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Local Consistency vs. Global Consistency

Fact: 

• In several different settings, the objects of study are 

    “locally consistent” but they may or may not be 

    “globally consistent”. Such settings include:

– Quantum Mechanics, Probability Theory, 

– Constraint Satisfaction, Database Theory, …
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Local Consistency vs. Global Consistency

Fact: 

• In several different settings, the objects of study are 

    “locally consistent” but they may or may not be 

    “globally consistent”. Such settings include:

– Quantum Mechanics, Probability Theory, 

– Constraint Satisfaction, Database Theory, …

Research Program: 

Study the  structural aspects of global consistency

• Can we unveil the “intelligible structure” of  global consistency?

• When is local consistency equivalent to global consistency?
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Local Consistency vs. Global Consistency

Earlier Work:

• Vorob’ev – 1962

     Characterized when a family of probability distributions defined on 

     overlapping sets of variables has a joint distribution.

• Beeri, Fagin, Maier, Yannakakis – 1983

     Characterized when a family of database relations with overlapping

     sets of attributes has a universal relation.
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Local Consistency vs. Global Consistency

Earlier Work:

• Vorob’ev – 1962

     Characterized when a family of probability distributions defined on 

     overlapping sets of variables has a joint distribution.

• Beeri, Fagin, Maier, Yannakakis – 1983

     Characterized when a family of database relations with overlapping

     sets of attributes has a universal relation.

Goal of this work:

• A common generalization of the results of Vorob’ev and of Beeri et al.

• A unifying framework for studying local vs. global consistency that uses 

K-relations, where K is a positive semiring.
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Local vs. Global Consistency in Databases

Basic Concepts:

• Attribute: a symbol A with an associated set dom(A) of values.

• R(X):  relation R with X as its set of attributes (names of columns)

• R[Z]  with Z ⊆ X: the projection of R on Z 

Example:
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Local vs. Global Consistency in Databases

Definition:

• Two relations R(X) and S(Y) are consistent if there is a relation

     T over X ∪ Y such that T[X] = R and T[Y] = S.

• R1(X1), …, Rn(Xn) are globally consistent if there is a relation T over 

     X1 ∪ ⋯ ∪ Xn such that T [X1] = R1, …, T[Xn] = Rn.
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Local vs. Global Consistency in Databases

Definition:

• Two relations R(X) and S(Y) are consistent if there is a relation

     T over X ∪ Y such that T[X] = R and T[Y] = S.

• R1(X1), …, Rn(Xn) are globally consistent if there is a relation T over 

     X1 ∪ ⋯ ∪ Xn such that T [X1] = R1, …, T[Xn] = Rn.

Basic Facts:

• If R1(X1), …, Rn(Xn) are globally consistent, then they are 

     pairwise consistent, i.e., Ri and Rj are consistent for all i and j.

• The converse is not always true, i.e., there are relations 

     R1(X1), …, Rn(Xn) that are pairwise consistent but are not globally 

     consistent.
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Hardy’s Paradox 

A1 B1

0 0

0 1

1 0

1 1
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Local-to-Global Consistency for Relations

Definition: Schema H = (X1, …, Xn) of sets of attributes.

H has the local-to-global consistency property for relations if every

pairwise consistent collection R1(X1), …, Rn(Xn) of relations is globally 

consistent.
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Local-to-Global Consistency for Relations

Definition: Schema H = (X1, …, Xn) of sets of attributes.

H has the local-to-global consistency property for relations if every

pairwise consistent collection R1(X1), …, Rn(Xn) of relations is globally 

consistent.

Example 1:  The schema 

                     H = ({A1,A2}, {A2,A3}, {A3,A4}) 

has the local-to-global consistency property for relations.
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Local-to-Global Consistency for Relations

Definition: Schema H = (X1, …, Xn) of sets of attributes.

H has the local-to-global consistency property for relations if every

pairwise consistent collection R1(X1), …, Rn(Xn) of relations is globally 

consistent.

Example 1:  The schema 

                     H = ({A1,A2}, {A2,A3}, {A3,A4}) 

has the local-to-global consistency property for relations.

Example 2: The schema

                     H = ({A1,A2}, {A2,A3}, {A3,A4}, {A4,A1})

does not have the local-to-global consistency property for relations.
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Local-to-Global Consistency for Relations

Definition: Schema H = (X1, …, Xn) of sets of attributes.

H has the local-to-global consistency property for relations if every 

pairwise consistent collection R1(X1), …, Rn(Xn) of relations is globally 

consistent.

Theorem (Beeri, Fagin, Maier, Yannakakis – 1983):

 The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H is a conformal and chordal hypergraph.

3. H has the running intersection property.

4. H has a join tree.

5. H has the local-to-global consistency property for relations. 

16



Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

• The primal graph of H is the undirected graph whose edges are 

pairs of nodes that appear together in at least one hyperedge of H. 

• H is conformal if every clique of the primal graph of H is contained in 

some hyperedge of H. 

• H is chordal if its primal graph is chordal (i.e., every cycle of length 

at least four of has a chord). 
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Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

• The primal graph of H is the undirected graph whose edges are 

pairs of nodes that appear together in at least one hyperedge of H. 

• H is conformal if every clique of the primal graph of H is contained in 

some hyperedge of H. 

• H is chordal if its primal graph is chordal (i.e., every cycle of length 

at least four of has a chord). 

Example 1:  H = ({A1,A2}, {A2,A3}, {A3,A4}) is conformal and chordal.
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Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

• The primal graph of H is the undirected graph whose edges are 

pairs of nodes that appear together in at least one hyperedge of H. 

• H is conformal if every clique of the primal graph of H is contained in 

some hyperedge of H. 

• H is chordal if its primal graph is chordal (i.e., every cycle of length 

at least four of has a chord). 

Example 1:  H = ({A1,A2}, {A2,A3}, {A3,A4}) is conformal and chordal.

Example 2:  H = ({A1,A2}, {A2,A3}, {A3,A4}, {A4,A1}) is 

                    conformal but not chordal.
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Conformal and Chordal Hypergraphs

Definition: Let H be a hypergraph

• The primal graph of H is the undirected graph whose edges are 

pairs of nodes that appear together in at least one hyperedge of H. 

• H is conformal if every clique of the primal graph of H is contained in 

some hyperedge of H. 

• H is chordal if its primal graph is chordal (i.e., every cycle of length 

at least four of has a chord). 

Example 1:  H = ({A1,A2}, {A2,A3}, {A3,A4}) is conformal and chordal.

Example 2:  H = ({A1,A2}, {A2,A3}, {A3,A4}, {A4,A1}) is 

                    conformal but not chordal.

Example 3: H = ({A1,A2}, {A2,A3}, {A3,A1}) is chordal but not conformal.
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The Running Intersection Property

Definition:  A hypergraph H has the running intersection property if

there is an ordering X1, …, Xn of its hyperedges such that 

for every i ≤ n, there is a j < i such that

                      Xi ∩ X
1

∪ ⋯ ∪ Xi−1 ⊆ Xj.  
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The Running Intersection Property

Definition:  A hypergraph H has the running intersection property if

there is an ordering X1, …, Xn of its hyperedges such that 

for every i ≤ n, there is a j < i such that

                      Xi ∩ X
1

∪ ⋯ ∪ Xi−1 ⊆ Xj.  

Example 1:  H = ({A1,A2}, {A2,A3}, {A3,A4}) 

has the running intersection property.

Example 2:  H = ({A1,A2}, {A2,A3}, {A3,A4}, {A4,A1}) 

does not have the running intersection property.
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Local-to-Global Consistency for Relations

Definition: Schema H = (X1, …, Xn) of sets of attributes.

H has the local-to-global consistency property for relations if every 

pairwise consistent collection R1(X1), …, Rn(Xn) of relations is globally 

consistent.

Theorem (Beeri, Fagin, Maier, Yannakakis – 1983):

 The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H is a conformal and chordal hypergraph.

3. H has the running intersection property.

4. H has a join tree.

5. H has the local-to-global consistency property for relations. 
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Positive Semirings

Definition:  A positive semiring is a structure K = (K, +, ×, 0, 1) such that

• + and × are binary operations that are commutative and associative and 

have  0 and 1 as their identity elements;

• 0 ≠ 1;

• × distributes over +, i.e.,  a × (b + c) = (a × b) + (a × c), for all a, b, c;

• 0 annihilates K, i.e., 0 × a = 0, for all a;

• a + b = 0 implies a = 0 and b = 0, for all a, b (i.e., K is plus-positive);

• a × b = 0 implies a = 0 or b = 0, for all a, b (i.e., K has no zero divisors).

Note: 

• Plus-positivity ensures that the sum of non-zero elements is non-zero.

• No zero divisors ensures that if a product is 0, then at least one factor is 0.
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Positive Semirings Are Everywhere

• Boolean semiring:  B = ({0 ,1},  ∧, ∨,  0, 1)

• Bag semiring:  N = (N, +, ×, 0, 1), where N = {0,1,2, …}  

     (SQL semantics of database queries via multisets)

• Non-negative reals: R+ = ([0, ∞), +, ×, 0, 1) 

• Tropical semiring T = ([0, ∞], min, +, ∞, 0)

     (shortest paths in graphs)

• Viterbi semiring  V = ([0,1], max, ×, 0, 1)

     (confidence scores – isomorphic to T via h(x) = e-x)

• Fuzzy semiring:  F = ([0,1], max, min, 0, 1)

     (fuzzy logic semantics)

• Polynomial semiring: N[X] = (N[X], +, ×, 0, 1) with X a set of variables, 

N[X] all polynomials with variables from X and coefficients from N

     (database provenance – where the answers come from and how) 
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K-Relations

• Attribute A with dom(A) as its set of values

• X = {A1, …, Ak} set of attributes

• Tup(X) = dom(A1) × … × dom(Ak)

Definition: K = (K, +, ×, 0, 1) positive semiring, X be a set of attributes.

A K-relation over X is a function R: Tup(X) → K having finite support R’, i.e., 

                              R’ = { t ∈Tup(X): R(t) ≠ 0 } is finite.
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K-Relations

• Attribute A with dom(A) as its set of values

• X = {A1, …, Ak} set of attributes

• Tup(X) = dom(A1) × … × dom(Ak)

Definition: K = (K, +, ×, 0, 1) positive semiring, X be a set of attributes.

A K-relation over X is a function R: Tup(X) → K having finite support R’, i.e., 

                              R’ = { t ∈Tup(X): R(t) ≠ 0 } is finite.

Examples:

• Relations are B-relations, where B = ({0 ,1},  ∧, ∨,  0, 1).

• Bags are N-relations, where N = (N, +, ×, 0, 1) 

    (each tuple has a non-negative integer as multiplicity).

• Probability distributions of finite support are R+-relations P such that           

∑ t ∈ Tup(X) P(t) = 1, where R+ = ([0, ∞), +, ×, 0, 1).
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Equivalence of K-relations

Definition: Let R(X) and S(Y) be two K-relations.

R ≡ S if there are non-zero elements a,b in K such that aR = bS,

where aR : Tup(X) → K with (aR)(t) = a × R(t), and similarly for bS.

Fact: ≡ is an equivalence relation on the collection of all K-relations.
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Equivalence of K-relations

Definition: Let R(X) and S(Y) be two K-relations.

R ≡ S if there are non-zero elements a,b in K such that aR = bS,

where aR : Tup(X) → K with (aR)(t) = a × R(t), and similarly for bS.

Fact: ≡ is an equivalence relation on the collection of all K-relations.

Note:

• If R and S are B-relations, then R ≡ S if and only if R = S.

• There are N-relations (bags) R(X) and S(Y) such that R ≡ S but R ≠ S.

• If R and S are probability distributions of finite support, then 

     R ≡ S if and only if R = S.

• For every R+-relation R, there is a probability distribution P of finite 

     support such that R ≡ P  (normalize R to get P).
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Local vs. Global Consistency for K-Relations

Definition: Let R1(X1), …, Rn(Xn) be K-relations

• R1(X1), …, Rn(Xn) are globally consistent if there is a K-relation T 

     over X1 ∪ ⋯ ∪ Xn such that T[X1] ≡ R1, …, T[Xn] ≡ Rn.

Basic Facts:

• If R1(X1), …, Rn(Xn) are globally consistent K-relations, then they are 

     pairwise consistent, i.e., Ri and Rj are consistent for all i and j.

• The converse is not always true, i.e., there are relations 

      R1(X1), …, Rn(Xn) that are pairwise consistent but are not globally 

      consistent.
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Local-to-Global Consistency for K-relations

Definition: K positive semiring, Schema H = (X1, …, Xn) of sets of attributes.

H has the local-to-global consistency property for K-relations if every 

pairwise consistent collection R1(X1), …, Rn(Xn) of K-relations is globally 

consistent.

Main Theorem: Let K be a positive semiring.

The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H is a conformal and chordal hypergraph.

3. H has the running intersection property.

4. H has a join tree.

5. H has the local-to-global consistency property for K-relations. 
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Local-to-Global Consistency for K-relations

Main Theorem:  Let K be a positive semiring.

The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.
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Local-to-Global Consistency for K-relations

Main Theorem:  Let K be a positive semiring.

The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.

Proof Hint: Different proof architecture than the BFMY Theorem.

Step 1: If H has the running intersection property, then H has 

  the local-to-global consistency property for K-relations.

Step 2: If H is not conformal or H is not chordal, then H does not have 

the local-to-global consistency property for K-relations.

33



Local-to-Global Consistency for K-relations

Step 1: If H has the running intersection property, then H has 

the local-to-global consistency property for K-relations.

Proof Outline:  Let X1, …, Xn be an ordering of the hyperedges of H such 

that for every i ≤ n, there is a j < i such that Xi ∩ X
1

∪ ⋯ ∪ Xi−1 ⊆ Xj.  

• Assume that R1(X1), …, Rn(Xn) are pairwise consistent K-relations.

     By induction on i ≤ n, show that R1(X1), …, Ri(Xi) are globally consistent.

• Assume that R1(X1), …, Ri-1(Xi-1) are globally consistent and let

     W(X1 ∪ … ∪ Xi-1) be a K-relation witnessing their global consistency.

• Define the notion of the join R ⋈ S of two K-relations and show that

     W ⋈ Ri witnesses the consistency of W and Ri.

Note: The definition of R ⋈ S is rather delicate (and is not the obvious one).
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Local-to-Global Consistency for K-relations

Step 2:  If H is not conformal or H is not chordal, then H does not have

the local-to-global consistency property for K-relations.
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Local-to-Global Consistency for K-relations

Step 2:  If H is not conformal or H is not chordal, then H does not have

the local-to-global consistency property for K-relations.

Proof Outline: Show the following intermediate results:

• If H is not conformal or H is not chordal, then H contains a “simple” 

     induced hypergraph H* with hyperedges of one of the forms: 

– { V ∖ A :  A ∈ V }, for some set V with |V| ≥ 3.

– { { A1, A2 }, …, { An-1, An } , { An, A1 } } with n ≥ 4.

• If H has the local-to-global consistency property for K-relations, then so 

     do the above “simple” induced hypergraphs.

• The “simple” induced hypergraphs H* do not have the local-to-global 

     consistency property for K-relations.

     Explicit construction of  K-relations that are pairwise consistent but not   

     globally consistent; inspired by Tseitin’s hard-to-prove tautologies.
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Local-to-Global Consistency 

Main Theorem:  Let K be a positive semiring.

The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.

Corollary: The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H has the local-to-global consistency property for relations.

3. H has the local-to-global consistency property for probability  

      distributions of finite support.
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Local-to-Global Consistency 

Main Theorem:  Let K be a positive semiring.

The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H has the local-to-global consistency property for K-relations.

Corollary: The following are equivalent for a schema H = (X1, …, Xn) 

1. H is an acyclic hypergraph.

2. H has the local-to-global consistency property for relations.

3. H has the local-to-global consistency property for probability  

      distributions of finite support.

Note:

• The equivalence between 1. and 2. is the BFMY result.

• How is the equivalence between 1. and 3. related to Vorob’ev’s work?
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Vorob’ev’s Theorem and Related Work

Vorob’ev’s  Theorem - 1962:  

The following are equivalent for a schema H = (X1, …, Xn) 

• The hypergraph H = (X1, …, Xn) is regular.

• H has the local-to-global consistency property for probability 

distributions of finite support. 

Note: 

• In the paper, we give a direct proof that H is regular iff H is acyclic.

• Thus, Vorob’ev’s Theorem and the BFMY Theorem are instances of a 

single unifying result.
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Consistency over Positive Monoids

Observations:  Let K = (K, +, ×, 0, 1) be a positive semiring.

• The definition of the projection R[Z] uses only addition + 

• Multiplication × was used to define

–  the equivalence relation R ≡ S  (there are a, b such that aR=bS) 

     and

–  the join operation R ⋈ S.
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Consistency over Positive Monoids

Observations:  Let K = (K, +, ×, 0, 1) be a positive semiring.

• The definition of the projection R[Z] uses only addition + 

• Multiplication × is used to define

–  the equivalence relation R ≡ S  (there are a, b such that aR=bS) 

     and

–  the join operation R ⋈ S.

Definitions: 

• A positive monoid is a commutative monoid K = (K, +, 0 ) such that

     a + b = 0 implies a = 0 and b = 0, for all a, b ∈ K.

• Two K-relations R(X) and S(Y) are strictly consistent if there is a 

     K-relation T(X ∪ Y) such that T[X] = R and T[Y] = S.

• Define analogously the notions of strict global consistency property and

     strict local-to-global consistency property for a hypergraph H.
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Consistency over Positive Monoids

Results (work in progress):  

• Let K = (K, +, 0) be a positive monoid and let H be a hypergraph.

     If H has the strict local-to-global consistency property for K-relations, 

     then H is acyclic.

• There are positive monoids K and acyclic hypergraphs H such that H 

     does not have the strict local-to-global consistency property 

     for K-relations.

• We characterize the positive monoids K for which every acyclic 

hypergraph H has the strict local-to-global consistency property for K-

relations.

            A new expanded framework for local vs. global consistency
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Thank you for your attention!
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The Join of two K-relations

If R(X) and S(Y) are K-relations, then the join of R and S is the 

K-relation R ⋈ S over X ∪ Y such that for every (X ∪ Y)-tuple t, 

we have

     

    (R ⋈ S)(t)  = R(t[X]) × S(t[Y]) × ∏u ≠ t[ X ∩ Y] S[X ∩ Y](u)
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