
Rethinking Logical Interfaces to
Data

Michael Benedikt
includes joint work over the past years with Pierre Bourhis, Louis Jachiet,

and Efthymia Tsamoura and joint work with Ehud Hrushovski

Great Thoughts Fridays.... Thursday
warm up

To prepare for great thoughts tomorrow, I’ll present some ideas on more
flexible/general interfaces to data.

I finally adopted what I called “Great Thoughts Time”.
When I went to lunch Friday noon, I would
only discuss great thoughts after that...

Interface to data: single source

Source Data

class of
queries Q

User

Interface to data: distributed setting

D1 D2

Q(D1,D2)

User

Q1 Q2

Traditional views

Traditional views are an interface based on making available derived data.

Views are often definable by logical formulas or a given query language.
E.g. a conjunctive query view over source s:

{x1 … xm | ∃y1 … ym A1(x1 …y1…) ∧ … ∧ Am(…)}

where Ai are atoms over the relations in the local source s.

In the distributed setting, for each source s, a view-based interface is a function Fs
that takes as input a database instance for the schema of s and produces derived
data; a combination function stitches derived data from different sources to
partially/totally answer the user query.

We call the functions on the local sources distributed views (d-views).

Traditional views

Traditional views are an interface based on making available derived data.

Views are often definable by logical formulas or a given query language.
E.g. a conjunctive query view over source s:

{x1 … xm | ∃y1 … ym A1(x1 …y1…) ∧ … ∧ Am(…)}

where Ai are atoms over the relations in the local source s.

In the distributed setting, for each source s, a view-based interface is a function Fs
that takes as input a database instance for the schema of s and produces derived
data; a combination function stitches derived data from different sources to
partially/totally answer the user query.

We call the functions on the local sources distributed views (d-views).

Traditional views

Traditional views are an interface based on making available derived data.

Views are often definable by logical formulas or a given query language.
E.g. a conjunctive query view over source s:

{x1 … xm | ∃y1 … ym A1(x1 …y1…) ∧ … ∧ Am(…)}

where Ai are atoms over the relations in the local source s.

In the distributed setting, for each source s, a view-based interface is a function Fs
that takes as input a database instance for the schema of s and produces derived
data; a combination function stitches derived data from different sources to
partially/totally answer the user query.

We call the functions on the local sources distributed views (d-views).

Prior interfaces beyond views

Other ways to provide a restricted interface to centralized or integrated data:

• Access patterns: allow access to source data, but require certain values to be
specified [Chen Li and Edward Chang; Alan Nash et al.; Deutsch, Nash, Ludascher
2007]

• Specification of allowed queries via automata
 [Cautis, Deutsch, Onose, TOCS 2010]

• Data Exchange/Virtual Data Integration [Halevy; Lenzerini; Fagin, Kolaitis,
Miller, Popa 2005]

• Views with access patterns [Deutsch, Nash, Ludascher 2007; Romero, Preda,
Amarilli, Suchanek 2020]

Prior interfaces beyond views

Other ways to provide a restricted interface to centralized or integrated data:

• Access patterns: allow access to source data, but require certain values to be
specified [Chen Li and Edward Chang; Alan Nash et al.; Deutsch, Nash, Ludascher
2007]

• Specification of allowed queries via automata
 [Cautis, Deutsch, Onose, TOCS 2010]

• Data Exchange/Virtual Data Integration [Halevy; Lenzerini; Fagin, Kolaitis,
Miller, Popa 2005]

• Minimal information to support a target query [B., Bourhis, Jachiet,
Tsamoura KR 2020/TODS 2022]

• Generalizing views via indistinguishability [B. & Hrushovski 2023]

• Views with access patterns [Deutsch, Nash, Ludascher 2007; Romero, Preda,
Amarilli, Suchanek 2020]

Minimally informative query answering

We specify a set of queries Q1.... Qk (“utility queries”) that we want to support,
and ask for the minimally informative views (within a class) that support
these queries.

Example

SimonsParticipant(name,program,year) DagstuhlParticipant(name,progam,year)
Simons Dagstuhl

Dagstuhl and the Simons Institute want to support access to their independent
datastores

They want the interface to support answering some queries that span sources, like
asking if there are researchers attending programs at both venues the same year.

Q =∃program1 ∃program2 ∃name ∃year SimonsParticipant(name, program1,year) ∧
DagstuhlParticipant(name, program2,year)

Example

SimonsParticipant(name,program,year) DagstuhlParticipant(name,progam,year)
Simons Dagstuhl

Dagstuhl and the Simons Institute want to support access to their independent
datastores

They want the interface to support answering some queries that span sources, like
asking if there are researchers attending programs at both venues the same year.

Q =∃program1 ∃program2 ∃name ∃year SimonsParticipant(name, program1,year) ∧
DagstuhlParticipant(name, program2,year)
The sources should support this query, and give out the minimal information
among d-views supporting this join query Q.
How do we formalize the notion of support and minimal information?

Example

SimonsParticipant(name,program,year) DagstuhlParticipant(name,progam,year)
Simons Dagstuhl

Dagstuhl and the Simons Institute want to support access to their independent
datastores

They want the interface to support answering some queries that span sources, like
asking if there are researchers attending programs at both venues the same year.

Q =∃program1 ∃program2 ∃name ∃year SimonsParticipant(name, program1,year) ∧
DagstuhlParticipant(name, program2,year)
The sources should support this query, and give out the minimal information
among d-views supporting this join query Q.
How do we formalize the notion of support and minimal information?

Example

SimonsParticipant(name,program,year) DagstuhlParticipant(name,progam,year)
Simons Dagstuhl

Dagstuhl and the Simons Institute want to support access to their independent
datastores

They want the interface to support answering some queries that span sources, like
asking if there are researchers attending programs at both venues the same year.

Q =∃program1 ∃program2 ∃name ∃year SimonsParticipant(name, program1,year) ∧
DagstuhlParticipant(name, program2,year)
The sources should support this query, and give out the minimal information
among d-views supporting this join query Q.
How do we formalize the notion of support and minimal information?

Formalization: supporting a query

Given a query Q and views V1 ... Vt we say Q is determined by V1 ... Vt if:

for all input D, D’with V1(D)=V1(D’), ... Vt(D)=Vt(D’) we have Q(D)=Q(D’)

We say that d-view V1 ... Vt supports Q if Q is determined by V1 ... Vt.

Read as “V1 ... Vt contains all the information needed for Q”

What formalize the notion that the views support queries Q1 ... Qu
using Segoufin and Vianu’s notion of determinacy.

Formalization: supporting a query

Given a query Q and views V1 ... Vt we say Q is determined by V1 ... Vt if:

for all input D, D’with V1(D)=V1(D’), ... Vt(D)=Vt(D’) we have Q(D)=Q(D’)

We say that d-view V1 ... Vt supports Q if Q is determined by V1 ... Vt.

Read as “V1 ... Vt contains all the information needed for Q”

What formalize the notion that the views support queries Q1 ... Qu
using Segoufin and Vianu’s notion of determinacy.

Formalization: minimal information

We formalize the notion that the views are minimally informative using

Formalization: minimal information

We formalize the notion that the views are minimally informative using
Segoufin and Vianu’s notion of determinacy.

Formalization: minimal information

We say a d-view V is a minimally informative supportive d-view for query Q
within a class of queries C if:

• V supports Q
• V is based on queries in C and for every other d-view V’using queries from C that
supports Q, we have V’determines each view in V

We formalize the notion that the views are minimally informative using
Segoufin and Vianu’s notion of determinacy.

Example

SimonsParticipant(name, program, year) DagstuhlParticipant(name, progam, year)
Simons Dagstuhl

Dagstuhl and Simons want to support access to their independent datastores

They want the interface to support answering some queries that span
sources, like asking if there are researchers who attended programs at both
venues in the same year.

Q =∃program1 ∃program2 ∃name ∃year SimonsParticipant(name, program1, year) ∧
DagstuhlParticipant(name, program2, year)

Example

Simons should publish the view:
∃program SimonsParticipant(name, program, year)

While Dagstuhl should publish the view:
∃program DagstuhlParticipant(name, program, year)

The minimal information d-views that support this query are the obvious ones:

SimonsParticipant(name, program, year) DagstuhlParticipant(name, progam, year)
Simons Dagstuhl

Dagstuhl and Simons want to support access to their independent datastores

They want the interface to support answering some queries that span
sources, like asking if there are researchers who attended programs at both
venues in the same year.

Q =∃program1 ∃program2 ∃name ∃year SimonsParticipant(name, program1, year) ∧
DagstuhlParticipant(name, program2, year)

Example of our results

Theorem [B., Bourhis, Jachiet, Tsamoura] For any utility queries, minimally
informative d-views exist, and for CQ utility queries they are expressible as
traditional views in relational algebra. The same holds in the presence of integrity
constraints on each local source.

Example of our results

Theorem [B., Bourhis, Jachiet, Tsamoura] For any utility queries, minimally
informative d-views exist, and for CQ utility queries they are expressible as
traditional views in relational algebra. The same holds in the presence of integrity
constraints on each local source.

However, there are CQ utility queries, where the minimally informative d-views are
not CQs (and in particular, are not the obvious ones).

Example of our results

Theorem [B., Bourhis, Jachiet, Tsamoura] For any utility queries, minimally
informative d-views exist, and for CQ utility queries they are expressible as
traditional views in relational algebra. The same holds in the presence of integrity
constraints on each local source.

However, there are CQ utility queries, where the minimally informative d-views are
not CQs (and in particular, are not the obvious ones).

Theorem [B., Bourhis, Jachiet, Tsamoura] For any CQ utility queries,
minimally informative CQ d-views exist.
The same holds in the presence of integrity constraints on each local source.

Using logic-based information theory

These tools allow us to analyze trade-offs in view design.
Questions of the form “are there distributed views that support query Q but which
do not reveal any information about query p”

Using logic-based information theory

Q = ∃x ∃y R(x,y)∧S(x,y)∧T(x,y)

But suppose we want to keep the following query private:
p = ∃x R(x,x)

R S,T

Clearly, we can design views at each source to answer Q:
each source just exports its data.

These tools allow us to analyze trade-offs in view design.
Questions of the form “are there distributed views that support query Q but which
do not reveal any information about query p”

Using logic-based information theory

Intuitively, any views (no matter what query language) that allow Q to be
answered must disclose p on some instance.
Using the prior theorem, we can prove this.

Q = ∃x ∃y R(x,y)∧S(x,y)∧T(x,y)

But suppose we want to keep the following query private:
p = ∃x R(x,x)

R S,T

Clearly, we can design views at each source to answer Q:
each source just exports its data.

These tools allow us to analyze trade-offs in view design.
Questions of the form “are there distributed views that support query Q but which
do not reveal any information about query p”

Using logic-based information theory

R,S S,T

These tools allow us to answer questions of the form “are there distributed views
that support query Q but which do not reveal any information about query p”

There is a partial synchronization between Simons and Dagstuhl:
S is replicated between the two sources.

Using logic-based information theory

Q = ∃x ∃y R(x,y)∧S(x,y)∧T(x,y)

But suppose we want to keep the following query private:
p = ∃x R(x,x)

R,S S,T

Clearly, we can design views at each source to answer Q:
each source just exports its data.

These tools allow us to answer questions of the form “are there distributed views
that support query Q but which do not reveal any information about query p”

There is a partial synchronization between Simons and Dagstuhl:
S is replicated between the two sources.

Using logic-based information theory

It is possible to support Q without revealing p.
But we will need an interface mechanism beyond relational algebra views.

Q = ∃x ∃y R(x,y)∧S(x,y)∧T(x,y)

But suppose we want to keep the following query private:
p = ∃x R(x,x)

R,S S,T

Clearly, we can design views at each source to answer Q:
each source just exports its data.

These tools allow us to answer questions of the form “are there distributed views
that support query Q but which do not reveal any information about query p”

There is a partial synchronization between Simons and Dagstuhl:
S is replicated between the two sources.

Tentative moral on minimal information
querying

• Compare the expressiveness of different interface mechanisms.
• Develop the notion of determinacy from Segoufin and Vianu as a metric to

perform this comparison.

Tentative moral on minimal information
querying

• Compare the expressiveness of different interface mechanisms.
• Develop the notion of determinacy from Segoufin and Vianu as a metric to

perform this comparison.

Also used in query pricing [Koutris, Upadhyaya, Howe, Balazinska, Suciu JACM 2015]
and in other work on information disclosure [B., Bourhis, ten Cate, Puppis, Vanden
Boom TOCL 2021; B., Cuenca Grau, Kostylev JAIR 2018]

Interfaces beyond views

Other ways to provide restricted access to centralized or integrated data:

• Access patterns: allow access to source data, but require certain values to be
specified [Chen Li and Edward Chang; Alan Nash et al.’ Deutsch, Nash, Ludascher
2007]

• Specification of allowed queries via automata
 [Cautis, Deutsch, Onose, TOCS 2010]

• Data Exchange/Virtual Data Integration [Halevy; Lenzerini; Fagin, Kolaitis,
Miller, Popa 2005]

• Minimal information views that support a query [B., Bourhis, Jachiet,
Tsamoura KR 2020/TODS 2022]

• Generalizing views via indistinguishability [B. & Hrushovski 2023]

• Views with access patterns [Deutsch, Nash, Ludascher 2007; Romero, Preda,
Amarilli, Suchanek 2020]

Generalizing views via database
indistinguishability

An indistinguishability relation is an equivalence relation on databases.
This defines an interface.

Generalizing views via database
indistinguishability

An indistinguishability relation is an equivalence relation on databases.
This defines an interface.

Source Data

class of
queries Q

User

Generalizing views via database
indistinguishability

An indistinguishability relation is an equivalence relation on databases.
This defines an interface.

Source Data

class of
queries Q

User

certain
answers

Defining indistinguishability with logic

An indistinguishability relation is an equivalence relation on databases.
It can be thought of as an “abstract view”: we are exporting the equivalence
class of a database.

Defining indistinguishability with logic

Example:
Declare graph databases G and G’indistinguishable if they have the same triangles:

∀x1 x2 x3
[(G(x1,x2)∧G(x2,x3)∧G(x2,x3))⟷(G’(x1,x2)∧G’(x2,x3)∧G’(x2,x3))]

An indistinguishability relation is an equivalence relation on databases.
It can be thought of as an “abstract view”: we are exporting the equivalence
class of a database.

Defining indistinguishability with logic

Example:
Declare graph databases G and G’indistinguishable if they have the same triangles:

∀x1 x2 x3
[(G(x1,x2)∧G(x2,x3)∧G(x2,x3))⟷(G’(x1,x2)∧G’(x2,x3)∧G’(x2,x3))]

An indistinguishability relation is an equivalence relation on databases.
It can be thought of as an “abstract view”: we are exporting the equivalence
class of a database.

A first order definable indistinguishability relation is given by 𝜑 a first order
sentence in the language of two copies of the schema.
Thus 𝜑 defines a collection of pairs of databases. If 𝜑 defines an equivalence
relation, then 𝜑 provides an indistinguishability relation.

Note: a typical first order 𝜑 will not define an equivalence relation on databases. For
example, transitivity will fail.

Defining indistinguishability with logic

An indistinguishability relation is an equivalence relation on databases.

A first order definable indistinguishability relation is given by 𝜑 a first order
sentence in the language of two copies of the schema which happens to
define an equivalence relation.

Class of examples of FO indistinguishability:
Traditional relational algebra views V1 ... VK give a first order
indistinguishability relation:
∀x1 ... xj [∧i≤k Vi(x1 ... xj)⟷ V’i(x1 ... xj)]
where V’i is a copy of Vi on the primed signature.

Recall: building interfaces beyond traditional
views

Theorem [B., Bourhis, Jachiet, Tsamoura] For any utility queries, minimally
informative d-views exist as an indistinguishability relation.
For CQ utility queries they are expressible as traditional views in relational
algebra. The same holds in the presence of integrity constraints on each local
source.

Recall: building interfaces beyond views

It is possible to support Q without revealing p.
But we will need an interface mechanism beyond relational algebra views
- namely, an indistinguishability relation.

Q = ∃x y R(x,y)∧S(x,y)∧T(x,y)

But suppose we want to keep the following query private:
p = ∃x R(x,x)

R,S S,T

Clearly, we can design views at each source to answer Q:
each source just exports its data.

These tools allow us to analyze questions of the form “are there distributed views
that support query Q but which do not reveal any information about query p”

There is a partial synchronization between Simons and Dagstuhl:
S is replicated between the two sources.

Recall: building interfaces beyond views

It is possible to support Q without revealing p.
But we will need an interface mechanism beyond relational algebra views
- namely, an indistinguishability relation.

Q = ∃x y R(x,y)∧S(x,y)∧T(x,y)

But suppose we want to keep the following query private:
p = ∃x R(x,x)

R,S S,T

Clearly, we can design views at each source to answer Q:
each source just exports its data.

These tools allow us to analyze questions of the form “are there distributed views
that support query Q but which do not reveal any information about query p”

There is a partial synchronization between Simons and Dagstuhl:
S is replicated between the two sources.

Super-generalizing views via database
indistinguishability

This is a super-general notion.

In current work with Hrushovski we study it primarily in the setting of classical
model theory: indistinguishability relations over infinite structures, focusing
on relations definable in first order and infinitary logic.
Motivated by classification theory, descriptive set theory, model theory for
topology and analysis.

But there are some results for first order indistinguishability relations on
databases/finite models.

An indistinguishability relation is an equivalence relation on databases.
It can be thought of as an “abstract view”: we are exporting the equivalence
class of a database.

Defining indistinguishability with logic

A first order definable indistinguishability relation is given by 𝜑 a first order
sentence in the language of two copies of the schema which happens to
define an equivalence relation.

Recall:
Traditional relational algebra views V1 ... VK give a first order indistinguishability
relation:
∀x1 ... xj [∧i≤k Vi(x1 ... xj)⟷ V’i(x1 ... xj)]

Indistinguishibility versus query-based
views

Traditional nested relational calculus views V1 ... VK give a first order
indistinguishability relation.

Example: Given binary R(x,y), consider the view corresponding to the nested query
{ { y | (x,y) ∊ R } | x ∊ 𝝿1(R) }
That is, R and R’ are indistinguishable if they have the same adjacency sets of nodes.

∀x ∃x’[∀y R(x,y) ⟷ R’(x’,y)]∧
∀x’ ∃x [∀y R(x,y) ⟷ R’(x’,y)]

A first order definable indistinguishability relation is given by 𝜑 a first
order sentence in the language of two copies of the schema which happens
to define an equivalence relation.

Indistinguishibility versus query-based
views

Traditional nested relational calculus views V1 ... VK give a first order
indistinguishability relation.

Let E be an “indistiguishability relation”: an equivalence relation on
databases. E can be thought of as an “abstract view”.

A first order definable indistinguishability relation is given by 𝜑 a first
order sentence in the language of two copies of the schema. Thus 𝜑
defines a collection of pairs of databases, and we require 𝜑 to define an
equivalence relation.

Example: Given ternary R(x,y,z), consider the view corresponding to the nested
query
{ {z | (x,y,z) ∊ R } \\adjacency set of x,y
 y ∊ 𝝿2(R) } \\set of adjacency sets for x
 | x ∊ 𝝿1(R) } \\set of sets of adjacency
sets

That is, R and R’ are indistinguishable if they have the same sets of sets of
adjacency sets of pairs.

Separation

Hierarchy Theorem [B., Hrushovski]
For every n, there are depth n nested relational views whose indistinguishability
relation is not given by depth n-1 nested relational views.

Collapse of Nested Relational Views to
Relational Views

Sparse Collapse Theorem [B., Hrushovski]
Suppose E is given by a set of nested relational views on a graph database.
Suppose C is a collection of graphs that exclude a minor.
Then over C, E is given by a set of relational algebra views.

Prefix Classes of FO
Indistinguishability Relations

Can classify FO Indistinguishability relations by the quantifier alternation,
focusing only on the quantified variables that vary over both models.

E.g. Triangle-based equivalence example is 𝚷1 : ∀x1 x2 x3 ...
The first nested relational calculus example (adjacency sets) is 𝚷3 :
∀x1 ... ∃ y1 ... ∀z1 ...

Prefix Classes of FO
Indistinguishability Relations

Can classify FO indistinguishability relations by the quantifier alternation,
focusing only on the quantified variables that vary over both models.

E.g. Triangle-based equivalence example is 𝚷1 : ∀x1 x2 x3 ...
The first nested relational calculus example (adjacency sets) is 𝚷3 :
∀x1 ... ∃ y1 ... ∀z1 ...

𝚷2 Theorem [B., Hrushovski]
Suppose E is a 𝚷2 indistinguishability relation: given by a ∀x1 ... ∃ y1 ... sentence
in two copies of the signature, that happens to define an equivalence relation,
showing here only the quantifiers of variables that span both models.
Then E is a 𝚷1 indistinguishability relation: given by a universal sentence.

First Order Indistinguishability and Nested
Relations

Question: Is every first order indistinguishability relation is given by nested
relational calculus views?

Tentative Moral on Indistinguishability
Relations

• Indistinguishability relations make the world of traditional view interfaces look
very small

• Issue of converting between interface specifications of different natures.
In this case, from a compactedly-represented equivalence class to a canonical
representative.

Many analogies in descriptive complexity theory and descriptive set theory.

Lead-In To Great Thoughts Friday

1970

1980

1990

2000

2010

2020

Relational databases have been around
for over 50 years.

And in the first 40 years, the notion of
logical interface today and notions of
comparing interfaces were frequently
revisited, often radically so.

Lead-In To Great Thoughts Friday

1970

1980

1990

2000

2010

2020

Lead-In To Great Thoughts Friday

1970

1980

1990

2000

2010

2020

When you need more complicated views

Query to support specified as

Q = ∃ x y R(x,y) ∧ S(x,y) ∧ S(y,x)

R S

When you need more complicated views

Query to support specified as

Q = ∃ x y R(x,y) ∧ S(x,y) ∧ S(y,x)

R S

Minimal information supporting view at the Simons source:

S(x,y) ∨ S(y,x)

