Probabilistic and Combinatorial Methods - Part 2 Error-Correcting Codes: Theory and Practice Boot Camp

Jonathan Mosheiff Ben-Gurion University

Let's recall

Definition: A random code ensemble $C \subseteq \mathbb{F}_q^n$ is k-locally-similar to an RLC of rate R if

$\Pr\left[\{v_1, \dots, v_k\} \subseteq C\right]$

for all v_1

$$C] \leq 2^{-(1-R) \cdot n \cdot \dim\{v_1, \dots, v_k\}}$$

$$v_k \in \mathbb{F}_q^n$$
.

Let's recall

$\Pr\left\{\{v_1, \dots, v_k\} \subseteq C\right\}$ for all v_1

Theorem: If a random code ensemble C is k-locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound and any other monotone, k-local and symmetric property of RLC codes with high probability.

Definition: A random code ensemble $C \subseteq \mathbb{F}_q^n$ is k-locally-similar to an RLC of rate R if

$$\sum \left[\sum 2^{-(1-R) \cdot n \cdot \dim\{v_1, \dots, v_k\}} \right]$$

$$v_k \in \mathbb{F}_q^n$$
.

Sample α uniformly at random from \mathbb{F}_{a} .

The Wozencraft ensemble is

$$C_{\alpha} = \left\{ (\varphi(x), \varphi(\alpha x)) \mid x \in \mathbb{F}_q) \right\} \subseteq \mathbb{F}_2^n$$

Definition: Let n = 2m. Let $\varphi : \mathbb{F}_{2^m} \to \mathbb{F}_2^m$ be the natural binary encoding.

So $y \in \mathbb{C}_{\alpha}$ only if $\alpha = \beta$, which happens with probability $2^{-m} = 2^{-\frac{n}{2}}$.

Claim: C_{α} is 1-locally-similar to an RLC of rate —.

Proof: Let $y \in \mathbb{F}_2^n \setminus \{0\}$.

There is a unique way to write $y = (\varphi(x), \varphi(\beta x))$ for some $\beta \in \mathbb{F}_2^n$.

Corollary: The Wozencraft ensemble achieves the same 1-local properties as an RLC of rate -.

In particular, it achieves the GV-bound for minimal distance.

Definition: Let n = 2m. Let $\varphi : \mathbb{F}_{2^m} \to \mathbb{F}_2^m$ be the natural binary encoding.

Sample a uniformly random polynomial *p* of degree < k from $\mathbb{F}_{a}[x]$.

The k-generalized Wozencraft ensemble is

 $C_p = \left\{ (\varphi(x), \varphi(p(x))) \mid x \in \mathbb{F}_q) \right\} \subseteq \mathbb{F}_2^n$

Claim: C_p is k-locally-similar to an RLC of rate $-\frac{1}{2}$.

Corollary: The Wozencraft ensemble achieves the same k-local properties as an RLC of rate -.

In particular, it achieves the list-decoding GV-bound for list size up to k.

Randomly Punctured Low-Bias codes

Theorem [Guruswami-M]: Let D be a low-bias code and let C be a random puncturing of D. Then C is k-locally similar to an RLC of similar rate.

Randomly Punctured Low-Bias codes

Theorem [Guruswami-M]: Let D be a **low-bias code** and let C be a random puncturing of D. Then C is k-locally similar to an RLC of similar rate.

Caveat: This theorem requires **constant alphabet size**.

Randomly Punctured Low-Bias codes

Theorem [Guruswami-M]: Let D be a **low-bias code** and let C be a random puncturing of D. Then C is k-locally similar to an RLC of similar rate.

Caveat: This theorem requires **constant alphabet size**.

Partially derandomized by [Putterman-Pyne]

• From a code $D \subseteq \mathbb{F}_q^m$ create a new code $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.

• From a code $D \subseteq \mathbb{F}_q^m$ create a new code $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.

• From a code $D \subseteq \mathbb{F}_q^m$ create a new code $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.

- From a code $D \subseteq \mathbb{F}_q^m$ create a new code $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.
- If the punctured columns are chosen at random, *C* is said to be a random *n*-puncturing of *D*.

- From a code $D \subseteq \mathbb{F}_q^m$ create a new code $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.
- If the punctured columns are chosen at random,
 C is said to be a random *n*-puncturing of *D*.
- **Example:** An **RLC** of rate R in \mathbb{F}_q^n is a random puncturing of the Hadamard code $H \subseteq \mathbb{F}_q^{R^n}$.

- From a code $D \subseteq \mathbb{F}_q^m$ create a new code $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.
- If the punctured columns are chosen at random,
 C is said to be a random *n*-puncturing of *D*.
- **Example:** An **RLC** of rate R in \mathbb{F}_q^n is a **random** puncturing of the Hadamard code $H \subseteq \mathbb{F}_q^{R^n}$.
- A Reed-Solomon code over a random evaluation set is a random puncturing of the full Reed-Solomon code.

• Let's focus on q = 2

- Let's focus on q = 2
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).

- Let's focus on q = 2
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- *D* can be, e.g., a **dual-BCH** code.

- Let's focus on q = 2
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- *D* can be, e.g., a **dual-BCH** code.
- Theorem: C is locally-similar to an RLC.

- Let's focus on q = 2
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- *D* can be, e.g., a **dual-BCH** code.
- Theorem: C is locally-similar to an RLC.
- Corollary: C is as list-decodable and listrecoverable as an RLC.

• • •

Proof sketch: C is locally-similar to an RLC.

Proof sketch: C is locally-similar to an RLC.

Proof sketch: *C* is locally-similar to an RLC.

via the XOR lemma.

Drawbacks of the method

Locality is necessary

Drawbacks of the method

Drawbacks of the method

Locality is necessary

Open problem:

Let $C \subseteq \mathbb{F}_q^n$ be an **RLC** and fix $\epsilon > 0$.

Prove that *C* is $\left(\frac{q}{2}, q^{Rn} \cdot 2^{-n} \cdot (1+\epsilon)\right)$ -list-recoverable with high probability.

Can only deal with " Σ_1 " properties.

Drawbacks of the method

Open problem:

Drawbacks of the method

Can only deal with " Σ_1 " properties.

- Say that a code C is (ρ, L) -covering if every $x \in \mathbb{F}_2^n$ is ρ -close to at least L codewords of C.
 - Find the rate threshold for (ρ, L) -covering with regard to RLCs.

Local-similarity to RLC requires $\Omega(n)$ random bits

Drawbacks of the method

Local-similarity to RLC requires $\Omega(n)$ random bits

Open problem:

Drawbacks of the method

Construct a code achieving the GV bound with o(n) random bits.

Alphabet cannot be large.

Drawbacks of the method

roughly n^{2^L} . We need to union bound over this.

Drawbacks of the method

Alphabet cannot be large.

• Recall that the number of possible row distributions for a matrix in \mathbb{F}_2^L is

- roughly n^{2^L} . We need to union bound over this.
- For general q this is n^{q^L} .

Drawbacks of the method

Alphabet cannot be large.

• Recall that the number of possible row distributions for a matrix in \mathbb{F}_2^L is

- roughly n^{2^L} . We need to union bound over this.
- For general q this is n^{q^L} .
- Suppose q = n, then there are n^{n^L} types!

Drawbacks of the method

Alphabet cannot be large.

• Recall that the number of possible row distributions for a matrix in \mathbb{F}_2^L is

Alphabet cannot be large.

Drawbacks of the method

Alphabet cannot be large.

• Is there any hope for reasoning about **Reed-Solomon** codes with this method?

Drawbacks of the method

- A **Reed-Solomon (RS) code** over \mathbb{F}_q is defined by:
 - A rank $1 \le k \le q$
 - An evaluation set $S \subseteq \mathbb{F}_q$.

- A **Reed-Solomon (RS) code** over \mathbb{F}_q is defined by:
 - A rank $1 \le k \le q$
 - An evaluation set $S \subseteq \mathbb{F}_q$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_q[x]$ has degree < k.

- A **Reed-Solomon (RS) code** over \mathbb{F}_q is defined by:
 - A rank $1 \le k \le q$
 - An evaluation set $S \subseteq \mathbb{F}_q$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_q[x]$ has degree < k.
- We denote RS[S, k].

- A **Reed-Solomon (RS) code** over \mathbb{F}_q is defined by:
 - A rank $1 \le k \le q$
 - An evaluation set $S \subseteq \mathbb{F}_q$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_q[x]$ has degree < k.
- We denote RS[S, k].
- The code has dimension k and length n = |S|, so $R = \frac{k}{-}$.

n

- A **Reed-Solomon (RS) code** over \mathbb{F}_q is defined by:
 - A rank $1 \le k \le q$
 - An evaluation set $S \subseteq \mathbb{F}_q$.
- The codewords are $(p(x))_{x \in S}$ where $p \in \mathbb{F}_q[x]$ has degree < k.
- We denote RS[S, k].
- The code has dimension k and length n = |S|, so $R = \frac{k}{-}$.
- Note that $n \leq q$.

n

Problem:

- Are there **RS codes** that achieve the list-decoding GV-bound?
 - How large does q need to be in terms of n?

- **RS code**")
 - \bullet

• Many works about list-decodability of RS[S, k] where $S \subseteq \mathbb{F}_{a}$ is random ("random"

[Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].

- Many works about list-decodability of RS[S, k] where $S \subseteq \mathbb{F}_{a}$ is random ("random" **RS code**")
 - [Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], \bullet [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].
- Most recently:
 - [BGM] List-decoding GV-bound with $q = 2^{O(n)}$
 - [GZ] List-decoding GV-bound with $q = O(n^2)$
 - [AGL] List-decoding GV-bound with q = O(n)

- Many works about list-decodability of RS[S, k] where $S \subseteq \mathbb{F}_{a}$ is random ("random" **RS code**")
 - [Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], \bullet [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].
- Most recently:
 - [BGM] List-decoding GV-bound with $q = 2^{O(n)}$
 - [GZ] List-decoding GV-bound with $q = O(n^2)$
 - [AGL] List-decoding GV-bound with q = O(n)
- Less is known for list-recovery.

- **RS code**")
- Most recently:
 - [BGM] List-decoding GV-bound w
 - [GZ] List-decoding GV-bound with

[AGL] - List-decoding GV-bound wit

Less is known for list-recovery.

• Many works about list-decodability of RS[S, k] where $S \subseteq \mathbb{F}_a$ is random ("random"

[Rudra-Wootters], [Shangguan-Tamo], [Goldberg-Shangguan-Tamo][Guo-Li-Shangguan-Tamo-Wootters], [Ferber-Kwan-Sauermann], [Brakensiek-Gopi-Makam], [Guo-Zhang], [Alrabiah-Guruswami-Li].

with
$$q = 2^{O(n)}$$

h $q = O(n^2)$
th $q = O(n)$

- Suppose the columns of $A \in \mathbb{F}_q^{n \times (L+1)}$ are ρ -clustered.
- The row distribution of A contains too much information.

$$n x_1 x_2 \cdots$$

- The row distribution of A contains too much information.
- For a given row, we only care about the identity relation.

Given $z \in \mathbb{F}_q^{L+1}$ let P_z denote the partition of $\{1, ..., L + 1\}$ where $i \sim_{P_{\tau}} j \iff z_i = z_j$

Given
$$z \in \mathbb{F}_q^{L+1}$$
 let P_z denote the $\{1, \dots, L+1\}$ where $i \sim_{P_z} j \iff z_i = z_i$

The **type** of a matrix $A \in \mathbb{F}_q^{n \times (L+1)}$ is a pair consisting of:

A list of partitions $(P_{A_i})_{i=1}^n$

The row-span of A.

Observation:

If a matrix A is ρ -clustered then so are all matrices of the same type.

So the **witnesses for non-list-decodability** are a union of **type classes**.

List-recoverability can also be expressed this way. A property expressible by type classes is called a local identity property.

*x*₁ *x*₂

• How many types are there?

- How many **types** are there?
 - There are at most $(L + 1)^{L+1}$ equivalence relations.

- How many **types** are there?
 - There are at most $(L + 1)^{L+1}$ equivalence relations.
 - So at most $q^{L^2} \cdot (L+1)^{n(L+1)}$ types.

- How many **types** are there?
 - There are at most $(L + 1)^{L+1}$ equivalence relations.
 - So at most $q^{L^2} \cdot (L+1)^{n(L+1)}$ types.
 - For constant L and $q \ge L^{\frac{L}{\epsilon}}$, the above is at most $q^{\epsilon n}$ which is **tiny**!

- How many types are there?
 - There are at most $(L + 1)^{L+1}$ equivalence relations.
 - So at most $q^{L^2} \cdot (L+1)^{n(L+1)}$ types.
 - For constant L and $q \ge L^{\frac{L}{\epsilon}}$, the above is at most $q^{\epsilon n}$ which is **tiny**!
 - We can union bound over the ρ -clustered types.

• Consider the type $T = \left(P = \left(P_i\right)_{i=1}^n, \mathbb{F}_3^n\right)$

- Consider the type $T = \left(P = \left(P_i\right)_{i=1}^n, \mathbb{F}_3^n\right)$
- Will an **RLC** of rate *R* contain a matrix of type *T*?

- Consider the type $T = \left(P = \left(P_i\right)_{i=1}^n, \mathbb{F}_3^n\right)$
- Will an **RLC** of rate *R* contain a matrix of type *T*?
- There are q^{3Rn} triplets x_1, x_2, x_3 of words in C.

- Consider the type $T = \left(P = \left(P_i\right)_{i=1}^n, \mathbb{F}_3^n\right)$
- Will an **RLC** of rate *R* contain a matrix of type *T*?
- There are q^{3Rn} triplets x_1, x_2, x_3 of words in *C*.
- Each P_i imposes $3 |P_i|$ linear conditions.

п	{1,2},{3}
	{1,2,3}
	{1},{2},{3}
	{1,2,3}
	{1,3},{2}

- Consider the type $T = \left(P = \left(P_i\right)_{i=1}^n, \mathbb{F}_3^n\right)$
- Will an **RLC** of rate *R* contain a matrix of type *T*?
- There are q^{3Rn} triplets x_1, x_2, x_3 of words in C.
- Each P_i imposes $3 |P_i|$ linear conditions.

• Let
$$\deg(P, \mathbb{F}_q^3) = 3Rn - \sum_i (3 - |P_i|).$$

п	{1,2},{3}
	{1,2,3}
	{1},{2},{3}
	{1,2,3}
	{1,3},{2}

- Consider the type $T = \left(P = \left(P_i\right)_{i=1}^n, \mathbb{F}_3^n\right)$
- Will an **RLC** of rate *R* contain a matrix of type *T*?
- There are q^{3Rn} triplets x_1, x_2, x_3 of words in C.
- Each P_i imposes $3 |P_i|$ linear conditions.

• Let deg(
$$P, \mathbb{F}_q^3$$
) = $3Rn - \sum_i (3 - |P_i|)$.

• If deg(T) < 0 then there is probably no type T matrix in C.

п	{1,2},{3}
	{1,2,3}
	{1},{2},{3}
	{1,2,3}
	{1,3},{2}

• What if $deg(P, \mathbb{F}_q^3) > 0$?

- What if $deg(P, \mathbb{F}_q^3) > 0$?
- Then **must** be non trivial triplets $x_1, x_2, x_3 \in C$ satisfying *P*.

- What if $deg(P, \mathbb{F}_q^3) > 0$?
- Then **must** be non trivial triplets $x_1, x_2, x_3 \in C$ satisfying *P*.
- But is their row span \mathbb{F}_3^n ?

- What if $deg(P, \mathbb{F}_q^3) > 0$?
- Then **must** be non trivial triplets $x_1, x_2, x_3 \in C$ satisfying *P*.
- But is their row span \mathbb{F}_3^n ?
- Maybe not!

- What if $deg(P, \mathbb{F}_q^3) > 0$?
- Then **must** be non trivial triplets $x_1, x_2, x_3 \in C$ satisfying P.
- But is their row span \mathbb{F}_3^n ?
- Maybe not!
- It's possible that these x_1, x_2, x_3 are **not even distinct!**

- In this example we have $deg(P, \mathbb{F}_{q}^{3}) > 0$.
- However, it's likely that all solutions will have $x_1 = x_2!$

• What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$

- What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$
 - We take $V = \left\{ z \in \mathbb{F}_q^3 \mid z_1 + z_2 2z_3 = 0 \right\}$

- What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$
 - We take $V = \{ z \in \mathbb{F}_q^3 \mid z_1 + z_2$
- z_3 is determined by z_1, z_2 so we only have 2Rn degrees of freedom.

$$n \quad \{1,2\},\{3\} \\ \{1,2,3\} \\ \{1\},\{2\},\{3\} \\ \{1,2,3\} \\ \dots \\ \{1,3\},\{2\} \}$$

$$-2z_3=0$$

• What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$

• We take
$$V = \left\{ z \in \mathbb{F}_q^3 \mid z_1 + z_2 \right\}$$

- z_3 is determined by z_1, z_2 so we only have 2Rn degrees of freedom.
- On the other hand, $z_1 = z_2 \Rightarrow z_1 = z_3$

$$-2z_3=0$$

• What about the type $\left(\left(P_{i}\right)_{i=1}^{n}, V\right)$

• We take
$$V = \left\{ z \in \mathbb{F}_q^3 \mid z_1 + z_2 \right\}$$

- z_3 is determined by z_1, z_2 so we only have 2Rn degrees of freedom.
- On the other hand, $z_1 = z_2 \Rightarrow z_1 = z_3$
 - So $\{1,2,3\}$ is just **1 constraint instead of 2**.

$$-2z_3=0$$

3 {1,2},{3} {1,2,3} {1},{2},{3} n {1,2,3} . . . {1,3},{2}

$$deg(P, V) = \dim V \cdot Rn - \sum_{i=1}^{n} \left(\dim V\right)$$

Where

$$V_{P_i} = \left\{ z \in \mathbb{F}_q^3 \mid z \text{ satisfies the equalities} \right\}$$

Theorem [RLC thresholds for large alphabet]:

An **RLC** is **likely to contain a type** (P, V) **matrix** if and only if

 $\deg(P, V) > \deg(P, U)$

For all $U \subseteq V$.

es asserted by P_i

3 {1,2},{3} {1,2,3} {1},{2},{3} 1,2,3} ... {1,2,3} ... {1,2,3}

$$deg(P, V) = \dim V \cdot Rn - \sum_{i=1}^{n} \left(\dim V\right)$$

Where

$$V_{P_i} = \left\{ z \in \mathbb{F}_q^3 \mid z \text{ satisfies the equalities} \right\}$$

Theorem [RLC thresholds for large alphabet]:

An **RLC** is likely to contain a type (P, V) matrix if and only if

deg(P, V) > deg(P, U)

For all $U \subseteq V$.

is asserted by P_i

In particular $deg(P, V) > deg(P, \{0\}) = 0$

For $q \ge 2^{\Omega(L)}$, an **RLC** in \mathbb{F}_q^n achieves the list-decoding GV bound.

Theorem [List-Decodability of RLC] (previously proven by [AGL]):

Theorem [Reduction from RLC to random RS codes]:

Then, \mathscr{P} is also achieved with high probability by a random RS code with $q = O_L(n)$.

Theorem [List-Decodability of RLC] (previously proven by [AGL]):

For $q \ge 2^{\Omega(L)}$, an **RLC** in \mathbb{F}_a^n achieves the list-decoding GV bound.

Let \mathscr{P} be a local identity property achieved with high probability by an RLC.

Theorem [Reduction from RLC to random RS codes] (Levi-M-Shagrithaya):

Let \mathscr{P} be a local identity property achieved with high probability by an RLC.

Then, \mathscr{P} is also achieved with high probability by a random RS code with $q = O_L(n)$.

Corollary:

A random RS code achieves the list-decoding GV-bound. (Already proven by [AGL] using the GM-MDS theorem)

A random RS code is at least as list-recoverable as an RLC.

Theorem [Reduction from RLC to random RS codes] (Levi-M-Shagrithaya):

Let \mathscr{P} be a local identity property achieved with high probability by an RLC.

Then, \mathscr{P} is also achieved with high probability by a random RS code with $q = O_I(n)$.

Proof sketch: Reduction from random RS to RLC

By the threshold theorem, it suffices to solve the following problem:
Proof sketch: Reduction from random RS to RLC

- By the **threshold theorem**, it suffices to solve the following problem:
 - Fix partitions $P = (P_i)$.
 - Suppose that $deg(P, \mathbb{F}_2^{L+1}) \leq -\epsilon n$.
 - We need to prove:

Pr A random RS code contains a type (P, \mathbb{F}_2^{L+1}) matrix $\leq q^{-\Omega(n)}$

Proof sketch: Reduction from random RS to RLC

- By the **threshold theorem**, it suffices to solve the following problem:
 - Fix partitions $P = (P_i)$.
 - Suppose that $deg(P, \mathbb{F}_2^{L+1}) \leq -\epsilon n$.
 - We need to prove:
 - Pr A random RS code contains a type (P, \mathbb{F}_2^{L+1}) matrix $\leq q^{-\Omega(n)}$
 - **On the Board**

• Fully understand list-Recoverability of **RLC** and **random RS**.

- Fully understand list-Recoverability of **RLC** and **random RS**.
- Break $\Omega(n)$ randomness barrier

- Fully understand list-Recoverability of **RLC** and **random RS**.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties

- Fully understand list-Recoverability of **RLC** and **random RS**.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
 - List-recoverability with large list size. lacksquare

- Fully understand list-Recoverability of **RLC** and **random RS**.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
 - List-recoverability with large list size. lacksquare
- Handle Π_2 properties

- Fully understand list-Recoverability of **RLC** and **random RS**.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
 - List-recoverability with large list size. lacksquare
- Handle Π_2 properties
 - (ρ, L) -covering

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
 - List-recoverability with large list size. \bullet
- Handle Π_2 properties
 - (ρ, L) -covering
- Find **limit objects** for codes.

- Fully understand list-Recoverability of RLC and random RS.
- Break $\Omega(n)$ randomness barrier
- Handle non-local properties
 - List-recoverability with large list size.
- Handle Π_2 properties
 - (ρ, L) -covering
- Find **limit objects** for codes.

