Joint work with:
[ICDT 24]

Idan
Eldar

Benny Kimelfeld

Direct Access for Conjunctive Queries with Aggregation
 Nofar Carmeli

SLIRMM CNTS $\sqrt{7}$ TECHNION |

The Henry and Marilyn Taub
Faculty of Computer Science

Example

Content

Contributor	Resource
Alice	CS101
Bob	CS101
Alice	Sophrology

Activity

Resource	Date	Views
CS101	$01 / 01 / 23$	4
CS101	$02 / 01 / 23$	125
Sophrology	$01 / 01 / 23$	26

Q(sum(views), contributor) \leftarrow content(contributor, resource), activity(resource, date, views)
3. Sum

1. Join			
Contributor	Resource	Date	Views
Alice	CS101	$01 / 01 / 23$	4
Alice	CS101	$02 / 01 / 23$	125
Bob	CS101	$01 / 01 / 23$	4
Bob	CS101	$02 / 01 / 23$	125
Alice	Sophrology	$01 / 01 / 23$	26

				3. Sum	
				Contributor Views	
2. Group by Contributor				Alice	155
Contributor	Resource	Date	Views	Bob	129
Alice	CS101	01/01/23	4	4. Sort by Views	
Alice	CS101	02/01/23	125		
Alice	Sophrology	01/01/23	26	Views Contributor	
Bob	CS101	01/01/23	4	129	Bob
Bob	CS101	02/01/23	125	155	Alice

Example

Goal: get a sense of how many views come from a contributor
5. Get statistics
4. Sort by Views

B) Boxplot

A) Median

129 Bob
C) Histogram

Definition: Ranked Direct Access

- Simulate a sorted array containing the answers
- Given i, returns the $i^{\text {th }}$ answer or "out of bound".
- Ranked: user-specified order

Overview of Tasks

Overview of Tasks

Overview of Tasks

Research question

Our focus: conjunctive queries with aggregation, lexicographic orders

Plan

- Motivation
- Dichotomy without aggregation
- Aggregation not affecting the order
- Using annotations, the dichotomy still holds
- Aggregation affecting the order
- Limited tractability using general annotations
- Local annotations
- In some cases (full query or idempotent semiring), equivalent to hardness of CQs with FDs
- Conclusion

Dichotomy for CQs (without aggregation)

[C, Tziavelis , Gatterbauer, Kimelfeld, Riedewald; PODS 21]

Given: conjunctive query Q, ordering L of free (Q),
lexicographic access in <loglinear,log>
> $\mathbb{1}^{*}$
> acyclic free-connex, no disruptive trio

* Lower bound requires:
sHyperclique hypothesis: $\forall k \geq 3$ the existence of a k-hyperclique in a $(k-1)$-uniform hypergraph cannot be decided in quasilinear time in the number of edges
sBMM hypothesis: Boolean matrices cannot be multiplied in quasilinear time in the number of the 1 entries

Definition: Free-Connex Acyclic

An acyclic CQ has a graph with:
A free-connex CQ also requires:

1. a node for every atom 2. tree 3. for every variable:
the nodes containing it form a subtree

2. remains acyclic when introducing an atom with the free variables

Dichotomy for CQs (without aggregation)

Self-join-free assumption not required
[Bringmann, C, Mengel; 23]
[C, Tziavelis , Gatterbauer, Kimelfeld, Riedewald; PODS 21]
[Bringmann, C, Mengel; 23]
Given: conjunctive query Q, ordering L of free(Q),
lexicographic access in <loglinear,log>
acyclic free-connex, no disruptive trio
Examples
$Q_{1}\left(v_{1}, v_{2}, u\right) \leftarrow R\left(v_{1}, u\right), S\left(u, v_{2}\right)$
$Q_{2}\left(u, v_{1}, v_{2}\right) \leftarrow R\left(v_{1}, u\right), S\left(u, v_{2}\right)$

* Lower bound requires:
sHyperclique hypothesis: $\forall k \geq 3$ the existence of a k-hyperclique in a ($k-1$)-uniform hypergraph cannot be decided in quasilinear time in the number of edges
sBMM hypothesis: Boolean matrices cannot be multiplied in quasilinear time in the number of the 1 entries

Plan

- Motivation
- Dichotomy without aggregation
- Aggregation not affecting the order
- Using annotations, the dichotomy still holds
- Aggregation affecting the order
- Limited tractability using general annotations
- Local annotations
- In some cases (full query or idempotent semiring), equivalent to hardness of CQs with FDs
- Conclusion

Aggregation not affecting the order

- Approach: translate aggregates to semiring annotations.

- Example:

answers

x	y	$\operatorname{sum}(w)$
x_{1}	y_{1}	$2+5$
x_{1}	y_{2}	$2+5$
x_{2}	y_{1}	8
x_{2}	y_{2}	8

answers

$x \quad y$	
$x_{1} y_{1}$	$(2+5) \cdot 1$
$x_{1} \quad y_{2}$	$(2+5) \cdot 1$
$x_{2} \quad y_{1}$	8-1
$x_{2} \quad y_{2}$	$8 \cdot 1$

$8 \cdot 1$

3) Use access algorithm for CQs

The $2^{\text {nd }}$ answer is: $\begin{array}{lll}x_{1} & y_{2}\end{array}$

4) multiply annotations

The $2^{\text {nd }}$ answer is:
$\begin{array}{lll}x_{1} & y_{2} & (2+5) \cdot 1\end{array}$
4) mutiply annotations

Dichotomy for CQs with annotations last

Given: $C Q \star Q(\vec{x}, \star)$
 lexicographic access in <loglinear,log> !
 acyclic free-connex, no disruptive trio

* Lower bound requires:
sHyperclique hypothesis: $\forall k \geq 3$ the existence of a k-hyperclique in a ($k-1$)-uniform hypergraph cannot be decided in quasilinear time in the number of edges
sBMM hypothesis: Boolean matrices cannot be multiplied in quasilinear time in the number of the 1 entries

Using Log-time Commutative Semirings

- Commutative semiring: $(\mathcal{K}, \oplus, \otimes, \overline{0}, \overline{1})$
- \mathcal{K} is a domain of elements
- $(\mathcal{K}, \oplus, \overline{0})$ is a commutative monoid ("addition")
- $(a \oplus b) \oplus c=a \oplus(b \oplus c) \quad$ (associative)
- $a \oplus b=\mathrm{b} \oplus a \quad$ (commutative)
- $a \oplus \overline{0}=a \quad$ ($\overline{0}$ neutral)
- $(\mathcal{K}, \otimes, \overline{1})$ is a commutative monoid ("multiplication")
- $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c) \quad$ (distributive)
- $a \otimes \overline{0}=\overline{0}$
- In databases [Green, Karvounarakis, Tannen 2007]:
- Each tuple is annotated with a semiring element
- When joining tuples, multiply the annotations
- When projecting, sum up the group's annotation

Aggregations and Semirings

- Using log-time commutative semirings:
- Sum: numerical semiring $(\mathbb{Q},+, \cdot, 0,1)$
- Count: counting semiring ($\mathbb{N},+, \cdot, 0,1$)
- Min: min-tropical semiring $(\mathbb{Q} \cup\{\infty\}, \min ,+, \infty, 0)$
- Max: max-tropical semiring $(\mathbb{Q} \cup\{-\infty\}$, max $,+,-\infty, 0)$

- Average:

- combine sum and count
- Count-Distinct:
- No semiring translation
- Harder than the others
- $Q(x$, distinct $(z)) \leftarrow R(x, y), S(y, z)$ hard (assuming small-universe hitting set conjecture)
- In case of log-size domain: use set semiring ($2^{\Omega}, \cup, \cap, \emptyset, \Omega$)

Plan

- Motivation
- Dichotomy without aggregation
- Aggregation not affecting the order
- Using annotations, the dichotomy still holds
- Aggregation affecting the order
- Limited tractability using general annotations
- Local annotations
- In some cases (full query or idempotent semiring), equivalent to hardness of CQs with FDs
- Conclusion

Incorporating Aggregation in the Order

- Examples:

- $Q_{1}(x, y, \star) \leftarrow R(x), S(y)$ easy (from dichotomy)
- $Q_{2}(\star, x, y) \leftarrow R(x), S(y)$ hard (assuming 3SUM)
- $Q_{3}(x, \star, y) \leftarrow R(x), S(y)$ easy (from sufficient condition)

Sufficient condition:

Consider a $C Q \star Q(\vec{x}, \star, \vec{z})$.
If every atom contains either all of \vec{z} or none of \vec{z}, and $Q^{\prime}(\vec{x}, \vec{z})$ is acyclic free-connex with no disruptive trio, then* lexicographic access in <loglinear,log> for $Q(\vec{x}, \star, \vec{Z})$.

* Assuming \otimes-monotonicity.

Incorporating Aggregation in the Order

- Examples:

- $Q_{1}(x, y, \star) \leftarrow R(x), S(y)$ easy (from dichotomy)
- $Q_{2}(\star, x, y) \leftarrow R(x), S(y)$ hard (assuming 3SUM)
- $Q_{3}(x, \star, y) \leftarrow R(x), S(y)$ easy (from sufficient condition)
- $Q_{4}(\operatorname{sum}(w), x, y) \leftarrow R(x, w), S(y)$ easy (locally annotated)

Use FDs for more tractable cases
[C, Tziavelis, Gatterbauer,
Kimelfeld, Riedewald; TODS 23]

- Translated to the hard $Q_{2}(*, x, y) \leftarrow R(x), S(y)$
- However, diverse annotation only in R
- Equivalent in hardness to the easy $Q_{4}{ }^{\prime}(z, x, y) \leftarrow R(x, z), S(y)$ with the FD $x \rightarrow z$

Incorporating Aggregation in the Order

- Examples:

- $Q_{1}(x, y, \star) \leftarrow R(x), S(y)$ easy (from dichotomy)
- $Q_{2}(\star, x, y) \leftarrow R(x), S(y)$ hard (assuming 3SUM)
- $Q_{3}(x, \star, y) \leftarrow R(x), S(y)$ easy (from sufficient condition)
- $Q_{4}(\operatorname{sum}(w), x, y) \leftarrow R(x, w), S(y)$ easy (locally annotated)

Use FDs for more tractable cases
[C, Tziavelis, Gatterbauer,
Kimelfeld, Riedewald; TODS 23]

- Translated to the hard $Q_{2}(*, x, y) \leftarrow R(x), S(y)$
- However, diverse annotation only in R
- Equivalent in hardness to the easy $Q_{4}{ }^{\prime}(z, x, y) \leftarrow R(x, z), S(y)$ with the FD $x \rightarrow z$

Full classification for local annotations in self-join-free case of:
full CQ* or \oplus-idempotent semiring
Min
Max

Incorporating Aggregation in the Order

- Examples:

- $Q_{1}(x, y, \star) \leftarrow R(x), S(y)$ easy (from dichotomy)
- $Q_{2}(\star, x, y) \leftarrow R(x), S(y)$ hard (assuming 3SUM)
- $Q_{3}(x, \star, y) \leftarrow R(x), S(y)$ easy (from sufficient condition)
- $Q_{4}(\operatorname{sum}(w), x, y) \leftarrow R(x, w), S(y)$ easy (locally annotated)
- Translated to the hard $Q_{2}(*, x, y) \leftarrow R(x), S(y)$
- However, diverse annotation only in R
- Equivalent in hardness to the easy $Q_{4}{ }^{\prime}(z, x, y) \leftarrow R(x, z), S(y)$ with the FD $x \rightarrow z$
- $Q_{5}(\operatorname{count}(), x, y) \leftarrow R(x, w), S(y, z)$ easy (ad-hoc algorithm)

Conclusion

- Summary
- Motivation
- Dichotomy without aggregation
- Aggregation not affecting the order
- Using annotations, the dichotomy still holds
- Aggregation affecting the order
- Limited tractability using general annotations
- Local annotations
- In some cases (full query or idempotent semiring), equivalent to hardness of CQs with FDs
- Outlook
- Open cases
- Self-Joins
- Time requirements for hard cases
- Known for join queries [Bringmann, C, Mengel; PODS 22]
- More complicated settings
- Other orders
- Other queries
- Supporting updates

