Deeply Integrated Deep Learning

A Work-in-Progress Report

Zachary G. lves
with Peter Baile Chen (MIT), Yi Zhang (AWS), Phillip Hilliard, Rajeev Alur, Erik Waingarten

Simons Workshop on Logic and Algebra for Query Evaluation

|2\

=\

A\‘\ =
®

November 15, 2023

A New Kind of “Database”?

Transformers (and LLMs) enable use of
unstructured, multimodal, open-world data

® Entity and relationship extraction into
€A N2 relations, triples, etc.

Dashboard RAG ® General-domain entity resolution / record
linking is possible — even over text, images,
etc. through embeddings

Opportunities in enabling discovery,
monitoring and forecasting, and open Q&A

I \\ ® Cross-enterprise or cross-field data

management

% </>\ GPT-4 ® Google Scholar and equivalent
HTML P

Exploratory data analysis, model building

® Real-time surveillance with privacy

A New Kind of “"Database”?

‘ Transformers (and LLMs) enable use of
unstructured, multimodal, open-world data

® Entity and relationship extraction into

JUpyt1 * The “database” is a now a view (with ML components) |/ record
[

* The data and ML models are imperfect —thus, we ext, images,
need to learn and change!

* Provenance (of sources, extractors, evidence) matters
A ry

o _ ben Q&A
What new challenges and opportunities lie in this Lt
model?

® Exploratory data analysis, model building
® Real-time surveillance with privacy

Some Example (Prediction) Use Cases

Information extraction — document to triples

}Q) extract_triples =) O-
PDF conf>t

Event detection — with multiple models + provenance

X » .
U - aconf>r
ﬂ# detect_mention X 4

Surveillance with privacy — fuzzify people granted access

- -) - X — Y -

img
argmin (L1(embed, profile))

. . This Graphic by Unknown Author is
Al |Owed(|d, prOﬁ |e) licensed under CC BY-NC-ND

http://nick-spratt.deviantart.com/art/Surveillance-Camera-Vector-Art-STOCK-605579441
https://creativecommons.org/licenses/by-nc-nd/3.0/

A Baseline Algebra with Tensor Ops
(Inspired by Pandas/MLlIib)

Nested relational model: attributes are scalars, lists, or tensors (vectors, matrices)
Tuples p:: <A, B, C> where p; is a provenance semiring expression

Attribute € tensor: Aggregate: Unnest:
fields2vectoryieids vec_name nested_listicigs field_name explodesieid index field
VECtorZﬁeIdsvector,field_names StaCk_tensorstensor_field Uns'I:athensor_ﬁeId,index_field

onehotﬂelds,ﬁeld_name_prefix p'VOtkey_fieId, value_field I""e'tfields,key_field_name,val_ﬁeld_name

Do We Get Benefits from Looking Inside the
NN UDFs?

® Structured queries are based on constraints and equivalences over tuples,
nested relations, etc.

® ML stages are largely based on tensors, dot products, activation functions

If we go beyond “black box” ML ops, can we combine the two to benefit?

® Neurosymbolic systems like Scallop [Naik], DeepProbLog [Manhaeve+] show more
effective learning by integrating logical constraints

® We think logical constraints can open new opportunities on the prediction side, for
studying efficiency, updates and maintenance and more!

A Baseline Algebra with Tensor Ops
(Inspired by Pandas/MLlIib)

Nested relational model: attributes are scalars, lists, or tensors (vectors, matrices)
Tuples p:: <A, B, C> where p; is a provenance semiring expression

Attribute € - tensor: Aggregate: Unnest:
fields2vectoryieids vec_name nested_listicigs field_name explodesieid index field
VECtoerleIdsvector,field_names StaCk_tensorstensor_field UnsII:athensor_ﬁeId,index_field

onehotfields,ﬁeId_name_prefix p'VOtkey_fieId, value_field l’ne"--fields,key_field_name,val_ﬁeld_name

Neural network:

Connectivity/dot products: linear, convaD, conv2D, conv3D
Activation: relu, sigmoid, tanh

batchnorm

maxpool

softmax

A “Detection” Query in More Detail

Prediction is based on features within CQ tuples followed by selection...

cQ(...) ‘t,' lll ‘ { Ml_(ll\\l/ll\?)del 1 ‘ llll ‘ O class=c1

But provenance provides important features too*!

ML Model
cat) mmpt; [N — L - W —— || — 0

Often:

Select for class = ca1
Orscore(ca)>T1

1)

A “Detection” Query in More Detail

O class=c1

ML Model
(NN)

cQ(...)

A “Detection” Query in More Detail

O class=c1

A Neural Network in a Query ... As a Dependent Join

' ML Model
. (NN)

O class=c1

1
T E R

W(2)

e~ :

d(2) " W(2) (ext. w/ bias)

Zheng+21:
general
extensions

to provenance
semiring
model for
multimodal
data
extraction,
substring
matching, etc.

Treat NN()

as a dependent
join with input
bindings!

Learning and Provenance:
View Update Redux = View Maintenance

Suppose a view outputiswrong! [|JIIE] =
Compute loss(y, ¥) and back-propagate through NN, scaling weights based on gradients

Tuples annotated with gradient semirings (Naik: Scallop) [Eisner, 2002]
[Kimmig+ 2011] capture gradients of NN vs each parameter!

BEEE - o [70R0ON Pl 0=(0,0)and 1 = (1,0)
i (score, gradient-vec (pl.V—pf) T (pz,V—pz)) = (py + 02, Vo1 + Vpy)

(Pl,V—pD : (pz»V—Pz) = (P1p2;p1v—192> + pZV—p{)

Let’s consider two ways of making view recomputation fast!
1. Sideways information passing through NN layers
2. Exploiting functional equivalences with preferences

Making a Prediction: NN “Feed-Forward”

Omitting bias weights for Ocs0.9 ~ _ o
simplicity! I\ This prunes most of its inputs!
sigmoid

And assuming all i) -
@

weights are positive!
RelLU / \ Could we skip processing

M most of these inputs, if

i) .
their features are low?
@ oA @ ENE
A

Need a type of sideways
H H information passing, where we

A

share constraints on scores of
inputs not yet seen.

t(id, f1, f2)

Observations about Feed-Forward

[

Ocso0.9

)

sigmoid

f
I owow

RelLU /
i)
@ o NEEN

A

t(id, f1, f2)

H

A

RelLU

)
@« N

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

Abstracting from details: FA is

a type of sideways information
passing, where we share bounds
over scores of inputs not yet seen.

If we have multiple computation
stages we prioritize as appropriate.

Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

Assuming all e . . .
weights are positive! i) Abstracting from details: FA is

sigmoid a type of sideways information

il - passing, where we share constraints

on scores of inputs not yet seen.

RelLU / Rel U Can we bound our exploration

i 0 across the activation units?
@ o AN @ NENE
A

|]

t(id, f1, f2) with unclustered index by f1 and f2, in descending order

Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

Ocso0.9

T
sigmoid
) wi w2
@ V\o.oz 0.02
ReLU / RelLU
i 1T
@ ¢ Wi w2 @c:, Wi W2
@ 0.5 0.3 0.1 0.3
f1inx f2 Tnx

99,(t1,99,99) 99,(t1,99,99)

Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

Ocso.q 0.91
1l
sigmoid
T wi w2
RelLU RelLU <=39.6
il i)
1:79.2 @ Wi w2 G®<: wi w2
0.1 O.
=792 2 0.5 0.3 3
f1inx f2 Thx
99,(t1,99,99) 99,(t1,99,99)

<=99 <=99

Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

Ocso.q 0.91
)
sigmoid
i wi w2
RelLU RelLU <=38.5
i) T
1:79.2 @ Wi w2 @ Wi w2
0.1 O.
<=73.7 2 0.5 0.3 3
f1inx f2 Thx
99,(t1,99,99) 99,(t1,99,99)
88,(t2,88,40)

<=99
<= 88

Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

Ocso.q 0.91
i)
sigmoid
) wi w2
RelLU / RelLU <=27.7
| i} i)
1:79.2 @ Wi wa @C:’ wi w2
0.5 O. 0.1 0.3
<=62.9 > 93
f1inx f2 Thx
99,(t1,99,99) 99,(t1,99,99)
88,(t2,88,40) 63,(t3,33,63)

<=88 <=63

Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

O-c>o.9 0.91
i)
sigmoid
T wa we

@ 0.02 0.02 1: 396

/ \ 3:22.2
RelLU

RelLU 2:20.8
]) <=1E,
1:79-2 wil w2 @ w1 w253
2: 56 @ g2 W2 &= 01 04
2 0.5 0.3 1 0.3
3:35.4
<=28.5 fainx f2 Tnx
99,(t1,99,99) 99,(11,99,99)
88,(t2,88,40) 63,(t3,33,63)
33,(t3,33,63) 40,(t2,88,40)

<=33 <= 40

Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. o1] for thresholding

O-c>o.9 0.91
e 0.83 Propagate 3 tuples to
sigmoid 0.76 get all values > 0.9
T wi we

/ \ 3:22.2
RelLU

RelLU

2:20.8
T i c=1c.
1:79-2 wil w2 @ w1 wz53
2: 56 @ & & o1 (E
3:35.4 2
<=28.5 fainx f2 Tnx
99,(t1,99,99) 99,(11,99,99)
88,(t2,88,40) 63,(t3,33,63)
33,(t3,33,63) 40,(t2,88,40)

<=33 <= 40

Algorithm Sketch

[Chen et al. under review]

Pre-index subset of fields that are “important” to prediction (use Shapley values)

NN, on call to getNextTuple():
* Recursively (by layer) fetch from input streams, using thresholding as a sideways information
passing strategy to minimize retrievals!
* Fetch in descending (w; > 0) or ascending (w; < o) order
* Update thresholds on input sub-streams

Results in significant gains in amount of work if predictions are selective!

Caveat: modern hardware is optimized for regularized tensor computation!
For standard prediction, GPUs can be faster than “smart” processing with control flow!

BUT: what if we only make small changes to the state, i.e., view maintenance?

Incremental update upon change to model parameters:
* Recompute scores of existing outputs — threshold any that no longer pass
* Recursively fetch any new tuples above the threshold

We use thresholds at each layer from the prior iteration as a starting point!

Highlight: Roberta + Neural Network, 4 Classes

[Chen et al. under review]

Product classification

N
W

r

-—
w

Runtime (sec)

t

o

@@ A

& Q|
1% 5%

Skewness

RS (C) = ReSolution, PyTorch with thresholding, CPU-based
PT (C) = PyTorch, CPU-based

PT (G) = PyTorch, GPU-based

PCA = PyTorch Update on lower-dimensionality data

o

The Story So Far:
Incremental Re-Classification

Across multiple datasets (image detection, products, info extraction)), 1.5 — 8x
speedups (vs PyTorch in CPU or GPU mode) for incremental update, when we
have up to 10% of the instances in the detected class

> Naive feed-forward can be replaced by smarter sideways information-
passing, early pruning!

® i.e., applying ideas from query optimization to mixed selection-classification queries!

Sometimes, prediction is a bottleneck in the first place

Requires us to generalize query (expression)
equivalence with ML ops!!!

Providing Consistent Performance

- 2 -) - X — Y -+

img
argmin (L1(embed, profile))

Allowed(id, profile)

In a streaming setting: latencies of data processing + classification algorithms
will depend on the data

® e.g.face detection +recognition on a crowd vs zero or one face
May have latency / throughput constraints

> Idea: consider alternative classifier implementations

® BUT: what does equivalence mean here???

® “Equivalent” in a functional sense, with a partial ordering based on “expected quality”

® Precision, model size [complexity, CPU vs GPU, ...

® Always want to push for best quality while maintaining throughput

Prioritized Eddies [Work-in-Progress]

With Phillip Hilliard, Rajeev Alur

Inspired by + adapted from Eddies [Avnur & Hellerstein 2000]

1 =) BFEINE ~
- @ I
N ad Accurate [l

|

Assume ordering among preferences among multiple NN pipelines, e.g.:
Accurate face detector 9g5% F1 on validation data, 2 units running time
Fast face detector 92% F1 on validation data, 1 units running time

Sketch of our approach:

1. When load on high-priority pipeline exceeds threshold, enable less-preferred pipeline
2. Then randomly choose queue, inversely proportional to queue length

3. Disable less-preferred pipeline once queues “drain”

Summary of Work-in-Progress
on ML-Integrated Views

® ML-integrated views of data provide interesting new opportunities!
® Connections between provenance and view update
® Sideways information passing

® Relaxed notions of equivalence

® Excited to get feedback, ideas, potential collaborations for exploring this
rich space!

Some Foundational Questions
with Practical Implications

. Gradient semirings assign “blame” when we need to make an SGD update

® Are there other generalizations of this idea?

. Similarity joins between learned embeddings [with Erik Waingarten]
® How do we compute top-k join results efficiently, with multiple sim. predicates?
® Maintenance questions, esp. under fine-tuning?

. Isthere a clean provenance model for “functionally equivalent”
expressions in the ML sense?

. Can declarative techniques let us go beyond automated hyperparameter
tuning for classifiers?

® Inadeclarative system, where we are querying over “part” of a model’s output — can
we co-train a simplified model while using it, for efficiency?

