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Local Consistency vs. Global Consistency

Fact:

» |In several different settings, the objects of study are
“locally consistent” but they may or may not be
“globally consistent”. Such settings include:

— Quantum Mechanics, Probability Theory,
— Constraint Satisfaction, Database Theory, ...



Local Consistency vs. Global Consistency

Fact:

» |In several different settings, the objects of study are
“locally consistent” but they may or may not be
“globally consistent”. Such settings include:

— Quantum Mechanics, Probability Theory,
— Constraint Satisfaction, Database Theory, ...

Research Program:

Study the structural aspects of global consistency

« Can we unveil the “intelligible structure” of global consistency?
 When is local consistency equivalent to global consistency?



Local Consistency vs. Global Consistency

Earlier Work:

* Vorob'ev — 1962
Characterized when a family of probability distributions defined on
overlapping sets of variables has a joint distribution.

» Beeri, Fagin, Maier, Yannakakis — 1983
Characterized when a family of database relations with overlapping
sets of attributes has a universal relation.



Local Consistency vs. Global Consistency

Earlier Work:

* Vorob'ev — 1962
Characterized when a family of probability distributions defined on
overlapping sets of variables has a joint distribution.

« Beeri, Fagin, Maier, Yannakakis — 1983
Characterized when a family of database relations with overlapping
sets of attributes has a universal relation.

Goal of this work:
« A common generalization of the results of Vorob’ev and of Beeri et al.

« Aunifying framework for studying local vs. global consistency that uses
K-relations, where K is a positive semiring.



Local vs. Global Consistency in Databases

Basic Concepts:
« Attribute: a symbol A with an associated set dom(A) of values.

 R(X): relation R with X as its set of attributes (names of columns)
* RJ[Z] with Z € X: the projection of R on Z

Example:
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Local vs. Global Consistency in Databases

Definition:

Two relations R(X) and S(Y) are consistent if there is a relation
Tover XU Y suchthat T[X]=R and T[Y] = S.

R,(X,), ..., R,(X,) are globally consistent if there is a relation T over
Xy U--UX suchthatT [X;] =Ry, ..., T[X,] = R,.
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Local vs. Global Consistency in Databases

Definition:

Two relations R(X) and S(Y) are consistent if there is a relation
Tover XU Y suchthat T[X]=R and T[Y] = S.

R,(X,), ..., R,(X,) are globally consistent if there is a relation T over
Xy U--UX suchthatT [X;] =Ry, ..., T[X,] = R,.

Basic Facts:

If R,(X,), ..., R,(X,) are globally consistent, then they are
pairwise consistent, i.e., R;and R; are consistent for all i and J.
The converse is not always true, i.e., there are relations

R,(X;), ..., R,(X,) that are pairwise consistent but are not globally
consistent.
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Hardy's Paradox

R(A,,B,) S(A,, B,)
0 0 0 1
0 1 1 0
1 0 1 1
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Local-to-Global Consistency for Relations

Definition: Schema H = (X, ..., X)) of sets of attributes.
H has the local-to-global consistency property for relations if every

pairwise consistent collection R,(X,), ..., R,(X,) of relations is globally
consistent.

13



Local-to-Global Consistency for Relations

Definition: Schema H = (X, ..., X)) of sets of attributes.
H has the local-to-global consistency property for relations if every

pairwise consistent collection R,(X,), ..., R,(X,) of relations is globally
consistent.

Example 1: The schema

H = ({AL AL {A2 Az} {Ag.ALL)
has the local-to-global consistency property for relations.
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Local-to-Global Consistency for Relations

Definition: Schema H = (X, ..., X)) of sets of attributes.
H has the local-to-global consistency property for relations if every

pairwise consistent collection R,(X,), ..., R,(X,) of relations is globally
consistent.

Example 1: The schema
H = ({AL AL {A2 Az} {Ag.ALL)
has the local-to-global consistency property for relations.

Example 2: The schema

H = ({ApAL {AAsH {As A {ALAL
does not have the local-to-global consistency property for relations.
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Local-to-Global Consistency for Relations

Definition: Schema H = (X, ..., X)) of sets of attributes.

H has the local-to-global consistency property for relations if every
pairwise consistent collection R,(X,), ..., R,(X,) of relations is globally
consistent.

Theorem (Beeri, Fagin, Maier, Yannakakis — 1983):

The following are equivalent for a schema H = (X, ..., X))

H is an acyclic hypergraph.

H is a conformal and chordal hypergraph.

H has the running intersection property.

H has a join tree.

H has the local-to-global consistency property for relations.

a bk wnheE
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Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

The primal graph of H is the undirected graph whose edges are
pairs of nodes that appear together in at least one hyperedge of H.

H is conformal if every clique of the primal graph of H is contained in
some hyperedge of H.

H is chordal if its primal graph is chordal (i.e., every cycle of length
at least four of has a chord).
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Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

« The primal graph of H is the undirected graph whose edges are
pairs of nodes that appear together in at least one hyperedge of H.

« His conformal if every clique of the primal graph of H is contained in
some hyperedge of H.

 H is chordal if its primal graph is chordal (i.e., every cycle of length
at least four of has a chord).

Example 1: H = ({AL A}, {AsA3) {AgA,}) is conformal and chordal.
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Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

« The primal graph of H is the undirected graph whose edges are
pairs of nodes that appear together in at least one hyperedge of H.

« His conformal if every clique of the primal graph of H is contained in
some hyperedge of H.

 H is chordal if its primal graph is chordal (i.e., every cycle of length
at least four of has a chord).

Example 1: H = ({AL A}, {AsA3) {AgA,}) is conformal and chordal.

Example 2: H = ({A;, AL} {A2 AL {As AL {ALAL) IS
conformal but not chordal.
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Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

« The primal graph of H is the undirected graph whose edges are
pairs of nodes that appear together in at least one hyperedge of H.

« His conformal if every clique of the primal graph of H is contained in
some hyperedge of H.

 H is chordal if its primal graph is chordal (i.e., every cycle of length
at least four of has a chord).

Example 1: H = ({AL A}, {AsA3) {AgA,}) is conformal and chordal.

Example 2: H = ({A;, AL} {A2 AL {As AL {ALAL) IS
conformal but not chordal.

Example 3: H = ({A,A5}, {A5AS), {AsAL}) is chordal but not conformal.
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The Running Intersection Property

Definition: A hypergraph H has the running intersection property if
there is an ordering Xy, ..., X, of its hyperedges such that
for every i < n, there is aj < i such that

Xi N (X1 U "'Uxi_1) C Xj'
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The Running Intersection Property

Definition: A hypergraph H has the running intersection property if
there is an ordering Xy, ..., X, of its hyperedges such that
for every i < n, there is aj < i such that

Xi N (X1 U "'Uxi_1) C Xj'

Example 1: H = ({A1,AxL {AzAs) {AsAld)
has the running intersection property.

Example 2: H = ({A, AL} {A2 A {AsAld {ALAL)
does not have the running intersection property.
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Local-to-Global Consistency for Relations

Definition: Schema H = (X, ..., X)) of sets of attributes.

H has the local-to-global consistency property for relations if every
pairwise consistent collection R,(X,), ..., R,(X,) of relations is globally
consistent.

Theorem (Beeri, Fagin, Maier, Yannakakis — 1983):
The following are equivalent for a schema H = (X, ..., X))
H is an acyclic hypergraph.
H is a conformal and chordal hypergraph.
H has the running intersection property.
H has a join tree.
H has the local-to-global consistency property for relations.

\ | semantic Notion

f

— Structural Notions

a bk wnheE

23



Positive Semirings

Definition: A positive semiring is a structure K = (K, 4, X, 0, 1) such that

+ and x are binary operations that are commutative and associative and
have 0 and 1 as their identity elements;

0=+#1,;

X distributes over +,1.e., ax (b+c)=(axb) + (a xc), forall a, b, c;
0 annihilates K, i.e., 0 x a =0, for all a;

a+b=0impliesa=0andb =0, forall a, b (i.e., K is plus-positive);
axb=0impliesa=0o0rb=0,forall a, b (i.e., K has no zero divisors).

Note:

Plus-positivity ensures that the sum of non-zero elements is non-zero.
No zero divisors ensures that if a product is O, then at least one factor is O.
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Positive Semirings Are Everywhere

Boolean semiring: B =({0,1}, A, Vv, 0, 1)

Bag semiring: N = (N, +, x, 0, 1), where N ={0,1,2, ...}
(SQL semantics of database queries via multisets)
Non-negative reals: R* = ([0, ), +, X, 0, 1)

Tropical semiring T = ([0, o], min, 4, oo, 0)

(shortest paths in graphs)

Viterbi semiring V = ([0,1], max, X, 0, 1)

(confidence scores — isomorphic to T via h(x) = e™)
Fuzzy semiring: F = ([0,1], max, min, O, 1)

(fuzzy logic semantics)

Polynomial semiring: N[X] = (N[X], +, X, 0, 1) with X a set of variables,
N[X] all polynomials with variables from X and coefficients from N

(database provenance — where the answers come from and how)

25



K-Relations

« Attribute A with dom(A) as its set of values
« X={A, ..., A} setof attributes
¢ Tup(X) =dom(A,) X ... x dom(A,)

Definition: K = (K, +, X, 0, 1) positive semiring, X be a set of attributes.
A K-relation over X is a function R: Tup(X) — K having finite support R’, i.e.,
R’ ={t €eTup(X): R(t) # 0 } is finite.



K-Relations

« Attribute A with dom(A) as its set of values
« X={A, ..., A} setof attributes
¢ Tup(X) =dom(A,) X ... x dom(A,)

Definition: K = (K, +, X, 0, 1) positive semiring, X be a set of attributes.
A K-relation over X is a function R: Tup(X) — K having finite support R’, i.e.,
R’ ={t €eTup(X): R(t) # 0 } is finite.

Examples:
« Relations are B-relations, where B = ({0 ,1}, A, v, 0, 1).
- Bags are N-relations, where N = (N, +, %, 0, 1)

(each tuple has a non-negative integer as multiplicity).

* Probability distributions of finite support are R*-relations P such that
> teTupx) P() = 1, where R* = ([0, o), +, %, 0, 1).
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Equivalence of K-relations

Definition: Let R(X) and S(Y) be two K-relations.
R = S if there are non-zero elements a,b in K such that aR = bS,
where aR : Tup(X) - K with (aR)(t) = a X R(t), and similarly for bS.

Fact: = is an equivalence relation on the collection of all K-relations.

28



Equivalence of K-relations

Definition: Let R(X) and S(Y) be two K-relations.
R = S if there are non-zero elements a,b in K such that aR = bS,
where aR : Tup(X) - K with (aR)(t) = a X R(t), and similarly for bS.

Fact: = is an equivalence relation on the collection of all K-relations.

Note:

« IfRand S are B-relations, thenR=Sifandonly if R =S.

« There are N-relations (bags) R(X) and S(Y) suchthat R =S butR # S.

 |f R and S are probabillity distributions of finite support, then
R=Sifandonlyif R =S.

« For every R*-relation R, there is a probability distribution P of finite
support such that R =P (normalize R to get P).



Local vs. Global Consistency for K-Relations

Definition: Let R,(X,), ..., R,(X,) be K-relations

R,(X;), --., R,(X,) are globally consistent if there is a K-relation T
over X; U---U X, suchthat T[X,] =R, ..., TIX,] = R,.

Basic Facts:

If R,(X,), ..., R,(X,) are globally consistent K-relations, then they are
pairwise consistent, i.e., R;and R; are consistent for all i and J.

The converse is not always true, i.e., there are relations

R,(X,), --., R,(X,) that are pairwise consistent but are not globally
consistent.
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Local-to-Global Consistency for K-relations

Definition: K positive semiring, Schema H = (X, ..., X,) of sets of attributes.
H has the local-to-global consistency property for K-relations if every

pairwise consistent collection R,(X,), ..., R,(X,) of K-relations is globally
consistent.

Main Theorem: Let K be a positive semiring.
The following are equivalent for a schema H = (X, ..., X))
1. His an acyclic hypergraph.

H is a conformal and chordal hypergraph.

H has the running intersection property.

H has a join tree.

H has the local-to-global consistency property for K -relations.
\ | Semantic Notion

f

— Structural Notions

a s~ wbd

31



Local-to-Global Consistency for K-relations

Main Theorem: Let K be a positive semiring.
The following are equivalent for a schema H = (X, ..., X,)

1. His an acyclic hypergraph.
2. H has the local-to-global consistency property for K-relations.
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Local-to-Global Consistency for K-relations

Main Theorem: Let K be a positive semiring.

The following are equivalent for a schema H = (X4, ..., X))

1. His an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.

Proof Hint: Different proof architecture than the BFMY Theorem.

Step 1: If H has the running intersection property, then H has
the local-to-global consistency property for K-relations.

Step 2: If H is not conformal or H is not chordal, then H does not have
the local-to-global consistency property for K-relations.
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Local-to-Global Consistency for K-relations

Step 1: If H has the running intersection property, then H has
the local-to-global consistency property for K-relations.
Proof Outline: Let Xy, ..., X,, be an ordering of the hyperedges of H such
that for every i < n, there is a j <i such that X; n (X, U UX;_1) € X;.
« Assume that R,(X,), ..., R,(X,) are pairwise consistent K-relations.
By induction on i < n, show that R,(X,), ..., R(X;) are globally consistent.

« Assume that R,(X;), ..., Ri.;(X;,) are globally consistent and let
W(X, U ... UX,.,) be a K-relation witnessing their global consistency.

« Define the notion of the join R > S of two K-relations and show that
W 1 R; witnesses the consistency of W and R;.

Note: The definition of R > S is rather delicate (and is not the obvious one).



Local-to-Global Consistency for K-relations

Step 2: If H is not conformal or H is not chordal, then H does not have
the local-to-global consistency property for K-relations.

35



Local-to-Global Consistency for K-relations

Step 2: If His not conformal or H is not chordal, then H does not have

the local-to-global consistency property for K-relations.

Proof Outline: Show the following intermediate results:

* If His not conformal or H is not chordal, then H contains a “simple”
induced hypergraph H* with hyperedges of one of the forms:
— {V\A: AeV}, for some set V with |V| = 3.
— {{ALAL L {ALAL {ALA T withn = 4.

« If H has the local-to-global consistency property for K-relations, then so
do the above “simple” induced hypergraphs.

« The “simple” induced hypergraphs H* do not have the local-to-global
consistency property for K-relations.
Explicit construction of K-relations that are pairwise consistent but not
globally consistent; inspired by Tseitin’s hard-to-prove tautologies.



Local-to-Global Consistency

Main Theorem: Let K be a positive semiring.

The following are equivalent for a schema H = (X4, ..., X,)

1. His an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.

Corollary: The following are equivalent for a schema H = (X, ..., X,)

1. His an acyclic hypergraph.

2. H has the local-to-global consistency property for relations.

3. H has the local-to-global consistency property for probability
distributions of finite support.



Local-to-Global Consistency

Main Theorem: Let K be a positive semiring.

The following are equivalent for a schema H = (X4, ..., X,)

1. His an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.

Corollary: The following are equivalent for a schema H = (X, ..., X,)

1. His an acyclic hypergraph.

2. H has the local-to-global consistency property for relations.

3. H has the local-to-global consistency property for probability
distributions of finite support.

Note:
 The equivalence between 1. and 2. is the BFMY result.
 How is the equivalence between 1. and 3. related to Vorob’ev’s work?



Vorob’ev’s Theorem and Related Work

Vorob’ev's Theorem - 1962:
The following are equivalent for a schema H = (X4, ..., X,)
* The hypergraph H = (X4, ..., X)) is regular.

* H has the local-to-global consistency property for probability
distributions of finite support.

Note:
* Inthe paper, we give a direct proof that H is regular iff H is acyclic.

« Thus, Vorob’'ev's Theorem and the BFMY Theorem are instances of a
single unifying result.
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Consistency over Positive Monoids

Observations: Let K = (K, +, X, 0, 1) be a positive semiring.
* The definition of the projection R[Z] uses only addition +
« Multiplication x was used to define
— the equivalence relation R = S (there are a, b such that aR=bS)

and
— the join operation R > S.
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Consistency over Positive Monoids

Observations: Let K = (K, +, X, 0, 1) be a positive semiring.

The definition of the projection R[Z] uses only addition +
Multiplication X is used to define
— the equivalence relation R = S (there are a, b such that aR=bS)
and
— the join operation R > S.

Definitions:

A positive monoid is a commutative monoid K = (K, +, 0 ) such that
at+tb=0impliesa=0andb =0, forall a, b eK.

Two K-relations R(X) and S(Y) are strictly consistent if there is a
K-relation T(X U Y) such that T[X] = R and T[Y] = S.

Define analogously the notions of strict global consistency property and
strict local-to-global consistency property for a hypergraph H.
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Consistency over Positive Monoids

Results (work in progress):

« LetK = (K, +, 0) be a positive monoid and let H be a hypergraph.
If H has the strict local-to-global consistency property for K-relations,
then H is acyclic.

« There are positive monoids K and acyclic hypergraphs H such that H
does not have the strict local-to-global consistency property
for K-relations.

* We characterize the positive monoids K for which every acyclic
hypergraph H has the strict local-to-global consistency property for K-
relations.

A new expanded framework for local vs. global consistency

42



Thank you for your attention!
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Backup Slides
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The Join of two K-relations

If R(X) and S(Y) are K-relations, then the join of R and S is the

K-relation R > S over X U Y such that for every (X U Y)-tuple t,
we have

(R > S)(t) = REX]) X SUAY]) X [yzygxnv SIX N Y]U)

45
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