
Deeply Integrated Deep Learning
A Work-in-Progress Report

Zachary G. Ives

Simons Workshop on Logic and Algebra for Query Evaluation

November 15, 2023

with Peter Baile Chen (MIT), Yi Zhang (AWS), Phillip Hilliard, Rajeev Alur, Erik Waingarten

A New Kind of “Database”?

Transformers (and LLMs) enable use of
unstructured, multimodal, open-world data
• Entity and relationship extraction into

relations, triples, etc.

• General-domain entity resolution / record
linking is possible – even over text, images,
etc. through embeddings

Opportunities in enabling discovery,
monitoring and forecasting, and open Q&A
• Cross-enterprise or cross-field data

management

• Google Scholar and equivalent

• Exploratory data analysis, model building
• Real-time surveillance with privacy

GPT-4

Dashboard

“…?”

RAG

VecDB

A New Kind of “Database”?

Transformers (and LLMs) enable use of
unstructured, multimodal, open-world data
• Entity and relationship extraction into

relations, triples, etc.

• General-domain entity resolution / record
linking is possible – even over text, images,
etc. through embeddings

Opportunities in enabling discovery,
monitoring and forecasting, and open Q&A
• Cross-enterprise or cross-field data

management

• Google Scholar and equivalent

• Exploratory data analysis, model building
• Real-time surveillance with privacy

GPT-4VecDB

Dashboard

“…?”

RAG• The “database” is a now a view (with ML components)
• The data and ML models are imperfect – thus, we

need to learn and change!
• Provenance (of sources, extractors, evidence) matters

What new challenges and opportunities lie in this
model?

Some Example (Prediction) Use Cases

Information extraction – document to triples

Event detection – with multiple models + provenance

Surveillance with privacy – fuzzify people granted access

This Graphic by Unknown Author is
licensed under CC BY-NC-ND

Ɣdetect_faces face2embed ⋈
Allowed(id, profile)

argmin (L1(embed, profile))
img

fuzzify

detect_mention 𝜎
conf > 𝞽⋃

detect_mention

extract_triples 𝜎
conf > 𝞽

http://nick-spratt.deviantart.com/art/Surveillance-Camera-Vector-Art-STOCK-605579441
https://creativecommons.org/licenses/by-nc-nd/3.0/

A Baseline Algebra with Tensor Ops
(Inspired by Pandas/MLlib)

Nested relational model: attributes are scalars, lists, or tensors (vectors, matrices)
Tuples pi: <A, B, C> where pi is a provenance semiring expression

Aggregate:
nested_listfields,field_name
stack_tensorstensor_field
pivotkey_field, value_field

Unnest:
explodefield,index_field

unstacktensor_field,index_field

meltfields,key_field_name,val_field_name

Attribute ßà tensor:
fields2vectorfields,vec_name

vector2fieldsvector,field_names
onehotfields,field_name_prefix

Do We Get Benefits from Looking Inside the
NN UDFs?

• Structured queries are based on constraints and equivalences over tuples,
nested relations, etc.

• ML stages are largely based on tensors, dot products, activation functions

If we go beyond “black box” ML ops, can we combine the two to benefit?

• Neurosymbolic systems like Scallop [Naik], DeepProbLog [Manhaeve+] show more
effective learning by integrating logical constraints

• We think logical constraints can open new opportunities on the prediction side, for
studying efficiency, updates and maintenance and more!

A Baseline Algebra with Tensor Ops
(Inspired by Pandas/MLlib)

Nested relational model: attributes are scalars, lists, or tensors (vectors, matrices)
Tuples pi: <A, B, C> where pi is a provenance semiring expression

Aggregate:
nested_listfields,field_name
stack_tensorstensor_field
pivotkey_field, value_field

Unnest:
explodefield,index_field

unstacktensor_field,index_field

meltfields,key_field_name,val_field_name

Attribute ßà tensor:
fields2vectorfields,vec_name

vector2fieldsvector,field_names
onehotfields,field_name_prefix

Neural network:
Connectivity/dot products: linear, conv1D, conv2D, conv3D
Activation: relu, sigmoid, tanh
batchnorm
maxpool
softmax
…

A “Detection” Query in More Detail

Prediction is based on features within CQ tuples followed by selection…

ti
ML Model

(NN)

But provenance provides important features too*!

ti
ML Model

(NN)

𝜎class=c1

𝜎class=c1

Often:

Select for class = c1
Or score(c1) > 𝞽

CQ(…)

CQ(…)

A “Detection” Query in More Detail

ML Model
(NN)

𝜎class=c1

CQ(…)

ML Model
(NN)

A “Detection” Query in More Detail

w1 w2 w3w0

ReLU
Σ

1

w1 w2 w3w0

ReLU
Σ

1

w(2)

sigmoid

a(2) · w(2)

R ⋈ S

𝜎class=c1

(ext. w/ bias)

ML Model
(NN)

A Neural Network in a Query … As a Dependent Join

w1 w2 w3

p1

p2

w0

ReLU
Σ

1

w1 w2 w3w0

ReLU
Σ

1

w(2)

sigmoid

a(2) · w(2)

R ⋈ S

𝜎class=c1

⋈ p1 · pNN(p1)

Zheng+21:
general
extensions
to provenance
semiring
model for
multimodal
data
extraction,
substring
matching, etc.

Treat NN()
as a dependent
join with input
bindings!

(ext. w/ bias)

Learning and Provenance:
View Update Redux àView Maintenance

Suppose a view output is wrong!

Compute loss(𝑦, #𝑦) and back-propagate through NN, scaling weights based on gradients

Tuples annotated with gradient semirings (Naik: Scallop) [Eisner, 2002]
[Kimmig+ 2011] capture gradients of NN vs each parameter!

Annotation is pair
(score, gradient_vec)p1 · pNN(p1)

$𝒚 𝒚

Let’s consider two ways of making view recomputation fast!
1. Sideways information passing through NN layers
2. Exploiting functional equivalences with preferences

𝑝!, ∇𝑝! + 𝑝", ∇𝑝" = (𝑝! + 𝑝", ∇𝑝! + ∇𝑝")

𝑝!, ∇𝑝! - 𝑝", ∇𝑝" = (𝑝!𝑝", 𝑝!∇𝑝" + 𝑝"∇𝑝!)

0 = 0, 0 	𝑎𝑛𝑑	1 = 1, 0

Making a Prediction: NN “Feed-Forward”

@ w1 w2 @ w1 w2

ReLU ReLU

@

sigmoid

w1 w2

𝜎c>0.9Omitting bias weights for
simplicity!

And assuming all
weights are positive!

t(id, f1, f2)

This prunes most of its inputs!

Could we skip processing
most of these inputs, if
their features are low?

Need a type of sideways
information passing, where we
share constraints on scores of
inputs not yet seen.

Observations about Feed-Forward
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

@ w1 w2 @ w1 w2

ReLU ReLU

@

sigmoid

w1 w2

𝜎c>0.9
Abstracting from details: FA is
a type of sideways information
passing, where we share bounds
over scores of inputs not yet seen.

If we have multiple computation
stages we prioritize as appropriate.

t(id, f1, f2)

Feed-Forward with SIPS
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

f1 inx f2 inx

@ w1 w2 @ w1 w2

ReLU ReLU

@

sigmoid

w1 w2

𝜎c>0.9
Abstracting from details: FA is
a type of sideways information
passing, where we share constraints
on scores of inputs not yet seen.

Can we bound our exploration
across the activation units?

t(id, f1, f2) with unclustered index by f1 and f2, in descending order

Assuming all
weights are positive!

Feed-Forward with SIPS
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

f1 inx
99,(t1,99,99)

f2 inx
99,(t1,99,99)

@ w1 w2
0.5 0.3

@ w1 w2
0.1 0.3

ReLU ReLU

@

sigmoid

w1 w2
 0.02 0.02

𝜎c>0.9

Feed-Forward with SIPS
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

f1 inx
99,(t1,99,99)

<= 99

f2 inx
99,(t1,99,99)

<= 99

@ w1 w2
0.5 0.3

@ w1 w2
0.1 0.3

ReLU ReLU

@

sigmoid

w1 w2
 0.02 0.02

𝜎c>0.9

1: 79.2

<= 79.2

1: 39.6

<= 39.6

0.91

Feed-Forward with SIPS
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

f1 inx
99,(t1,99,99)
88,(t2,88,40)

<= 88

f2 inx
99,(t1,99,99)

<= 99

@ w1 w2
0.5 0.3

@ w1 w2
0.1 0.3

ReLU ReLU

@

sigmoid

w1 w2
 0.02 0.02

𝜎c>0.9

1: 79.2

<= 73.7

1: 39.6

<= 38.5

0.91

Feed-Forward with SIPS
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

f1 inx
99,(t1,99,99)
88,(t2,88,40)

<= 88

f2 inx
99,(t1,99,99)
63,(t3,33,63)

<= 63

@ w1 w2
0.5 0.3

@ w1 w2
0.1 0.3

ReLU ReLU

@

sigmoid

w1 w2
 0.02 0.02

𝜎c>0.9

1: 79.2

<= 62.9

1: 39.6

<= 27.7

0.91

Feed-Forward with SIPS
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

f1 inx
99,(t1,99,99)
88,(t2,88,40)
33,(t3,33,63)

<= 33

f2 inx
99,(t1,99,99)
63,(t3,33,63)
40,(t2,88,40)

<= 40

@ w1 w2
0.5 0.3

@ w1 w2
0.1 0.3

ReLU ReLU

@

sigmoid

w1 w2
 0.02 0.02

𝜎c>0.9

1: 79.2
2: 56
3: 35.4
<= 28.5

1: 39.6
3: 22.2
2: 20.8
<= 15.3

0.91

Feed-Forward with SIPS
Inspiration: Fagin’s Algorithm (FA) [Fagin et al. 01] for thresholding

f1 inx
99,(t1,99,99)
88,(t2,88,40)
33,(t3,33,63)

<= 33

f2 inx
99,(t1,99,99)
63,(t3,33,63)
40,(t2,88,40)

<= 40

@ w1 w2
0.5 0.3

@ w1 w2
0.1 0.3

ReLU ReLU

@

sigmoid

w1 w2
 0.02 0.02

𝜎c>0.9

1: 79.2
2: 56
3: 35.4
<= 28.5

1: 39.6
3: 22.2
2: 20.8
<= 15.3

0.91
0.83
0.76

Propagate 3 tuples to
get all values > 0.9

Algorithm Sketch
[Chen et al. under review]

Results in significant gains in amount of work if predictions are selective!

Caveat: modern hardware is optimized for regularized tensor computation!

For standard prediction, GPUs can be faster than “smart” processing with control flow!

BUT: what if we only make small changes to the state, i.e., view maintenance?

Pre-index subset of fields that are “important” to prediction (use Shapley values)

NN, on call to getNextTuple():
• Recursively (by layer) fetch from input streams, using thresholding as a sideways information

passing strategy to minimize retrievals!
• Fetch in descending (wi > 0) or ascending (wi < 0) order
• Update thresholds on input sub-streams

Incremental update upon change to model parameters:
• Recompute scores of existing outputs – threshold any that no longer pass
• Recursively fetch any new tuples above the threshold

We use thresholds at each layer from the prior iteration as a starting point!

Highlight: Roberta + Neural Network, 4 Classes
[Chen et al. under review]

RS (C) = ReSolution, PyTorch with thresholding, CPU-based
PT (C) = PyTorch, CPU-based
PT (G) = PyTorch, GPU-based
PCA = PyTorch Update on lower-dimensionality data

The Story So Far:
Incremental Re-Classification

Across multiple datasets (image detection, products, info extraction)), 1.5 – 8x
speedups (vs PyTorch in CPU or GPU mode) for incremental update, when we
have up to 10% of the instances in the detected class

ØNaïve feed-forward can be replaced by smarter sideways information-
passing, early pruning!

• i.e., applying ideas from query optimization to mixed selection-classification queries!

Sometimes, prediction is a bottleneck in the first place

Requires us to generalize query (expression)
equivalence with ML ops!!!

Providing Consistent Performance

In a streaming setting: latencies of data processing + classification algorithms
will depend on the data

• e.g. face detection +recognition on a crowd vs zero or one face

May have latency / throughput constraints

ØIdea: consider alternative classifier implementations

• BUT: what does equivalence mean here???

• “Equivalent” in a functional sense, with a partial ordering based on “expected quality”

• Precision, model size / complexity, CPU vs GPU, …

• Always want to push for best quality while maintaining throughput

Ɣdetect_faces face2embed ⋈
Allowed(id, profile)

argmin (L1(embed, profile))
img

fuzzify

Prioritized Eddies [Work-in-Progress]

Q2

Q1

Fast NN

Accurate
NN

UCQ

`

`

Reorder Q

Assume ordering among preferences among multiple NN pipelines, e.g.:
 Accurate face detector 95% F1 on validation data, 2 units running time >

 Fast face detector 92% F1 on validation data, 1 units running time

Sketch of our approach:
1. When load on high-priority pipeline exceeds threshold, enable less-preferred pipeline
2. Then randomly choose queue, inversely proportional to queue length
3. Disable less-preferred pipeline once queues “drain”

With Phillip Hilliard, Rajeev Alur

Inspired by + adapted from Eddies [Avnur & Hellerstein 2000]

Summary of Work-in-Progress
on ML-Integrated Views

• ML-integrated views of data provide interesting new opportunities!

• Connections between provenance and view update

• Sideways information passing

• Relaxed notions of equivalence

• Excited to get feedback, ideas, potential collaborations for exploring this
rich space!

Some Foundational Questions
with Practical Implications

1. Gradient semirings assign “blame” when we need to make an SGD update

• Are there other generalizations of this idea?

2. Similarity joins between learned embeddings [with Erik Waingarten]

• How do we compute top-k join results efficiently, with multiple sim. predicates?

• Maintenance questions, esp. under fine-tuning?

3. Is there a clean provenance model for “functionally equivalent”
expressions in the ML sense?

4. Can declarative techniques let us go beyond automated hyperparameter
tuning for classifiers?

• In a declarative system, where we are querying over “part” of a model’s output – can
we co-train a simplified model while using it, for efficiency?

