Probabilistic and Combinatorial Methods

Error-Correcting Codes:Theory and Practice Boot Camp

Jonathan Mosheiff
Ben-Gurion University

What these talks are about

What these talks are about

- Combinatorial questions (and some answers)

What these talks are about

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)

What these talks are about

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)
- Example motivation: how List-decodable and list-recoverable are Reed-Solomon codes?

What these talks are about

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)
- Example motivation: how List-decodable and list-recoverable are Reed-Solomon codes?

- A star player: The Random Linear Code (RLC)

What these talks are about

- Combinatorial questions (and some answers)
- No algorithmic results! (But some algorithmic motivation)
- Example motivation: how List-decodable and list-recoverable are Reed-Solomon codes?

- A star player: The Random Linear Code (RLC)

- Technique: We reduce from RLC to more structured codes.

List-Decoding

List-Decoding

- A code $C \subseteq \mathbb{F}_{q}^{n}$ is ρ-uniquely-decodable if the receiver can always uniquely recover a codeword $x \in C$ given ρn errors.

List-Decoding

- A code $C \subseteq \mathbb{F}_{q}^{n}$ is ρ-uniquely-decodable if the receiver can always uniquely recover a codeword $x \in C$ given ρn errors.
- Namely, need to avoid this:

List-Decoding

- A code $C \subseteq \mathbb{F}_{q}^{n}$ is ρ-uniquely-decodable if the receiver can always uniquely recover a codeword $x \in C$ given ρn errors.
- Namely, need to avoid this:

- C is (ρ, L)-list-decodable if the receiver can always recover a list of at most L codewords, such that the list contains x.

List-Recovery

- In List-Decoding we want every Hamming ball to contain a small number of codewords.
- In List-Recovery we care about combinatorial rectangles instead of balls.

List-Recovery

We say that $C \subseteq \mathbb{F}_{q}^{n}$ is (ℓ, L)-list-recoverable if:
For every $S_{1}, \ldots, S_{n} \subseteq \mathbb{F}_{q}$ with $\left|S_{i}\right| \leq \ell$ we have

$$
\left|C \cap\left(S_{1} \times S_{2} \times \ldots \times S_{n}\right)\right| \leq L
$$

[^0] combinatorial rectangle

Random Linear Codes (RLCs)

Random Linear Codes (RLCs)

- An RLC of length n and rate R over alphabet \mathbb{F}_{q} is a uniformly-sampled $R n$-dimensional linear subspace of \mathbb{F}_{q}^{n}.

Random Linear Codes (RLCs)

- An RLC of length n and rate R over alphabet \mathbb{F}_{q} is a uniformly-sampled $R n$-dimensional linear subspace of \mathbb{F}_{q}^{n}.
- The go-to code for existence proofs!

Random Linear Codes (RLCs)

Random Linear Codes (RLCs)

- Achieves with high probability:
- The Gilbert-Varshamov Bound * $R \approx 1-h_{q}(\delta)$
- The "List-decoding GV-bound":

$$
R=1-h_{q}(\delta)-O\left(\frac{1}{L}\right)
$$

- List-recovery results as well.

$$
{ }^{*} H_{q}(\rho)=\rho \log _{q}(q-1)-\rho \log _{q} \rho-(1-\rho) \log _{q}(1-\rho)
$$

Random Linear Codes (RLCs)

- Achieves with high probability:
- The Gilbert-Varshamov Bound * $R \approx 1-h_{q}(\delta)$
- The "List-decoding GV-bound":

$$
R=1-h_{q}(\delta)-O\left(\frac{1}{L}\right)
$$

- However:
- Decoding is probably hard
- Certifying is probably hard
- Construction requires $\Theta\left(n^{2}\right)$ random bits.
- List-recovery results as well.

$$
{ }^{*} H_{q}(\rho)=\rho \log _{q}(q-1)-\rho \log _{q} \rho-(1-\rho) \log _{q}(1-\rho)
$$

The only thing you need to know about RLCs

Let C be an RLC of rate R. Fix $v_{1}, \ldots, v_{k} \in \mathbb{F}_{2}^{n}$.
Then:

$$
\operatorname{Pr}\left[\left\{v_{1}, \ldots, v_{k}\right\} \subseteq C\right]=2^{-(1-R) \cdot n \cdot \operatorname{dim}\left\{v_{1}, \ldots, v_{k}\right\}}
$$

List-Decodability of an RLC

List-Decodability of an RLC

- Motivation: Show that a binary RLC achieves the list-decoding GV-bound.

List-Decodability of an RLC

- Motivation: Show that a binary RLC achieves the list-decoding GV-bound.
- More precisely: Show that an RLC with $R=1-h(\rho)-\epsilon$ is ($\rho, O(1 / \epsilon)$)-list-decodable with high probability.

List-Decodability of an RLC

- Say that the vectors x_{1}, \ldots, x_{L+1} are ρ-clustered if they are distinct and contained in some radius ρ ball.
- The tuple $\left(x_{1}, \ldots, x_{L+1}\right)$ is a witness to C not being ($\left.\rho, L\right)$-list-decodable.

List-Decodability of an RLC

Let's try an expectation approach:

Try to Prove that the expected number of clustered tuples in an RLC is $o(1)$.

Is the expectation method tight?

Is the expectation method tight?

- Maybe not!

Is the expectation method tight?

- Maybe not!
- Analogy from random $G(n, p)$ graphs.

Is the expectation method tight?

- Maybe not!
- Analogy from random $G(n, p)$ graphs.
- What is the probability that G contains an H subgraph?

Is the expectation method tight?

- Maybe not!
- Analogy from random $G(n, p)$ graphs.
- What is the probability that G contains an H subgraph?
- $\mathbb{E}(\# H$ in $G) \approx n^{5} \cdot p^{7}$

Is the expectation method tight?

- Maybe not!
- Analogy from random $G(n, p)$ graphs.
- What is the probability that G contains an H subgraph?
- $\mathbb{E}(\# H$ in $G) \approx n^{5} \cdot p^{7}$
- $\mathbb{E}(\# S$ in $G) \approx n^{4} \cdot p^{6}$

Is the expectation method tight?

- Maybe not!
- Analogy from random $G(n, p)$ graphs.
- What is the probability that G contains an H subgraph?
- $\mathbb{E}(\# H$ in $G) \approx n^{5} \cdot p^{7}$
- $\mathbb{E}(\# S$ in $G) \approx n^{4} \cdot p^{6}$

- Let $p=n^{\alpha}$, with $-5 / 7<\alpha<-2 / 3$.
- Then $\mathbb{E}(\# H$ in $G) \rightarrow \infty$ but $\mathbb{E}(\# S$ in $G) \rightarrow 0$.

Is the expectation method tight?

- Maybe not!
- Analogy from random $G(n, p)$ graphs.
- What is the probability that G contains an H subgraph?
- $\mathbb{E}(\# H$ in $G) \approx n^{5} \cdot p^{7}$
- $\mathbb{E}(\# S$ in $G) \approx n^{4} \cdot p^{6}$

- Let $p=n^{\alpha}$, with $-5 / 7<\alpha<-2 / 3$.
- Then $\mathbb{E}(\# H$ in $G) \rightarrow \infty$ but $\mathbb{E}(\# S$ in $G) \rightarrow 0$.
- So almost surely not a single H can be found in G even though many such subgraphs appear in expectation.

Threshold for random graphs

- Theorem (Bollobás 1981): A subgraph H is likely found in G if and only if $\mathbb{E}(\# S$ in $G) \rightarrow \infty$ for all $S \subseteq H$.

Back to list-decodability of an RLC

Back to list-decodability of an RLC

- Notation: write a ρ-clustered set $\left\{x_{1}, \ldots, x_{L+1}\right\} \subseteq \mathbb{F}_{2}^{n}$ as a matrix A.

Back to list-decodability of an RLC

- Notation: write a ρ-clustered set $\left\{x_{1}, \ldots, x_{L+1}\right\} \subseteq \mathbb{F}_{2}^{n}$ as a matrix A.
- Observation: the family of ρ-clustered matrices is closed to row permutations.

Back to list-decodability of an RLC

- Notation: write a ρ-clustered set $\left\{x_{1}, \ldots, x_{L+1}\right\} \subseteq \mathbb{F}_{2}^{n}$ as a matrix A.
- Observation: the family of ρ-clustered matrices is closed to row permutations.

- To determine if A is ρ-clustered we only need to know its row distribution. That is, how many times each vector in \mathbb{F}_{2}^{n} appears in A.

Back to list-decodability of an RLC

- Notation: write a ρ-clustered set $\left\{x_{1}, \ldots, x_{L+1}\right\} \subseteq \mathbb{F}_{2}^{n}$ as a matrix A.
- Observation: the family of ρ-clustered matrices is closed to row permutations.

- To determine if A is ρ-clustered we only need to know its row distribution. That is, how many times each vector in \mathbb{F}_{2}^{n} appears in A.
- There are at most $n^{2^{L+1}} \rho$-clustered distributions. This is a tiny number so we can treat each clustered distribution separately.

Expectations in an RLC

- Let τ be a distribution over \mathbb{F}_{2}^{L+1}.
- How many τ-distributed matrices do we expect in an RLC?

$$
\begin{aligned}
\mathbb{E}(\tau \text {-distributed matrices in } C) & =\# \tau \text {-distributed matrices } \cdot \operatorname{Pr}(A \subseteq C) \\
& \approx 2^{n H(\tau)} \cdot 2^{-n(1-R) \cdot \operatorname{dim}\left\{x_{1}, \ldots, x_{L+1}\right\}} \\
& =2^{n(H(\tau)-(1-R) \cdot \operatorname{dim}(\operatorname{supp}(\tau)))}
\end{aligned}
$$

Expectations in an RLC

- Let τ be a distribution over \mathbb{F}_{2}^{L+1}.
- How many τ-distributed matrices do we expect in an RLC?
$\mathbb{E}(\tau$-distributed matrices in $C)=\# \tau$-distributed matrices $\cdot \operatorname{Pr}_{A \sim \tau}(A \subseteq C)$

$$
\begin{aligned}
& \approx 2^{n H(\tau)} \cdot 2^{-n(1-R) \cdot \operatorname{dim}\left\{x_{1}, \ldots, x_{L+1}\right\}} \\
& =2^{n(H(\tau)-(1-R) \cdot \operatorname{dim}(\operatorname{supp}(\tau)))}
\end{aligned}
$$

Expectations in an RLC

Expectations in an RLC

Expectations in an RLC

- The distribution τ is analogous to a subgraph H.

- The distribution τ is analogous to a subgraph H.
- What about subgraphs of H ?

- Suppose $A \subseteq C$. Then C also contains $A B$ whenever $B \in \mathbb{F}_{2}^{(L+1) \times b}$ $(b \leq L+1)$.

- Suppose $A \subseteq C$. Then C also contains $A B$ whenever $B \in \mathbb{F}_{2}^{(L+1) \times b}$

$$
(b \leq L+1) .
$$

- A uniformly random row of $A B$ is distributed like $z B$ where $z \sim \tau$.
- We denote this distribution τB

- Suppose $A \subseteq C$. Then C also contains $A B$ whenever $B \in \mathbb{F}_{2}^{(L+1) \times b}$

$$
(b \leq L+1) .
$$

- A uniformly random row of $A B$ is distributed like $z B$ where $z \sim \tau$.
- We denote this distribution τB
- In order to contain τ, a linear code must contain τB.

B
$A B$

Theorem (thresholds for RLCs):

An RLC of rate R is likely to contain a τ distributed matrix if and only if
$\mathbb{E}(\# \tau B$ distributed matrices in $C) \rightarrow \infty$

$$
\text { for all } B \in \mathbb{F}_{2}^{(L+1) \times b} \text {. }
$$

Theorem (thresholds for RLCs):

An RLC of rate R is likely to contain a τ distributed matrix if and only if

$$
\mathbb{E}(\# \tau B \text { distributed matrices in } C) \rightarrow \infty
$$

$$
\text { for all } B \in \mathbb{F}_{2}^{(L+1) \times b} \text {. }
$$

Corollary (list-decodability of RLCs):

An RLC of rate R is likely (ρ, L)-list-decodable if and only if
every ρ-clustered distribution τ over \mathbb{F}_{2}^{L+1} has some $B \in \mathbb{F}_{2}^{(L+1) \times b}$ such that
$\mathbb{E}(\# \tau B$ distributed matrices in $C) \rightarrow 0$

Corollary (list-decodability of RLCs):

An RLC of rate \mathbf{R} is likely (ρ, L)-list-decodable if and only if

every ρ-clustered distribution τ over \mathbb{F}_{2}^{L+1} has some $B \in \mathbb{F}_{2}^{(L+1) \times b}$ such that
$\mathbb{E}(\# \tau B$ distributed matrices in $C) \rightarrow 0$

Take aways from the threshold theorem

Take aways from the threshold theorem

- The list-decodability of an RLC can be explained by expectations.
- Namely, we only care about certain terms of the form

$$
2^{n(H(\tau)-(1-R) \cdot \operatorname{dim}(\operatorname{supp}(\tau)))}
$$

Take aways from the threshold theorem

- The list-decodability of an RLC can be explained by expectations.
- Namely, we only care about certain terms of the form

$$
2^{n(H(\tau)-(1-R) \cdot \operatorname{dim}(\operatorname{supp}(\tau)))}
$$

- This holds for more than just list-decodability.
- Any property characterized by "foribdden distributions" has such a characterization.
- For example, list-recoverability!
- In general, any monotone, local and symmetric property.

But what did we gain?

But what did we gain?

- Reasoning about list-decodability of RLCs via expectations is complete.

But what did we gain?

- Reasoning about list-decodability of RLCs via expectations is complete.
- But what is this good for? we already know (through a long line of works) that RLCs achieve the list-decoding GV-bound.

But what did we gain?

- Reasoning about list-decodability of RLCs via expectations is complete.
- But what is this good for? we already know (through a long line of works) that RLCs achieve the list-decoding GV-bound.
- But now these results tell us something about expectations!

Definition: A random code ensemble $C \subseteq \mathbb{F}_{q}^{n}$ is locally-similar to an RLC of rate R if

$$
\operatorname{Pr}\left[\left\{v_{1}, \ldots, v_{k}\right\} \subseteq C\right] \approx 2^{-(1-R) \cdot n \cdot \operatorname{dim}\left\{v_{1}, \ldots, v_{k}\right\}}
$$

$$
\text { for all } v_{1}, \ldots, v_{k} \in \mathbb{F}_{q}^{n}
$$

Proof:

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound with high probability.

Proof:

Let D be an RLC of rate R. We know from previous works that an D almost surely achieves the list-decoding GV-bound.

Let ρ, L such that D is likely (ρ, L)-list-decodable. It suffices to show that the same holds for C.

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound with high probability.

Proof:

Let D be an RLC of rate R. We know from previous works that an D almost surely achieves the list-decoding GV-bound.

Let ρ, L such that D is likely (ρ, L)-list-decodable. It suffices to show that the same holds for C.
Let τ be a ρ-clustered distribution over \mathbb{F}_{q}^{L+1}. Then D is unlikely to contain a τ-distributed matrix. By the threshold theorem, there is some B such that
$\mathbb{E}[\# \tau B$-distributed matrices in $D] \leq o(1)$.

Theorem: If C is locally-similar to an RLC of rate R then it achieves the list-decoding GV-bound with high probability.

Proof:

Let D be an RLC of rate R. We know from previous works that an D almost surely achieves the list-decoding GV-bound.

Let ρ, L such that D is likely (ρ, L)-list-decodable. It suffices to show that the same holds for C.
Let τ be a ρ-clustered distribution over \mathbb{F}_{q}^{L+1}. Then D is unlikely to contain a τ-distributed matrix. By the threshold theorem, there is some B such that

$$
\mathbb{E}[\# \tau B \text {-distributed matrices in } D] \leq o(1)
$$

But
$\mathbb{E}[\# \tau B$-distributed matrices in $C] \approx \# \tau B$-distributed matrices $\cdot 2^{-(1-R) n \cdot \operatorname{dim}(\operatorname{supp}(\tau))}$

$$
=\mathbb{E}[\# \tau B \text {-distributed matrices in } D] \leq o(1)
$$

So C is unlikely to contain τB and thus unlikely to contain τ.

The same argument works for list-recovery or any other local symmetric property:

Theorem: If C is locally-similar to an RLC of rate R then it achieves the same list-recovery parameters as an RLC.

The reduction paradigm

1. Choose a random code ensemble C.
2. Show that C is locally-similar to an RLC.
3. Conclude that C has all the local symmetric properties of
 an RLC, including achieving the list-decoding GV-bound.

The reduction paradigm

1. Choose a random code ensemble C.
2. Show that C is locally-similar to an RLC.
3. Conclude that C has all the local symmetric properties of
 an RLC, including achieving the list-decoding GV-bound.

The reduction paradigm

1. Choose a random code ensemble C.
2. Show that C is locally-similar to an RLC.
3. Conclude that C has all the local symmetric properties of
 an RLC, including achieving the list-decoding GV-bound.

Done successfully for:

- Random LDPC codes (Gallagher's Ensemble) [M-Resch-(Ron-Zewi)-Silas,Wootters]
- Randomly punctured low-bias codes [Guruswami-M]

The reduction paradigm

1. Choose a random code ensemble C.
2. Show that C is locally-similar to an RLC.
3. Conclude that C has all the local symmetric properties of
 an RLC, including achieving the list-decoding GV-bound.

Done successfully for:

- Random LDPC codes (Gallagher's Ensemble) [M-Resch-(Ron-Zewi)-Silas,Wootters]

Randomly punctured low-bias codes [Guruswami-M]

Puncturing of Codes

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ to $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ to $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ to $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ to $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.
- If the punctured columns are chosen at random, C is said to be a random n-puncturing of D.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ to $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.
- If the punctured columns are chosen at random, C is said to be a random n-puncturing of D.
- Example: An RLC of rate R in \mathbb{F}_{q}^{n} is a random puncturing of the Hadamard code $H \subseteq \mathbb{F}_{q}^{q^{R n}}$.

Puncturing of Codes

- From a code $D \subseteq \mathbb{F}_{q}^{m}$ to $C \subseteq \mathbb{F}_{q}^{n}$. Usually $n \ll m$.
- If the punctured columns are chosen at random, C is said to be a random n-puncturing of D.
- Example: An RLC of rate R in \mathbb{F}_{q}^{n} is a random puncturing of the Hadamard code $H \subseteq \mathbb{F}_{q}^{q^{R n}}$.
- A Reed-Solomon code over a random evaluation set is a random puncturing of the full ReedSolomon code.

Puncturing of low-bias codes

Puncturing of low-bias codes

- Let's focus on $q=2$

Puncturing of low-bias codes

- Let's focus on $q=2$
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).

Puncturing of low-bias codes

- Let's focus on $q=2$
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- Claim: C locally-similar to an RLC.

Puncturing of low-bias codes

- Let's focus on $q=2$
- Suppose every $u \in D$ has weight close to $\frac{m}{2}$ (low-bias).
- Claim: C locally-similar to an RLC.
- Conclusion: C is as list-decodable and listrecoverable as an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

Proof sketch: C locally-similar to an RLC.

[^0]: $S_{1} \times S_{2} \times \ldots \times S_{n}$ is called a

