Deeply Integrated Deep Learning

A Work-in-Progress Report

Zachary G. Ives

with Peter Baile Chen (MIT), Yi Zhang (AWS), Phillip Hilliard, Rajeev Alur, Erik Waingarten

Simons Workshop on Logic and Algebra for Query Evaluation

November 15, 2023
A New Kind of “Database”?

Transformers (and LLMs) enable use of **unstructured, multimodal, open-world** data

- Entity and relationship extraction into relations, triples, etc.
- General-domain entity resolution / record linking is possible – even over text, images, etc. through *embeddings*

Opportunities in enabling *discovery, monitoring and forecasting*, and *open Q&A*

- Cross-enterprise or cross-field data management
- Google Scholar and equivalent
- Exploratory data analysis, model building
- Real-time surveillance *with* privacy
A New Kind of “Database”?

Transformers (and LLMs) enable use of **unstructured, multimodal, open-world** data

- Entity and relationship extraction into relations, triples, etc.
- General-domain entity resolution / record linking is possible—even over text, images, etc. through embeddings

Opportunities in enabling discovery, monitoring and forecasting

- Cross-enterprise or cross-field data management
- Google Scholar and equivalent
- Exploratory data analysis, model building
- Real-time surveillance with privacy

What new challenges and opportunities lie in this model?

- The “database” is a now a **view** (with ML components)
- The data and ML models are imperfect – thus, we need to **learn** and **change**!
- Provenance (of sources, extractors, evidence) matters
Some Example (Prediction) Use Cases

Information extraction – document to triples

- **PDF** → *extract_triples* → $\sigma_{\text{conf} > \tau}$

Event detection – with multiple models + provenance

- \times → *detect_mention* → \bigcup → $\sigma_{\text{conf} > \tau}$

Surveillance with privacy – fuzzify people granted access

- **detect_faces** → *face2embed* → \bowtie → \bigtriangleup → \bigtriangledown → *fuzzify* → $\text{Allowed}(\text{id, profile})$
A Baseline Algebra with Tensor Ops (Inspired by Pandas/MLlib)

Nested relational model: attributes are scalars, lists, or tensors (vectors, matrices) where p_i is a provenance semiring expression

Tuples $p_i: <A, B, C>$

Attribute \leftrightarrow tensor:
- fields2vector
- vector2fields
- onehot

Aggregate:
- nested_list
- stack_tensors
- pivot

Unnest:
- explode
- unstack
- melt
Do We Get Benefits from Looking *Inside* the NN UDFs?

- Structured queries are based on **constraints** and **equivalences** over tuples, nested relations, etc.
- ML stages are largely based on tensors, dot products, activation functions

If we go beyond “black box” ML ops, can we combine the two to benefit?

- Neurosymbolic systems like Scallop [Naik], DeepProbLog [Manhaeve+] show more effective **learning** by integrating logical constraints

- We think logical constraints can open new opportunities on the **prediction** side, for studying **efficiency, updates and maintenance** and more!
A Baseline Algebra with Tensor Ops
(Inspired by Pandas/MLlib)

Nested relational model: attributes are scalars, lists, or *tensors* (vectors, matrices)
where \(p_i \) is a provenance semiring expression

- **Tuples**: \(p_i: \langle A, B, C \rangle \)
- **Attribute \(\leftrightarrow \) tensor**:
 - `fields2vector fields, vec_name`
 - `vector2fields vector, field_names`
 - `onehot fields, field_name_prefix`
- **Aggregate**:
 - `nested_list fields, field_name`
 - `stack_tensors tensor_field`
 - `pivot key_field, value_field`
- **Unnest**:
 - `explode field, index_field`
 - `unstack tensor_field, index_field`
 - `melt fields, key_field_name, val_field_name`

Neural network:
Connectivity/dot products: *linear*, *conv1D*, *conv2D*, *conv3D*
Activation: *relu*, *sigmoid*, *tanh*
batchnorm
maxpool
softmax
...
A “Detection” Query in More Detail

Prediction is based on **features** within CQ tuples followed by **selection**...

\[\text{CQ(...)} \xrightarrow{t_i} \text{ML Model (NN)} \xrightarrow{} \sigma_{\text{class}=c_1} \]

But *provenance* provides important features too*!

\[\text{CQ(...)} \xrightarrow{t_i} \text{ML Model (NN)} \xrightarrow{} \sigma_{\text{class}=c_1} \]

*Often:
Select for class = c_1
Or score(c_1) > \tau*
A “Detection” Query in More Detail

\[\sigma_{\text{class}=c_1} \]

ML Model (NN)

CQ(…)

\sigma_{\text{class}=c_1}
A “Detection” Query in More Detail

ML Model (NN)

σ_{\text{class}=c_1}

R \bowtie S

σ_{\text{class}=c_1}

sigmoid

w_0 w_2 w_3

ReLU

Σ

w_0 w_2 w_3

ReLU

Σ

w_0 w_2 w_3

a_{(2)} \cdot w_{(2)} \cdot (\text{ext. w/ bias})
A Neural Network in a Query ... As a Dependent Join

ML Model (NN)

σ_{class=c1}

sigmoid

ReLU

ReLU

R \bowtie S

ZRSH+21: general extensions to provenance semiring model for multimodal data extraction, substring matching, etc.

Treat NN() as a dependent join with input bindings!
Learning and Provenance: View Update Redux \(\rightarrow\) View Maintenance

Suppose a view output is wrong! \(\hat{y} \rightarrow y\)

Compute loss\((y, \hat{y})\) and *back-propagate* through NN, scaling weights based on gradients

Tuples annotated with *gradient semirings* (Naik: Scallop) \[\text{[Eisner, 2002]}\] \[\text{[Kimmig+ 2011]}\] capture gradients of NN vs each parameter!

\[p! \cdot \nabla p! + p" \cdot \nabla p" = (p! + p") \cdot (\nabla p! + \nabla p")\]

\[p! \cdot \nabla p! = (p!p", p! \nabla p" + p" \nabla p!)\]

Let's consider two ways of making view recomputation fast!

1. Sideways information passing through NN layers
2. Exploiting functional equivalences with preferences
Making a Prediction: NN “Feed-Forward”

Omitting bias weights for simplicity!

And assuming all weights are positive!

Could we skip processing most of these inputs, if their features are low?

Need a type of sideways information passing, where we share constraints on scores of inputs not yet seen.
Observations about Feed-Forward

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

Abstracting from details: FA is a type of *sideways information passing*, where we share bounds over scores of inputs not yet seen.

If we have multiple computation stages we **prioritize** as appropriate.
Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

Assuming all weights are positive!

Abstracting from details: FA is a type of *sideways information passing*, where we share constraints on scores of inputs not yet seen.

Can we bound our exploration across the activation units?

Assuming all weights are positive!
Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding
Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

\[f_1(\text{inx} 99, (t_1, 99, 99)) \leq 99 \]

\[f_2(\text{inx} 99, (t_1, 99, 99)) \leq 99 \]

\[
\begin{align*}
\text{sigmoid} & \quad \sigma_{c>0.9} \quad 0.91 \\
\text{ReLU} & \quad \begin{array}{c}
 w_1 \quad 0.02 \\
 w_2 \quad 0.02
\end{array} \\
\begin{array}{c}
 1: \ 79.2 \\
 \leq 79.2
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{ReLU} & \quad \begin{array}{c}
 w_1 \quad 0.5 \\
 w_2 \quad 0.3
\end{array} \\
\begin{array}{c}
 f_1(\text{inx} 99, (t_1, 99, 99)) \\
 \leq 99
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{ReLU} & \quad \begin{array}{c}
 w_1 \quad 0.1 \\
 w_2 \quad 0.3
\end{array} \\
\begin{array}{c}
 f_2(\text{inx} 99, (t_1, 99, 99)) \\
 \leq 99
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{ReLU} & \quad \begin{array}{c}
 w_1 \quad 0.02 \\
 w_2 \quad 0.02
\end{array} \\
\begin{array}{c}
 1: \ 39.6 \\
 \leq 39.6
\end{array}
\end{align*}
\]
Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding
Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding
Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

\[
\begin{align*}
\sigma_{c>0.9} & \quad 0.91 \\
\text{sigmoid} & \quad \uparrow \\
@ & \quad \uparrow \\
\text{ReLU} & \quad w_1 \quad w_2 \\
& \quad 0.02 \quad 0.02 \\
1: & \quad 39.6 \\
3: & \quad 22.2 \\
2: & \quad 20.8 \\
\leq & \quad 15.3 \\
w_1 & \quad w_2 \\
& \quad 0.1 \quad 0.3 \\
\leq & \quad 15.3 \\
f_1 & \quad \text{in} \\
99, & \quad (t_1, 99, 99) \\
88, & \quad (t_2, 88, 40) \\
33, & \quad (t_3, 33, 63) \\
\leq & \quad 28.5 \\
f_2 & \quad \text{in} \\
99, & \quad (t_1, 99, 99) \\
63, & \quad (t_3, 33, 63) \\
40, & \quad (t_2, 88, 40) \\
\leq & \quad 40
\end{align*}
\]
Feed-Forward with SIPS

Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

Propagate 3 tuples to get all values > 0.9
Algorithm Sketch
[Chen et al. under review]

Pre-index subset of fields that are “important” to prediction (use Shapley values)

NN, on call to getNextTuple():
- Recursively (by layer) fetch from input streams, using **thresholding as a sideways information passing strategy** to minimize retrievals!
 - Fetch in *descending* ($w_i > 0$) or *ascending* ($w_i < 0$) order
 - Update thresholds on input sub-streams

Results in significant gains in amount of work if predictions are selective!

Caveat: modern hardware is optimized for regularized tensor computation!

For standard prediction, GPUs can be faster than “smart” processing with control flow!

BUT: what if we only make small changes to the state, i.e., view maintenance?

Incremental update upon change to model parameters:
- Recompute scores of existing outputs – threshold any that no longer pass
- Recursively fetch any new tuples above the threshold

We use thresholds at each layer from the prior iteration as a starting point!
Highlight: Roberta + Neural Network, 4 Classes

[Chen et al. under review]

RS (C) = ReSolution, PyTorch with thresholding, CPU-based
PT (C) = PyTorch, CPU-based
PT (G) = PyTorch, GPU-based
PCA = PyTorch Update on lower-dimensionality data
The Story So Far: Incremental Re-Classification

Across multiple datasets (image detection, products, info extraction), 1.5 – 8x speedups (vs PyTorch in CPU or GPU mode) for incremental update, when we have up to 10% of the instances in the detected class.

- Naïve feed-forward can be replaced by smarter sideways information-passing, early pruning!
 - i.e., applying ideas from query optimization to mixed selection-classification queries!

Sometimes, prediction is a bottleneck in the first place.

Requires us to generalize query (expression) equivalence with ML ops!!!
Providing Consistent Performance

In a streaming setting: latencies of data processing + classification algorithms will depend on the data

• e.g. face detection + recognition on a crowd vs zero or one face

May have latency / throughput constraints

➢ Idea: consider alternative classifier implementations

• BUT: what does equivalence mean here???

• “Equivalent” in a functional sense, with a partial ordering based on “expected quality”
 • Precision, model size / complexity, CPU vs GPU, ...

• Always want to push for best quality while maintaining throughput
Prioritized Eddies [Work-in-Progress]

With Phillip Hilliard, Rajeev Alur

Inspired by + adapted from Eddies [Avnur & Hellerstein 2000]

Assume ordering among preferences among multiple NN pipelines, e.g.:
- **Accurate** face detector 95% F1 on validation data, **2 units** running time
- **Fast** face detector 92% F1 on validation data, **1 units** running time

Sketch of our approach:
1. When load on high-priority pipeline exceeds threshold, enable less-preferred pipeline
2. Then randomly choose queue, inversely proportional to queue length
3. Disable less-preferred pipeline once queues “drain”
Summary of Work-in-Progress on ML-Integrated Views

• ML-integrated views of data provide interesting new opportunities!
 • Connections between provenance and view update
 • Sideways information passing
 • Relaxed notions of equivalence

• Excited to get feedback, ideas, potential collaborations for exploring this rich space!
Some Foundational Questions with Practical Implications

1. Gradient semirings assign “blame” when we need to make an SGD update
 • Are there other generalizations of this idea?

2. Similarity joins between learned embeddings [with Erik Waingarten]
 • How do we compute top-k join results efficiently, with multiple sim. predicates?
 • Maintenance questions, esp. under fine-tuning?

3. Is there a clean provenance model for “functionally equivalent” expressions in the ML sense?

4. Can declarative techniques let us go beyond automated hyperparameter tuning for classifiers?
 • In a declarative system, where we are querying over “part” of a model’s output – can we co-train a simplified model while using it, for efficiency?