Probabilistic and Combinatorial Methods Error-Correcting Codes: Theory and Practice Boot Camp

Jonathan Mosheiff Ben-Gurion University

Combinatorial questions (and some answers)

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)
- Example motivation: how List-decodable and list-recoverable are Reed-Solomon codes?

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)
- Example motivation: how List-decodable and list-recoverable are Reed-Solomon codes?
- A star player: The Random Linear Code (RLC)

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)
- Example motivation: how List-decodable and list-recoverable are Reed-Solomon codes?
- A star player: The Random Linear Code (RLC)
- Technique: We reduce from RLC to more structured codes.

• A code $C \subseteq \mathbb{F}_q^n$ is ρ -uniquely-decodab codeword $x \in C$ given ρn errors.

• A code $C \subseteq \mathbb{F}_q^n$ is ρ -uniquely-decodable if the receiver can always uniquely recover a

- A code $C \subseteq \mathbb{F}_q^n$ is ρ -uniquely-decodabtion codeword $x \in C$ given ρn errors.
- Namely, need to avoid this:

• A code $C \subseteq \mathbb{F}_q^n$ is ρ -uniquely-decodable if the receiver can always uniquely recover a

- codeword $x \in C$ given ρn errors.
- Namely, need to avoid this:

lacksquaresuch that the list contains x.

• A code $C \subseteq \mathbb{F}_q^n$ is ρ -uniquely-decodable if the receiver can always uniquely recover a

C is (ρ,L) -list-decodable if the receiver can always recover a list of at most L codewords,

List-Recovery

List-Recovery

- of codewords.
- balls.

In List-Decoding we want every Hamming ball to contain a small number

In List-Recovery we care about combinatorial rectangles instead of

List-Recovery

For every $S_1, \ldots, S_n \subseteq$

 $|C \cap (S_1 \times S_2)|$

 $S_1 \times S_2 \times \ldots \times S_n$ is called a combinatorial rectangle

We say that $C \subseteq \mathbb{F}_q^n$ is (ℓ, L) -list-recoverable if:

$$\mathbb{E}_{q}$$
 with $|S_{i}| \leq \ell$ we have

$$S_2 \times \ldots \times S_n) \mid \leq L.$$

• An **RLC** of **length** *n* and **rate** *R* over **alp** linear subspace of \mathbb{F}_q^n .

• An RLC of length n and rate R over alphabet \mathbb{F}_q is a uniformly-sampled Rn-dimensional

- An **RLC** of **length** *n* and **rate** *R* over **alp** linear subspace of \mathbb{F}_q^n .
- The go-to code for **existence proofs**!

• An RLC of length n and rate R over alphabet \mathbb{F}_q is a uniformly-sampled Rn-dimensional

- Achieves with high probability:
 - The Gilbert-Varshamov Bound * $R \approx 1 h_q(\delta)$
 - The "List-decoding GV-bound": $R = 1 - h_q(\delta) - O\left(\frac{1}{L}\right)$

• List-recovery results as well.

* $H_q(\rho) = \rho \log_q(q-1) - \rho \log_q \rho - (1-\rho) \log_q(1-\rho)$

- Achieves with high probability:
 - The Gilbert-Varshamov Bound * $R \approx 1 h_q(\delta)$
 - The "List-decoding GV-bound": $R = 1 - h_q(\delta) - O\left(\frac{1}{L}\right)$

• List-recovery results as well.

- However:
 - Decoding is probably hard
 - Certifying is probably hard
 - Construction requires $\Theta(n^2)$ random bits.

*
$$H_q(\rho) = \rho \log_q(q-1) - \rho \log_q \rho - (1-\rho) \log_q(1-\rho)$$

The only thing you need to know about RLCs

ate *R*. Fix
$$v_1, ..., v_k \in \mathbb{F}_2^n$$
.
Then:
 $C = 2^{-(1-R) \cdot n \cdot \dim\{v_1, ..., v_k\}}$

Motivation: Show that a binary RLC achieves the list-decoding GV-bound.

- Motivation: Show that a binary RLC achieves the list-decoding GV-bound.
- More precisely: Show that an RLC will $(\rho, O(1/\epsilon))$ -list-decodable with high probability.

ith
$$R = 1 - h(\rho) - \epsilon$$
 is

- contained in some radius ρ ball.

• Say that the vectors x_1, \ldots, x_{L+1} are ρ -clustered if they are distinct and

• The tuple (x_1, \ldots, x_{L+1}) is a witness to C not being (ρ, L) -list-decodable.

Let's try an expectation approach:

Try to Prove that the expected number of clustered tuples in an RLC is o(1).

Is the expectation method tight?

Is the expectation method tight?

• Maybe not!

Is the expectation method tight?

- Maybe not!
- Analogy from random G(n, p) graphs.

Is the expectation method tight? Maybe not! \bullet • Analogy from random G(n, p) graphs. • What is the probability that G contains an H subgraph? H

Is the expectation method tight? Maybe not! • Analogy from random G(n, p) graphs. • What is the probability that G contains an H subgraph? H

- \bullet

•
$$\mathbb{E}(\#H \text{ in } G) \approx n^5 \cdot p^7$$

Is the expectation method tight? Maybe not! • Analogy from random G(n, p) graphs. • What is the probability that G contains an H subgraph?

- ullet
- - $\mathbb{E}(\#H \text{ in } G) \approx n^5 \cdot p^7$
 - $\mathbb{E}(\#S \text{ in } G) \approx n^4 \cdot p^6$

H

Is the expectation method tight? • Analogy from random G(n, p) graphs. • What is the probability that G contains an H subgraph? • $\mathbb{E}(\#H \text{ in } G) \approx n^5 \cdot p^7$ H • $\mathbb{E}(\#S \text{ in } G) \approx n^4 \cdot p^6$

- Maybe not!

- Let $p = n^{\alpha}$, with $-5/7 < \alpha < -2/3$.
 - Then $\mathbb{E}(\#H \text{ in } G) \to \infty$ but $\mathbb{E}(\#S \text{ in } G) \to 0$.

Is the expectation method tight? Maybe not! • Analogy from random G(n, p) graphs. • What is the probability that G contains an H subgraph? • $\mathbb{E}(\#H \text{ in } G) \approx n^5 \cdot p^7$ H • $\mathbb{E}(\#S \text{ in } G) \approx n^4 \cdot p^6$ • Let $p = n^{\alpha}$, with $-5/7 < \alpha < -2/3$.

- ullet

- - Then $\mathbb{E}(\#H \text{ in } G) \to \infty$ but $\mathbb{E}(\#S \text{ in } G) \to 0$. ullet
 - So almost surely **not a single** H can be found in G even though many such subgraphs appear in expectation.

Threshold for random graphs

• Theorem (Bollobás 1981): A subgraph *H* is likely found in G if and only if $\mathbb{E}(\#S \text{ in } G) \to \infty$ for all $S \subseteq H$.

Back to list-decodability of an RLC
• Notation: write a ρ -clustered set $\{x_1, \dots, x_{L+1}\} \subseteq \mathbb{F}_2^n$ as a matrix A.

 $x_2 \quad \cdots \quad x_{L+1}$ $n \mid x_1$

- Notation: write a ρ -clustered set $\{x_1, \dots, x_{L+1}\} \subseteq \mathbb{F}_2^n$ as a matrix A.
- Observation: the family of ρ-clustered matrices is closed to row permutations.

- Notation: write a ρ -clustered set $\{x_1, \dots, x_{L+1}\} \subseteq \mathbb{F}_2^n$ as a matrix A.
- Observation: the family of *ρ*-clustered matrices is closed to row permutations.
- To determine if A is ρ -clustered we only need to know its **row distribution.** That is, how many times each vector in \mathbb{F}_2^n appears in A.

- Notation: write a ρ -clustered set $\{x_1, \dots, x_{L+1}\} \subseteq \mathbb{F}_2^n$ as a matrix A.
- Observation: the family of ρ-clustered matrices is closed to row permutations.
- To determine if A is ρ -clustered we only need to know its **row distribution.** That is, how many times each vector in \mathbb{F}_2^n appears in A.
- There are at most $n^{2^{L+1}} \rho$ -clustered distributions. This is a tiny number so we can treat each clustered distribution separately.

n

Expectations in an RLC

- Let τ be a distribution over \mathbb{F}_2^{L+1} .
- How many τ -distributed matrices do we expect in an RLC?

 $\mathbb{E}(\tau \text{-distributed matrices in } C) = \#\tau \text{-distributed matrices} \cdot \Pr(A \subseteq C)$ $A \sim \tau$ $\approx 2^{nH(\tau)} \cdot 2^{-n(1-R) \cdot \dim\{x_1, \dots, x_{L+1}\}}$ $= 2^n (H(\tau) - (1 - R) \cdot \dim(\operatorname{supp}(\tau)))$

Expectations in an RLC

- Let τ be a distribution over \mathbb{F}_2^{L+1} .
- How many τ -distributed matrices do we expect in an RLC?

 $\mathbb{E}(\tau \text{-distributed matrices in } C) = \#\tau \text{-distributed matrices} \cdot \Pr(A \subseteq C)$ $A \sim \tau$ $\approx 2^{nH(\tau)} \cdot 2^{-n(1-R) \cdot \dim\{x_1, \dots, x_{L+1}\}}$ $= 2^n (H(\tau) - (1 - R) \cdot \dim(\operatorname{supp}(\tau)))$

Expectations in an RLC

$E(\tau in C)$

 ∞

 $\left(\right)$

• The distribution τ is analogous to a subgraph H.

- The distribution τ is analogous to a subgraph H.
- What about **subgraphs** of H?

• Suppose $A \subseteq C$. Then C also contains AB whenever $B \in \mathbb{F}_2^{(L+1) \times b}$ $(b \leq L+1)$.

- $(b \le L + 1).$
- A uniformly random row of AB is distributed like zB where $z \sim \tau$.
- We denote this distribution τB

• Suppose $A \subseteq C$. Then *C* also contains *AB* whenever $B \in \mathbb{F}_2^{(L+1) \times b}$

- $(b \le L + 1).$
- A uniformly random row of AB is distributed like zB where $z \sim \tau$.
- We denote this distribution τB
- In order to contain τ , a linear code must contain τB .

• Suppose $A \subseteq C$. Then *C* also contains *AB* whenever $B \in \mathbb{F}_{2}^{(L+1) \times b}$

Theorem (thresholds for RLCs):

 $\mathbb{E}(\#\tau B \text{ distributed matrices in } C) \rightarrow \infty$

for all $B \in \mathbb{F}_{2}^{(L+1) \times b}$.

An RLC of rate R is likely to contain a τ distributed matrix if and only if

Theorem (thresholds for RLCs):

An RLC of rate R is likely to contain a τ distributed matrix if and only if

for all

 $\mathbb{E}(\#\tau B \text{ distributed matrices in } C) \rightarrow 0$

 $\mathbb{E}(\#\tau B \text{ distributed matrices in } C) \rightarrow \infty$

$$B \in \mathbb{F}_2^{(L+1) \times b}$$

Corollary (list-decodability of RLCs):

- An **RLC** of rate R is likely (ρ, L) -list-decodable if and only if
- every ρ -clustered distribution τ over \mathbb{F}_2^{L+1} has some $B \in \mathbb{F}_2^{(L+1) \times b}$ such that

$Pr(C is (\rho, L)-list-decodable)$

Corollary (list-decodability of RLCs):

0

 $\mathbb{E}(\#\tau B \text{ distributed matrices in } C) \rightarrow 0$

An **RLC** of rate R is likely (ρ, L) -list-decodable if and only if

every ρ -clustered distribution τ over \mathbb{F}_2^{L+1} has some $B \in \mathbb{F}_2^{(L+1) \times b}$ such that

Take aways from the threshold theorem

Take aways from the threshold theorem

- The list-decodability of an RLC can be explained by expectations.
 - Namely, we only care about certain terms of the form lacksquare

 $2n(H(\tau) - (1 - R) \cdot \dim(\operatorname{supp}(\tau)))$

Take aways from the threshold theorem

- The list-decodability of an RLC can be explained by expectations.
 - Namely, we only care about certain terms of the form ullet

 $2n(H(\tau) - (1 - R) \cdot \dim(\operatorname{supp}(\tau)))$

- This holds for more than just list-decodability.
 - \bullet
 - For example, **list-recoverability**! \bullet
 - In general, any monotone, local and symmetric property.

Any property characterized by "foribdden distributions" has such a characterization.

Reasoning about list-decodability of RLCs via expectations is complete.

- that **RLCs** achieve the list-decoding GV-bound.

Reasoning about list-decodability of RLCs via expectations is complete.

• But what is this good for? we already know (through a long line of works)

- that **RLCs** achieve the list-decoding GV-bound.
- But now these results tell us something about expectations!

Reasoning about list-decodability of RLCs via expectations is complete.

• But what is this good for? we already know (through a long line of works)

Definition: A random code ensemble $C \subseteq \mathbb{F}_q^n$ is locally-similar to an RLC of rate R if $\Pr\left[\{v_1, \dots, v_k\} \subseteq C\right] \approx 2^{-(1-R) \cdot n \cdot \dim\{v_1, \dots, v_k\}}$ for all $v_1, \ldots, v_k \in \mathbb{F}_q^n$.

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound with high probability.

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound with high probability.

Proof:

Let D be an RLC of rate R. We know from previous works that an D almost surely achieves the list-decoding **GV-bound**.

Let ρ, L such that D is likely (ρ, L) -list-decodable. It suffices to show that the same holds for C.

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound with high probability.

Proof:

Let τ be a ρ -clustered distribution over \mathbb{F}_q^{L+1} . Then D is unlikely to contain a τ -distributed matrix. By the

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bou with high probability.

Proof:

Let D be an RLC of rate R. We know from previous works that an D almost surely achieves the list-decod **GV-bound**.

Let ρ , L such that D is likely (ρ , L)-list-decodable. It suffices to show that the same holds for C.

threshold theorem, there is some B such that

 $\mathbb{E}\left[\#\tau B\text{-distributed matrices in }D\right] \leq o(1).$

n		k	
liı	n	g	
٦e	è		

Let D be an RLC of rate R. We know from previous works that an D almost surely achieves the list-decod **GV-bound**.

Let τ be a ρ -clustered distribution over \mathbb{F}_q^{L+1} . Then D is unlikely to contain a τ -distributed matrix. By the **threshold theorem**, there is some B such that

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bou with high probability.

Proof:

Let ρ, L such that D is likely (ρ, L) -list-decodable. It suffices to show that the same holds for C.

- $\mathbb{E}\left[\#\tau B\text{-distributed matrices in }D\right] \leq o(1).$
 - But
- $\mathbb{E} \left[\# \tau B \text{-distributed matrices in } C \right] \approx \# \tau B \text{-distributed matrices } 2^{-(1-R)n \cdot \dim(\operatorname{supp}(\tau))}$
 - $= \mathbb{E} | \# \tau B$ -distributed matrices in $D | \leq o(1)$
 - So C is unlikely to contain τB and thus unlikely to contain τ .

n		k	
liı	n	g	
٦e	è		

The same argument works for list-recovery or any other local symmetric property:

Theorem: If C is locally-similar to an RLC of rate R then it achieves the same list-recovery parameters as an RLC.

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound with high probability.

The reduction paradigm

- 1. Choose a random code ensemble C.
- 2. Show that *C* is **locally-similar** to an **RLC**.
- 3. Conclude that C has all the local symmetric properties of an RLC, including **achieving the list-decoding GV-bound**.

The reduction paradigm

1. Choose a random code ensemble C.

Show that C is locally-similar to an RLC. 2.

3. Conclude that C has all the local symmetric properties of an RLC, including achieving the list-decoding GV-bound.

The reduction paradigm

1. Choose a random code ensemble C.

Show that C is **locally-similar** to an **RLC**. 2.

3. Conclude that C has all the local symmetric properties of an RLC, including achieving the list-decoding GV-bound.

Random LDPC codes (Gallagher's Ensemble) [M-Resch-(Ron-Zewi)-Silas,Wootters]

Randomly punctured low-bias codes [Guruswami-M]

Done successfully for:

The reduction paradigm

1. Choose a random code ensemble C.

Show that C is **locally-similar** to an **RLC**. 2.

3. Conclude that C has all the local symmetric properties of an RLC, including achieving the list-decoding GV-bound.

Random LDPC codes (Gallagher's Ensemble) [M-Resch-(Ron-Zewi)-Silas,Wootters]

Randomly punctured low-bias codes [Guruswami-M]

Done successfully for:

• From a code $D \subseteq \mathbb{F}_q^m$ to $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.

• From a code $D \subseteq \mathbb{F}_q^m$ to $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.

• From a code $D \subseteq \mathbb{F}_q^m$ to $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.

- From a code $D \subseteq \mathbb{F}_q^m$ to $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.
- If the punctured columns are chosen at random, *C* is said to be a random *n*-puncturing of *D*.

- From a code $D \subseteq \mathbb{F}_q^m$ to $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.
- If the punctured columns are chosen at random,
 C is said to be a random n-puncturing of D.
- **Example:** An **RLC** of rate R in \mathbb{F}_q^n is a **random** puncturing of the Hadamard code $H \subseteq \mathbb{F}_q^{R^n}$.

- From a code $D \subseteq \mathbb{F}_q^m$ to $C \subseteq \mathbb{F}_q^n$. Usually $n \ll m$.
- If the punctured columns are chosen at random,
 C is said to be a random *n*-puncturing of D.
- **Example:** An **RLC** of rate R in \mathbb{F}_q^n is a **random** puncturing of the Hadamard code $H \subseteq \mathbb{F}_q^{q^{Rn}}$.
- A Reed-Solomon code over a random evaluation set is a random puncturing of the full Reed-Solomon code.

• Let's focus on q = 2

- Let's focus on q = 2
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).

- Let's focus on q = 2
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- **Claim:** *C* locally-similar to an RLC.

- Let's focus on q = 2
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- **Claim:** *C* locally-similar to an RLC.
- **Conclusion:** *C* is as list-decodable and list-recoverable as an RLC.

 $\bullet \bullet \bullet$

Column distribution of *W* is almost uniform due to low-bias

