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What these talks are about

• Combinatorial questions (and some answers)

• No algorithmic results! (But some algorithmic motivation)

• Example motivation: how List-decodable and list-recoverable are 
Reed-Solomon codes?

• A star player: The Random Linear Code (RLC)

• Technique: We reduce from RLC to more structured codes.
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List-Decoding
• A code  is -uniquely-decodable if the receiver can always uniquely recover a 

codeword  given  errors.
C ⊆ 𝔽n

q ρ
x ∈ C ρn

• Namely, need to avoid this: 

•  is ( , )-list-decodable if the receiver can always recover a list of at most  codewords, 
such that the list contains .

C ρ L L

x



List-Recovery



List-Recovery

• In List-Decoding we want every Hamming ball to contain a small number 
of codewords.


• In List-Recovery we care about combinatorial rectangles instead of 
balls.



List-Recovery

We say that  is -list-recoverable if:


 For every  with  we have


.

C ⊆ 𝔽n
q (ℓ, L)

S1, …, Sn ⊆ 𝔽q |Si | ≤ ℓ

|C ∩ (S1 × S2 × … × Sn) | ≤ L

 is called a  
combinatorial rectangle

S1 × S2 × … × Sn
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Random Linear Codes (RLCs)

• An RLC of length  and rate  over alphabet  is a uniformly-sampled -dimensional 
linear subspace of .

n R 𝔽q Rn
𝔽n

q

• The go-to code for existence proofs!
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Random Linear Codes (RLCs)
• Achieves with high probability:

• The Gilbert-Varshamov Bound *
 R ≈ 1 − hq(δ)

• The “List-decoding GV-bound”: 

R = 1 − hq(δ) − O ( 1
L )

• List-recovery results as well.

• However:

• Decoding is probably hard

• Certifying is probably hard

• Construction requires  
random bits.

Θ (n2)

* Hq(ρ) = ρ logq(q − 1) − ρ logq ρ − (1 − ρ)logq(1 − ρ)



The only thing you need to know about RLCs

Let  be an RLC of rate . Fix  


Then:


C R v1, …, vk ∈ 𝔽n
2 .

Pr [{v1, …, vk} ⊆ C] = 2−(1−R)⋅n⋅dim{v1,…,vk}
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List-Decodability of an RLC

• Motivation: Show that a binary RLC achieves the list-decoding GV-bound. 

• More precisely: Show that an RLC with  is  
-list-decodable with high probability.

R = 1 − h(ρ) − ϵ
(ρ, O(1/ϵ))



List-Decodability of an RLC

• Say that the vectors  are -clustered if they are distinct and 
contained in some radius  ball.


• The tuple  is a witness to  not being -list-decodable.

x1, …, xL+1 ρ
ρ

(x1, …, xL+1) C (ρ, L)

ρ



List-Decodability of an RLC

Let’s try an expectation approach: 

 Try to Prove that the expected number of clustered tuples in an RLC is o(1) .

ρ
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Is the expectation method tight?
• Maybe not! 

• Analogy from random  graphs.G(n, p)

• What is the probability that  contains an  subgraph?G H

• 𝔼(#H in G) ≈ n5 ⋅ p7

• 𝔼(#S in G) ≈ n4 ⋅ p6

• Let , with . p = nα −5/7 < α < − 2/3

• Then  but . 𝔼(#H in G) → ∞ 𝔼(#S in G) → 0

• So almost surely not a single  can be found in  even though many 
such subgraphs appear in expectation.

H G

 H

 S



Threshold for random graphs
• Theorem (Bollobás 1981): A subgraph  is 

likely found in  if and only if  
for all .

H
G 𝔼(#S in G) → ∞

S ⊆ H

 H

 Sα

Pr(G(n, pα) contains H)
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Back to list-decodability of an RLC
• Notation: write a -clustered set  as a 

matrix .
ρ {x1, …, xL+1} ⊆ 𝔽n

2
A

• Observation: the family of -clustered matrices is closed 
to row permutations.

ρ

• To determine if  is -clustered we only need to know its 
row distribution. That is, how many times each vector in  
appears in .

A ρ
𝔽n

2
A

• There are at most  -clustered distributions. This is a 
tiny number so we can treat each clustered distribution 
separately.

n2L+1 ρ

…x1 x2 xL+1n

ρ



Expectations in an RLC
• Let  be a distribution over .


• How many -distributed matrices do we expect in an RLC?


τ 𝔽L+1
2

τ

𝔼(τ-distributed matrices in C) = #τ-distributed matrices ⋅ Pr
A∼τ

(A ⊆ C)

≈ 2nH(τ) ⋅ 2−n(1−R)⋅dim{x1,…,xL+1}

= 2n(H(τ) − (1 − R) ⋅ dim(supp(τ)))
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Expectations in an RLC

…x1 x2 xL+1nR
0 1

E(τ in C)

0

∞

Here,  almost surely does not contain .C τ

Here, does  almost surely contain ? 

Not necessarily!

C τ





• The distribution  is analogous to a subgraph . τ H
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• The distribution  is analogous to a subgraph . τ H

• What about subgraphs of H?

 H

 S

…x1 x2 xL+1n



…x1 x2 xL+1n
τ

A

L + 1

bL + 1
B

⋅ = …n

AB
b



• Suppose . Then  also contains  whenever        

( .

A ⊆ C C AB B ∈ 𝔽 (L+1)×b
2

b ≤ L + 1)

…x1 x2 xL+1n
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⋅ = …n
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• Suppose . Then  also contains  whenever        

( .

A ⊆ C C AB B ∈ 𝔽 (L+1)×b
2

b ≤ L + 1)

• A uniformly random row of  is distributed like  where . AB zB z ∼ τ

• We denote this distribution τB

• In order to contain , a linear code must contain .τ τB

…x1 x2 xL+1n
τ

A

L + 1

bL + 1
B

⋅ = …n
τB

AB
b



Theorem (thresholds for RLCs):  

An RLC of rate  is likely to contain a  distributed matrix if and only if


 


for all .

R τ

𝔼(#τB distributed matrices in C) → ∞

B ∈ 𝔽 (L+1)×b
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for all .

R τ

𝔼(#τB distributed matrices in C) → ∞

B ∈ 𝔽 (L+1)×b
2

Corollary (list-decodability of RLCs): 


An RLC of rate R is likely -list-decodable if and only if 


every -clustered distribution  over  has some  such that 
 

              

(ρ, L)

ρ τ 𝔽L+1
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Corollary (list-decodability of RLCs): 


An RLC of rate R is likely -list-decodable if and only if 


every -clustered distribution  over  has some  such that 
 

              

(ρ, L)

ρ τ 𝔽L+1
2 B ∈ 𝔽 (L+1)×b

2

𝔼(#τB distributed matrices in C) → 0

R
0 1

Pr(C is (ρ, L)-list-decodable)

0

1
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Take aways from the threshold theorem 
• The list-decodability of an RLC can be explained by expectations. 


• Namely, we only care about certain terms of the form  
                
                                    
 

2n(H(τ) − (1 − R) ⋅ dim(supp(τ)))

• This holds for more than just list-decodability. 


• Any property characterized by “foribdden distributions” has such a characterization. 


• For example, list-recoverability!


• In general, any monotone, local and symmetric property.
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But what did we gain?

• Reasoning about list-decodability of RLCs via expectations is complete.

• But what is this good for? we already know (through a long line of works) 
that RLCs achieve the list-decoding GV-bound.

• But now these results tell us something about expectations! 



Definition: A random code ensemble  is locally-similar to an RLC of rate  if





for all . 

C ⊆ 𝔽n
q R

Pr [{v1, …, vk} ⊆ C] ≈ 2−(1−R)⋅n⋅dim{v1,…,vk}

v1, …, vk ∈ 𝔽n
q
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Proof: 


Let  be an RLC of rate . We know from previous works that an D almost surely achieves the list-decoding 
GV-bound.


Let ,  such that  is likely -list-decodable. It suffices to show that the same holds for .


Let  be a -clustered distribution over . Then  is unlikely to contain a -distributed matrix. By the 
threshold theorem, there is some  such that 


.


But 





So  is unlikely to contain  and thus unlikely to contain .

D R

ρ L D (ρ, L) C

τ ρ 𝔽L+1
q D τ

B

𝔼 [#τB-distributed matrices in D] ≤ o(1)

𝔼 [#τB-distributed matrices in C] ≈ #τB-distributed matrices ⋅ 2−(1−R)n⋅dim(supp(τ))

= 𝔼 [#τB-distributed matrices in D] ≤ o(1)

C τB τ



Theorem: If  is locally-similar to an RLC of rate  then it achieves the list-decoding GV-bound 
with high probability.

C R

The same argument works for list-recovery or any other local symmetric property:

Theorem: If  is locally-similar to an RLC of rate  then it achieves the same list-recovery 
parameters as an RLC.

C R
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• From a code  to . Usually .D ⊆ 𝔽m
q C ⊆ 𝔽n

q n ≪ m

• If the punctured columns are chosen at random, 
 is said to be a random -puncturing of .C n D

• Example: An RLC of rate  in  is a random  

puncturing of the Hadamard code .
R 𝔽n

q

H ⊆ 𝔽qRn

q

…

…
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Puncturing of Codes

• From a code  to . Usually .D ⊆ 𝔽m
q C ⊆ 𝔽n

q n ≪ m

• If the punctured columns are chosen at random, 
 is said to be a random -puncturing of .C n D

• Example: An RLC of rate  in  is a random  

puncturing of the Hadamard code .
R 𝔽n

q

H ⊆ 𝔽qRn

q

• A Reed-Solomon code over a random evaluation 
set is a random puncturing of the full Reed-
Solomon code.

…

…
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Puncturing of low-bias codes

• Let’s focus on q = 2

• Suppose every  has weight close to  

(low-bias).

u ∈ D
m
2

• Claim:  locally-similar to an RLC.C

• Conclusion:  is as list-decodable and list-
recoverable as an RLC.

C

…

…
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