left(P_{i}\right)_{i=1}^{n}, \mathbb{F}_{3}^{n}\right)$
- Will an RLC of rate R contain a matrix of type T ?
- There are $q^{3 R n}$ triplets x_{1}, x_{2}, x_{3} of words in C.
- Each P_{i} imposes $3-\left|P_{i}\right|$ linear conditions.

$\{1,2\},\{3\}$
$\boldsymbol{n} \boldsymbol{\{ 1 , 2 , 3 \}}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- Consider the type $T=\left(P=\left(P_{i}\right)_{i=1}^{n}, \mathbb{F}_{3}^{n}\right)$
- Will an RLC of rate R contain a matrix of type T ?
- There are $q^{3 R n}$ triplets x_{1}, x_{2}, x_{3} of words in C.
- Each P_{i} imposes $3-\left|P_{i}\right|$ linear conditions.

$\{1,2\},\{3\}$
$\boldsymbol{n} \boldsymbol{\{ 1 , 2 , 3 \}}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

. Let $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)=3 R n-\sum_{i}\left(3-\left|P_{i}\right|\right)$.

Large alphabet types in RLCs - Intuition

- Consider the type $T=\left(P=\left(P_{i}\right)_{i=1}^{n}, \mathbb{F}_{3}^{n}\right)$
- Will an RLC of rate R contain a matrix of type T ?
- There are $q^{3 R n}$ triplets x_{1}, x_{2}, x_{3} of words in C.
- Each P_{i} imposes $3-\left|P_{i}\right|$ linear conditions.

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

. Let $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)=3 R n-\sum_{i}\left(3-\left|P_{i}\right|\right)$.

- If $\operatorname{deg}(T)<0$ then there is probably no type \mathbf{T} matrix in C.

Large alphabet types in RLCs - Intuition

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

3

- What if $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)>0$?

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

3

- What if $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)>0$?
- Then must be non trivial triplets $x_{1}, x_{2}, x_{3} \in C$ satisfying P.

$\{1,2\},\{3\}$
$\boldsymbol{n} \boldsymbol{n 1 , 2 , 3 \}}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- What if $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)>0$?
- Then must be non trivial triplets $x_{1}, x_{2}, x_{3} \in C$ satisfying P.
- But is their row span \mathbb{F}_{3}^{n} ?

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- What if $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)>0$?
- Then must be non trivial triplets $x_{1}, x_{2}, x_{3} \in C$ satisfying P.
- But is their row span \mathbb{F}_{3}^{n} ?
- Maybe not!

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- What if $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)>0$?
- Then must be non trivial triplets $x_{1}, x_{2}, x_{3} \in C$ satisfying P.
- But is their row span \mathbb{F}_{3}^{n} ?
- Maybe not!

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

- It's possible that these x_{1}, x_{2}, x_{3} are not even distinct!

Large alphabet types in RLCs - Intuition

- In this example we have $\operatorname{deg}\left(P, \mathbb{F}_{q}^{3}\right)>0$.

$\{1,2\},\{3\}$
$\{1\},\{2\},\{3\}$
$\boldsymbol{n} \boldsymbol{\{ 1 , 2 \} , \{ 3 \}}$
$\{1,2\},\{3\}$
\cdots
$\{1,2\},\{3\}$

- However, it's likely that all solutions will have $x_{1}=x_{2}$!

Large alphabet types in RLCs - Intuition

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

Large alphabet types in RLCs - Intuition

- What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$
- We take $V=\left\{z \in \mathbb{F}_{q}^{3} \mid z_{1}+z_{2}-2 z_{3}=0\right\}$

$n=$| $\{1,2\},\{3\}$ |
| :---: |
| $\{1,2,3\}$ |
| $\{1\},\{2\},\{3\}$ |
| $\{1,2,3\}$ |
| \ldots |
| $\{1,3\},\{2\}$ |

Large alphabet types in RLCs - Intuition

- What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$
- We take $V=\left\{z \in \mathbb{F}_{q}^{3} \mid z_{1}+z_{2}-2 z_{3}=0\right\}$
- z_{3} is determined by z_{1}, z_{2} so we only have $2 R n$ degrees of 3 freedom.

\{1,2\}, 33$\}$
\{1,2,3\}
$\{1\},\{2\},\{3\}$
\{1,2,3\}
\ldots
\{1,3\}, 22$\}$

Large alphabet types in RLCs - Intuition

- What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$
- We take $V=\left\{z \in \mathbb{F}_{q}^{3} \mid z_{1}+z_{2}-2 z_{3}=0\right\}$
- z_{3} is determined by z_{1}, z_{2} so we only have $2 R n$ degrees of

$\{1,2\},\{3\}$
$\boldsymbol{n} \boldsymbol{\{ 1 , 2 , 3 \}}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

- On the other hand, $z_{1}=z_{2} \Rightarrow z_{1}=z_{3}$

Large alphabet types in RLCs - Intuition

- What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$
- We take $V=\left\{z \in \mathbb{F}_{q}^{3} \mid z_{1}+z_{2}-2 z_{3}=0\right\}$
- z_{3} is determined by z_{1}, z_{2} so we only have $2 R n$ degrees of 3 freedom.
- On the other hand, $z_{1}=z_{2} \Rightarrow z_{1}=z_{3}$
- So $\{1,2,3\}$ is just 1 constraint instead of 2 .

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

$$
\begin{array}{|c|}
\hline \operatorname{deg}(P, V)=\operatorname{dim} V \cdot R n-\sum_{i=1}^{n}\left(\operatorname{dim} V-\operatorname{dim} V \cap V_{P_{i}}\right) \\
\text { Where } \\
V_{P_{i}}=\left\{z \in \mathbb{F}_{q}^{3} \mid z \text { satisfies the equalities asserted by } P_{i}\right\} \\
\hline
\end{array}
$$

$\operatorname{deg}(P, V)=\operatorname{dim} V \cdot R n-\sum_{i=1}^{n}\left(\operatorname{dim} V-\operatorname{dim} V \cap V_{P_{i}}\right)$
Where
$V_{P_{i}}=\left\{z \in \mathbb{F}_{q}^{3} \mid z\right.$ satisfies the equalities asserted by $\left.P_{i}\right\}$
Theorem [RLC thresholds for large alphabet]:
An RLC is likely to contain a type (P, V) matrix if and

For all $U \subseteq V$.

$$
\begin{gathered}
\text { only if } \\
\operatorname{deg}(P, V)>\operatorname{deg}(P, U)
\end{gathered}
$$

$\{1,2\},\{3\}$
$\{1,2,3\}$
$\{1\},\{2\},\{3\}$
$\{1,2,3\}$
\ldots
$\{1,3\},\{2\}$

$$
\begin{gathered}
\operatorname{deg}(P, V)=\operatorname{dim} V \cdot R n-\sum_{i=1}^{n}\left(\operatorname{dim} V-\operatorname{dim} V \cap V_{P_{i}}\right) \\
\text { Where } \\
V_{P_{i}}=\left\{z \in \mathbb{F}_{q}^{3} \mid z \text { satisfies the equalities asserted by } P_{i}\right\} \\
\hline
\end{gathered}
$$

Theorem [RLC thresholds for large alphabet]:

An RLC is likely to contain a type (P, V) matrix if and only if

$$
\operatorname{deg}(P, V)>\operatorname{deg}(P, U)
$$

In particular
$\operatorname{deg}(P, V)>\operatorname{deg}(P,\{0\})=0$

For all $U \subseteq V$.

Theorem [List-Decodability of RLC]
 (previously proven by [AGL]):

For $q \geq 2^{\Omega(L)}$, an RLC in \mathbb{F}_{q}^{n} achieves the list-decoding GV bound.

Theorem [List-Decodability of RLC] (previously proven by [AGL]):
For $q \geq 2^{\Omega(L)}$, an RLC in \mathbb{F}_{q}^{n} achieves the list-decoding GV bound.

Theorem [Reduction from RLC to random RS codes]:

Let \mathscr{P} be a local identity property achieved with high probability by an RLC.
Then, \mathscr{P} is also achieved with high probability by a random RS code with $q=O_{L}(n)$.

Theorem [Reduction from RLC to random RS codes] (Levi-M-Shagrithaya):

Let \mathscr{P} be a local identity property achieved with high probability by an RLC.

Then, \mathscr{P} is also achieved with high probability by a random RS code with $q=O_{L}(n)$.

Theorem [Reduction from RLC to random RS codes] (Levi-M-Shagrithaya):

Let \mathscr{P} be a local identity property achieved with high probability by an RLC.

Then, \mathscr{P} is also achieved with high probability by a random RS code with $q=O_{L}(n)$.

Corollary:

A random RS code achieves the list-decoding GV-bound. (Already proven by [AGL] using the GM-MDS theorem)

A random RS code is at least as list-recoverable as an RLC.

Proof sketch: Reduction from random RS to RLC

By the threshold theorem, it suffices to solve the following problem:

Proof sketch: Reduction from random RS to RLC

By the threshold theorem, it suffices to solve the following problem:

$$
\begin{gathered}
\text { Fix partitions } P=\left(P_{i}\right) \\
\text { Suppose that } \operatorname{deg}\left(P, \mathbb{F}_{2}^{L+1}\right) \leq-\epsilon n
\end{gathered}
$$

We need to prove:
$\operatorname{Pr}\left[\right.$ A random RS code contains a type $\left(P, \mathbb{F}_{2}^{L+1}\right)$ matrix $] \leq q^{-\Omega(n)}$

Proof sketch: Reduction from random RS to RLC

By the threshold theorem, it suffices to solve the following problem:

$$
\begin{gathered}
\text { Fix partitions } P=\left(P_{i}\right) \\
\text { Suppose that } \operatorname{deg}\left(P, \mathbb{F}_{2}^{L+1}\right) \leq-\epsilon n
\end{gathered}
$$

We need to prove:

$\operatorname{Pr}\left[\right.$ A random RS code contains a type $\left(P, \mathbb{F}_{2}^{L+1}\right)$ matrix $] \leq q^{-\Omega(n)}$

On the Board

Open Problems

Open Problems

- Fully understand list-Recoverability of RLC and random RS.

Open Problems

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier

Open Problems

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties

Open Problems

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
- List-recoverability with large list size.

Open Problems

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
- List-recoverability with large list size.
- Handle Π_{2} properties

Open Problems

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
- List-recoverability with large list size.
- Handle Π_{2} properties
- (ρ, L)-covering

Open Problems

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
- List-recoverability with large list size.
- Handle Π_{2} properties
- (ρ, L)-covering
- Find limit objects for codes.

Open Problems

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
- List-recoverability with large list size.
- Handle Π_{2} properties
- (ρ, L)-covering
- Find limit objects for codes.

> Thank you!

