
Circuits for Querying trees: a little survey

Pierre Bourhis

SPIRALS Team, CRIStAL, CNRS, University of Lille, INRIA Lille

1/29

Thanks

Thanks to my collaborators with whom I worked on this topics

Antoine Amarilli

Alejandro Grez

Louis Jachiet

Stefen Mengel

Matthias Niewerth

Cristian Riveros

Thanks to Antoine Amarill for part of the slides.

2/29

Querying Trees

Tree as representation of data

Tree is a classical data structure to represent data into different
contexts.

<body>1

<section>3

<p>5

76

<h2>4

<div>2

MSO is the classical language to express Boolean queries over trees.
The other classical formalism for express Boolean queries is tree
automaton.

3/29

More Complex Queries over trees

General MSO queries:

• MSO with first order free variables: returning tuples of nodes

• MSO with second order free variables: returning tuples of sets of
nodes

Extension of MSO queries and trees:

• Counting number of solutions

• Query over probabilistic tree representation [Cohen et al., 2009]

• Enumeration of solutions for a MSO formula with first order
variables [Bagan, 2006, Kazana and Segoufin, 2013]

Maintaining an answer through updates of the tree

4/29

Complex Queries Evaluation over trees are simple

MSO evaluation is in linear time in the size of the tree

• Counting number of solutions is in linear time in the size of the
tree

• Query over probabilistic tree representation is in linear time in
the size of the tree

• Enumeration of solutions for a MSO formula with first order
variables can be done with a linear time preprocessing and a
constant delay

Why MSO complex query evaluation over trees is simpler than
conjunctive query complex query evaluation over relational
database ?

5/29

Representing the solutions of a MSO
query

How to represent the solutions of a MSO evaluation?

A partial answer through the notion of provenance
[Amarilli et al., 2015].

Theorem
Provenance of a MSO query over tree can be computed in linear time
by a circuit with a bounded tree width

6/29

Boolean circuits

A Boolean circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6 → “the variable α is mapped to node 6”

• Tuple ⟨α :4, β :6⟩: tuple of singletons

• The circuit captures a set of tuples, e.g.,
{
⟨α :4, β :6⟩, ⟨α :4, β :7⟩

}

7/29

Boolean circuits

A Boolean circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6 → “the variable α is mapped to node 6”

• Tuple ⟨α :4, β :6⟩: tuple of singletons

• The circuit captures a set of tuples, e.g.,
{
⟨α :4, β :6⟩, ⟨α :4, β :7⟩

}

7/29

Boolean circuits

A Boolean circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6 → “the variable α is mapped to node 6”

• Tuple ⟨α :4, β :6⟩: tuple of singletons

• The circuit captures a set of tuples, e.g.,
{
⟨α :4, β :6⟩, ⟨α :4, β :7⟩

}

7/29

Boolean circuits

A Boolean circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6 → “the variable α is mapped to node 6”

• Tuple ⟨α :4, β :6⟩: tuple of singletons

• The circuit captures a set of tuples, e.g.,
{
⟨α :4, β :6⟩, ⟨α :4, β :7⟩

}

7/29

Approach

• The answers of the query are the satisfying assignments

• These circuits fall in restricted circuit classes
that allow for efficient complex operations

→ Task: Given a Boolean circuit, how to efficiently operate the
complex operation?

8/29

Approach

• The answers of the query are the satisfying assignments

• These circuits fall in restricted circuit classes
that allow for efficient complex operations

→ Task: Given a Boolean circuit, how to efficiently operate the
complex operation?

8/29

Approach

• The answers of the query are the satisfying assignments

• These circuits fall in restricted circuit classes
that allow for efficient complex operations

→ Task: Given a Boolean circuit, how to efficiently operate the
complex operation?

8/29

Boolean circuits

Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

9/29

Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

9/29

Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

9/29

Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

9/29

Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

9/29

Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

9/29

Boolean circuits

∨

¬x

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Literal gates: x , ¬x

• Internal gates: ∨ ∧ D(x)

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit
9/29

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

∨

∧

x ∧

y ¬z

∧∧

¬x

∧

w z

10/29

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

∨

∧

x ∧

y ¬z

∧∧

¬x

∧

w z

10/29

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

∨

∧

x ∧

y ¬z

∧∧

¬x

∧

w z

10/29

Smoothed and zero suppressed semantics

Smooth Circuit

• ∨ are all smoothed:

the valuations defined the subcircuits are defined on the same set of
variables. To smooth, we need to consider all valuations over the
missing variables.

Zero Suppressed Semantics (ZSS) circuit

• Semantics for assignements and not valuations

11/29

Smoothed and zero suppressed semantics

Smooth Circuit

• ∨ are all smoothed:

the valuations defined the subcircuits are defined on the same set of
variables. To smooth, we need to consider all valuations over the
missing variables.

Zero Suppressed Semantics (ZSS) circuit

• Semantics for assignements and not valuations

11/29

Main Results for Querying circuits

Computing K semi-ring value over d-DNNF

Let K be a commutative semi-ring. Let S be a set of assignment over a
set of variables X . Let ν be a cost function from the literals of X to K.
We can generalize ν to S such that∑

ρ∈S(Πx s.t ρ(x)=1 ν(x)).(Πx s.t ρ(x)=0 ν(¬x))

Theorem
Given a smoothed d-DNNF circuit C over a set of variables X , let K
be a commutative semi-ring and ν be a cost function from the
literals of X to K, ν(C) can be computed in linear time in |C|.

Smoothing is not needed for positive cost functions i.e when negative
literals are associated with 1 and zss d-DNNF.

In particular, counting valuations and probabilistic evaluation can be
done in linear time in |C|.

12/29

Example

Counting the possibles valuations using (N,+, ·,0, 1).

∨

∧

x ∧

y ¬z

∧

¬x

∧

w z

13/29

Example

Counting the possibles valuations using (N,+, ·,0, 1).

ν maps each literal to 1.

∨

∧

1 ∧

1 1

∧

1

∧

1 1

13/29

Example

Counting the possibles valuations using (N,+, ·,0, 1).

Propagate the values in bottom-up
manner associating ∧ to · and ∨ to
+.

∨

∧

1 1

1 1

∧

1

1

1 1

13/29

Example

Counting the possibles valuations using (N,+, ·,0, 1).

Propagate the values in bottom-up
manner associating ∧ to · and ∨ to
+.

∨

1

1 1

1 1

1

1

1

1 1

13/29

Example

Counting the possibles valuations using (N,+, ·,0, 1).

Partial valuations are not on the
same variables {x, y, z} on the left
and {x,w, z} on the right. We need
to smooth them.

∨

2

1 1

1 1

2

1

1

1 1

13/29

Example

Counting the possibles valuations using (N,+, ·,0, 1).

Propagate the values in bottom-up
manner associating ∧ to · and ∨ to
+.

4

2

1 1

1 1

2

1

1

1 1

13/29

Enumeration

Theorem
Given a zss d-DNNF circuit C, we can enumerate its satisfying
assignements with preprocessing linear in |C|
and delay linear in the size of each assignment

14/29

Enumeration

Subtleties: Dealing with part of the circuits with empty partial
assignements, memory usage problems

In practice: we enumerate the x and ∧ of the acceptance
subtree tree of the partial assignments in C.

Key structure [Amarilli et al., 2017] : a persistent set structure for
which the following operations are in O(1)

• adding an element

• giving an arbitrary element and deleting this element

• union of two sets

The preprocessing is a bottom-up evaluation.

15/29

Ranked Enumeration

Theorem
Given a zss d-DNNF circuit C and a strong subset-monotone ranking
function on the partial assignements, we can enumerate the
assignments following the order given by their cost with
preprocessing linear in |C|
and delay O(log(k+ 1) ·max(|α|)), where |α| is the size of
assignment and k is the number of solutions already enumerated.

16/29

In practice: we ranked enumerate the x and ∧ of the
acceptance subtree of the partial assignments in C.

Key structure Brodal Queue [Brodal, 1996]: persistence priority queue
with the following properties

• adding a pair (element, value) in O(1)

• giving an maximuml pair (element,value) respecting the order
over the values in O(1)

• union of two sets in O(1)

• deleting a maximum pair in O(log |S|)

17/29

Cost of Smoothing

In general smoothing is costly, the size of the new circuit is in O(|C|2).

Better cases

• structured d-DNNF [Shih et al., 2019], still above O(|C|)

• ordered d-DNNF [Amarilli et al., 2017], in O(|C|) but with particular
new gates

18/29

Construction of the circuit
representing the answers of a MSO
Query

Construction of the circuit representing Q(T)

Theorem
For any tree automaton A with capture variables α1, . . . , αk,
given a tree T, we can build in O(|T| × |A|) a smoothed circuit
capturing exactly the set of tuples {⟨α1 : n1, . . . , αk : nk⟩ in the
output of A on T

Theorem
For any tree automaton A with capture variables α1, . . . , αk,
given a tree T, we can build in O(|T| × |A|) a zss circuit capturing
exactly the set of tuples {⟨α1 : n1, . . . , αk : nk⟩ in the output of A on T

19/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧
∧

20/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧
∧

20/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧
∧

20/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧
∧

20/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧

∧

20/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧

∧

20/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

α :n

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∨ ∨ ∨ ∨
∅ α β αβ

∧
∧

20/29

Summary

We can reproof the following complex MSO queries over trees:

• Counting number of solutions

• Query over probabilistic tree representation [Cohen et al., 2009]

• Enumeration of solutions
[Bagan, 2006, Kazana and Segoufin, 2013]

For MSO with first order variables, we need to notice that the size of
the corresponding assignments is bounded by the size of Q

21/29

New Result

Theorem
For any fixed MSO query Q(x1, . . . , xn) with free first-order variables,
given as input a tree T and a subset-monotone ranking function w
on the partial assignments of x1, . . . , xn to nodes of T, we can
enumerate the answers to Q on T in nonincreasing order of scores
according to w with a preprocessing time of O(|T|) and a delay of
O(log(K + 1)), where K is the number of answers produced so far
enumerated.

22/29

Extension: Handling Updates

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the computation

• If this happen, we must rerun the computation from scratch

→ Can we do better?

23/29

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the computation

• If this happen, we must rerun the computation from scratch

→ Can we do better?

23/29

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the computation

• If this happen, we must rerun the computation from scratch

→ Can we do better?

23/29

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the computation

• If this happen, we must rerun the computation from scratch

→ Can we do better?

23/29

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the computation

• If this happen, we must rerun the computation from scratch

→ Can we do better?
23/29

Known results on dynamic trees

All these results are on data complexity in T (for a fixed query):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

24/29

Known results on dynamic trees

All these results are on data complexity in T (for a fixed query):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

24/29

Known results on dynamic trees

All these results are on data complexity in T (for a fixed query):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

24/29

Known results on dynamic trees

All these results are on data complexity in T (for a fixed query):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

24/29

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

25/29

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

25/29

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

25/29

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

25/29

New results on dynamic trees

• If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Amarilli et al., 2018] trees O(T) O(1) O(log T)

26/29

New results on dynamic trees

• If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

26/29

New results on dynamic trees

• If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

26/29

New results on dynamic trees

• If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

26/29

Idea of the technique

Theorem
Let Q be a MSO query and T be a tree. Let CQ,T be the circuit
representing the set of answer Q(T). Let U be an update on T, then
the update of C can be done in the depth of C which in O(depth(T)).

Problem: the depth of T of can be linear in |T|.

For relabeling, we need to balance the tree during the preprocessing.
It can be done in O(T) [Bodlaender and Hagerup, 1998].

In general, we need to rebalance the tree and to continue to balance
the tree after an update.

[Balmin et al., 2004] ensure to maintain a representation of the tree
ensuring a depth in O(log2(T))

[Kleest-Meißner et al., 2022] proposes to maintain a representation of
a tree ensuring a depth in O(log(T)). 27/29

Summary and Future Work

Summary

Complex evaluation of MSO queries over trees can be done efficiently

We present an unifying framework to reproof known results based on
particular circuits : smoothed/zss d-DNNF

Our framework shows that the incremental maintenance through
these circuits is efficient too

28/29

Future work

New types of queries to consider from databases:

• Direct Access

• Uniform Sampling

• Generalizing enumeration of weighted MSO on word
[Bourhis et al., 2021] to trees

• · · ·

It is just sufficient to study these problems over our particular circuits

Thanks for your attention!

29/29

Future work

New types of queries to consider from databases:

• Direct Access

• Uniform Sampling

• Generalizing enumeration of weighted MSO on word
[Bourhis et al., 2021] to trees

• · · ·

It is just sufficient to study these problems over our particular circuits

Thanks for your attention!

29/29

References i

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A circuit-based approach to efficient enumeration.
In ICALP.
Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on trees under relabelings.
In ICDT.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.

http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1511.08723

References ii

Balmin, A., Papakonstantinou, Y., and Vianu, V. (2004).
Incremental validation of XML documents.
TODS.
Bodlaender, H. L. and Hagerup, T. (1998).
Parallel algorithms with optimal speedup for bounded
treewidth.
SIAM Journal on Computing.

Bourhis, P., Grez, A., Jachiet, L., and Riveros, C. (2021).
Ranked enumeration of MSO logic on words.
In ICDT.
Brodal, G. S. (1996).
Worst-case efficient priority queues.
In SODA.

http://db.ucsd.edu/wp-content/uploads/pdfs/212.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5682
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5682

References iii

Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic XML.
In PODS.
Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL.
Kleest-Meißner, S., Marasus, J., and Niewerth, M. (2022).
MSO queries on trees: Enumerating answers under updates
using forest algebras.
CoRR, abs/2208.04180.
Losemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References iv

Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
Shih, A., den Broeck, G. V., Beame, P., and Amarilli, A. (2019).
Smoothing structured decomposable circuits.
In NeurIPS.

	Querying Trees
	Representing the solutions of a MSO query
	Boolean circuits
	Main Results for Querying circuits
	Construction of the circuit representing the answers of a MSO Query
	Extension: Handling Updates
	Summary and Future Work
	Appendix

