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Querying Trees



Tree as representation of data

Tree is a classical data structure to represent data into different
contexts.
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MSO is the classical language to express Boolean queries over trees.
The other classical formalism for express Boolean queries is tree
automaton.
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More Complex Queries over trees

General MSO queries:

• MSO with first order free variables: returning tuples of nodes

• MSO with second order free variables: returning tuples of sets of
nodes

Extension of MSO queries and trees:

• Counting number of solutions

• Query over probabilistic tree representation [Cohen et al., 2009]

• Enumeration of solutions for a MSO formula with first order
variables [Bagan, 2006, Kazana and Segoufin, 2013]

Maintaining an answer through updates of the tree
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Complex Queries Evaluation over trees are simple

MSO evaluation is in linear time in the size of the tree

• Counting number of solutions is in linear time in the size of the
tree

• Query over probabilistic tree representation is in linear time in
the size of the tree

• Enumeration of solutions for a MSO formula with first order
variables can be done with a linear time preprocessing and a
constant delay

Why MSO complex query evaluation over trees is simpler than
conjunctive query complex query evaluation over relational
database ?
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Representing the solutions of a MSO
query



How to represent the solutions of a MSO evaluation?

A partial answer through the notion of provenance
[Amarilli et al., 2015].

Theorem
Provenance of a MSO query over tree can be computed in linear time
by a circuit with a bounded tree width
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Boolean circuits

A Boolean circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6 → “the variable α is mapped to node 6”

• Tuple ⟨α :4, β :6⟩: tuple of singletons

• The circuit captures a set of tuples, e.g.,
{
⟨α :4, β :6⟩, ⟨α :4, β :7⟩

}
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Approach

• The answers of the query are the satisfying assignments

• These circuits fall in restricted circuit classes
that allow for efficient complex operations

→ Task: Given a Boolean circuit, how to efficiently operate the
complex operation?
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Boolean circuits



Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit
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Circuit restrictions

d-DNNF:

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

∨

∧

x ∧

y ¬z

∧∧

¬x

∧

w z
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Smoothed and zero suppressed semantics

Smooth Circuit

• ∨ are all smoothed:

the valuations defined the subcircuits are defined on the same set of
variables. To smooth, we need to consider all valuations over the
missing variables.

Zero Suppressed Semantics (ZSS) circuit

• Semantics for assignements and not valuations
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Main Results for Querying circuits



Computing K semi-ring value over d-DNNF

Let K be a commutative semi-ring. Let S be a set of assignment over a
set of variables X . Let ν be a cost function from the literals of X to K.
We can generalize ν to S such that∑

ρ∈S(Πx s.t ρ(x)=1 ν(x)).(Πx s.t ρ(x)=0 ν(¬x))

Theorem
Given a smoothed d-DNNF circuit C over a set of variables X , let K
be a commutative semi-ring and ν be a cost function from the
literals of X to K, ν(C) can be computed in linear time in |C|.

Smoothing is not needed for positive cost functions i.e when negative
literals are associated with 1 and zss d-DNNF.

In particular, counting valuations and probabilistic evaluation can be
done in linear time in |C|.
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Example

Counting the possibles valuations using (N,+, ·,0, 1).

∨

∧

x ∧

y ¬z

∧

¬x

∧

w z
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Example

Counting the possibles valuations using (N,+, ·,0, 1).

ν maps each literal to 1.

∨

∧

1 ∧

1 1

∧

1

∧

1 1

13/29



Example

Counting the possibles valuations using (N,+, ·,0, 1).

Propagate the values in bottom-up
manner associating ∧ to · and ∨ to
+.
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Example

Counting the possibles valuations using (N,+, ·,0, 1).

Partial valuations are not on the
same variables {x, y, z} on the left
and {x,w, z} on the right. We need
to smooth them.

∨

2

1 1

1 1

2

1

1

1 1
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Example

Counting the possibles valuations using (N,+, ·,0, 1).

Propagate the values in bottom-up
manner associating ∧ to · and ∨ to
+.

4

2

1 1

1 1

2

1

1

1 1
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Enumeration

Theorem
Given a zss d-DNNF circuit C, we can enumerate its satisfying
assignements with preprocessing linear in |C|
and delay linear in the size of each assignment
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Enumeration

Subtleties: Dealing with part of the circuits with empty partial
assignements, memory usage problems

In practice: we enumerate the x and ∧ of the acceptance
subtree tree of the partial assignments in C.

Key structure [Amarilli et al., 2017] : a persistent set structure for
which the following operations are in O(1)

• adding an element

• giving an arbitrary element and deleting this element

• union of two sets

The preprocessing is a bottom-up evaluation.
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Ranked Enumeration

Theorem
Given a zss d-DNNF circuit C and a strong subset-monotone ranking
function on the partial assignements, we can enumerate the
assignments following the order given by their cost with
preprocessing linear in |C|
and delay O(log(k+ 1) ·max(|α|)), where |α| is the size of
assignment and k is the number of solutions already enumerated.
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In practice: we ranked enumerate the x and ∧ of the
acceptance subtree of the partial assignments in C.

Key structure Brodal Queue [Brodal, 1996]: persistence priority queue
with the following properties

• adding a pair (element, value) in O(1)

• giving an maximuml pair (element,value) respecting the order
over the values in O(1)

• union of two sets in O(1)

• deleting a maximum pair in O(log |S|)
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Cost of Smoothing

In general smoothing is costly, the size of the new circuit is in O(|C|2).

Better cases

• structured d-DNNF [Shih et al., 2019], still above O(|C|)

• ordered d-DNNF [Amarilli et al., 2017], in O(|C|) but with particular
new gates
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Construction of the circuit
representing the answers of a MSO
Query



Construction of the circuit representing Q(T)

Theorem
For any tree automaton A with capture variables α1, . . . , αk,
given a tree T, we can build in O(|T| × |A|) a smoothed circuit
capturing exactly the set of tuples {⟨α1 : n1, . . . , αk : nk⟩ in the
output of A on T

Theorem
For any tree automaton A with capture variables α1, . . . , αk,
given a tree T, we can build in O(|T| × |A|) a zss circuit capturing
exactly the set of tuples {⟨α1 : n1, . . . , αk : nk⟩ in the output of A on T
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Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧
∧
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Summary

We can reproof the following complex MSO queries over trees:

• Counting number of solutions

• Query over probabilistic tree representation [Cohen et al., 2009]

• Enumeration of solutions
[Bagan, 2006, Kazana and Segoufin, 2013]

For MSO with first order variables, we need to notice that the size of
the corresponding assignments is bounded by the size of Q
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New Result

Theorem
For any fixed MSO query Q(x1, . . . , xn) with free first-order variables,
given as input a tree T and a subset-monotone ranking function w
on the partial assignments of x1, . . . , xn to nodes of T, we can
enumerate the answers to Q on T in nonincreasing order of scores
according to w with a preprocessing time of O(|T|) and a delay of
O(log(K + 1)), where K is the number of answers produced so far
enumerated.
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Extension: Handling Updates



Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the computation

• If this happen, we must rerun the computation from scratch

→ Can we do better?
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Known results on dynamic trees

All these results are on data complexity in T (for a fixed query):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)
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Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes
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New results on dynamic trees

• If we allow only relabeling updates, we can show:
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Idea of the technique

Theorem
Let Q be a MSO query and T be a tree. Let CQ,T be the circuit
representing the set of answer Q(T). Let U be an update on T, then
the update of C can be done in the depth of C which in O(depth(T)).

Problem: the depth of T of can be linear in |T|.

For relabeling, we need to balance the tree during the preprocessing.
It can be done in O(T) [Bodlaender and Hagerup, 1998].

In general, we need to rebalance the tree and to continue to balance
the tree after an update.

[Balmin et al., 2004] ensure to maintain a representation of the tree
ensuring a depth in O(log2(T))

[Kleest-Meißner et al., 2022] proposes to maintain a representation of
a tree ensuring a depth in O(log(T)). 27/29



Summary and Future Work



Summary

Complex evaluation of MSO queries over trees can be done efficiently

We present an unifying framework to reproof known results based on
particular circuits : smoothed/zss d-DNNF

Our framework shows that the incremental maintenance through
these circuits is efficient too
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Future work

New types of queries to consider from databases:

• Direct Access

• Uniform Sampling

• Generalizing enumeration of weighted MSO on word
[Bourhis et al., 2021] to trees

• · · ·

It is just sufficient to study these problems over our particular circuits

Thanks for your attention!
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