Scallop: A Language for Neurosymbolic Programming

Mayur Naik University of Pennsylvania

Joint work with Ziyang Li and Jiani Huang

Two Prevalent Paradigms of Modern Programming

Deep Learning

[System 1]

Classical Algorithms

[System 2]

Two Prevalent Paradigms of Modern Programming

Deep Learning

[System 1]

- Sub-symbolic knowledge _
- Open-domain knowledge
- Rapid reasoning _
- Handling noise and naturalness -
- In-context learning _

Classical Algorithms

[System 2]

Two Prevalent Paradigms of Modern Programming

Deep Learning

[System 1]

- Sub-symbolic knowledge
- Open-domain knowledge
- Rapid reasoning
- Handling noise and naturalness
- In-context learning

Classical Algorithms

[System 2]

- Domain-specific knowledge
- Complex reasoning
- Interpretability
- Compositional reasoning
- Generalizability

Neurosymbolic to Combine Both Worlds ...

Deep Learning

[System 1]

Classical Algorithms

[System 2]

- Sub-symbolic knowledge
- Open-domain knowledge
- Rapid reasoning
- Handling noise and naturalness
- In-context learning

- Domain-specific knowledge
- Complex reasoning
- Interpretability
- Compositional reasoning
- Generalizability

Challenges With Combining Them

Challenges With Combining Them

- 1. Choice of Symbolic Data Representation for R
- 2. Choice of Symbolic Reasoning Language for P
- 3. Automatic and Efficient Differentiable Reasoning Engine for learning $\frac{\delta Y}{\delta R}$ under algorithmic supervision
- 4. Ability to tailor learning $\frac{\delta Y}{\delta R}$ to individual applications' characteristics
- 5. Mechanism to leverage and integrate with existing training pipelines $\frac{\delta R}{\delta \theta}$ and neural models M_{θ}

Our Approach: Scallop

- Relational Representation for R
- Datalog-based Language for P
- Provenance Semirings Framework for $\frac{\delta Y}{\delta R}$
- Integration with Pytorch for $\frac{\delta R}{\delta \theta}$ and $M_{ heta}$

A Motivating Example

State: 200x200 colored image **Action**: Up, Down, Left, Right (Environments are 5x5 grids randomized for each session)

State: 200x200 colored image Action: Up, Down, Left, Right

(Environments are 5x5 grids randomized for each session)

Step 0

Step 4

State: 200x200 colored image Action: Up, Down, Left, Right

(Environments are 5x5 grids randomized for each session)

	Neurosymbolic (with Scallop)	DQN
Success rate (reaches the goal within 50 steps)	99.4 %	84.9%
# of Training episodes (to achieve the success rate)	50	50K

(Note: this is not entirely a fair comparison since our Scallop program encodes system dynamics and human knowledge)

Differentiable Reasoning Framework

Page 17

Semantics and Provenance Framework

- The formal semantics of SclRAM is parameterized by a provenance structure inspired by the theory of Provenance Semirings [PODS'07]
- A Provenance Structure is an algebraic structure that specifies:
 - Tag Space: the space of additional information associated with each tuple
 - Operations: how tags propagate during execution

	Ab	stra	ct Provenance	<pre>max-min-prob(mmp)</pre>
(Tag Space)	t	E	T	[0, 1]
(False)	0	€	T	0
(True)	1	€	T	1
(Disjunction)	\oplus	:	$T \times T \to T$	max
(Conjunction)	\otimes	:	$T \times T \to T$	min
(Negation)	θ	:	$T \rightarrow T$	$\lambda p.(1-p)$
(Saturation)	⊜	:	$T \times T \rightarrow \text{Bool}$	==

Provenance Framework: An Example

Scallop program SCLRAM program

rel safe_cell(x, y) = grid_cell(x, y) and not enemy(x, y) safe_cell ~ grid_cell - enemy

Untagged Semantics

Provenance Framework: An Example

Untagged Semantics

Tagged Semantics

Provenance Framework: An Example

Tagged Semantics with mmp

Untagged Semantics

Built-in Library of Provenance Structures

Kind	Provenance	T	0	1	\oplus	8	θ	⊖	τ	ρ
Discrete	unit	{()}	0	0	$\lambda t_1, t_2.()$	$\lambda t_1, t_2.()$	$\lambda a.FAIL$	==	λ <i>i</i> .()	$\lambda t.()$
	bool	$\{\top, \bot\}$	L	т	V	^	-	==	id	id
	natural	N	0	1	+	×	$\lambda n. \mathbb{1}[n > 0]$	==	id	id
	max-min-prob	[0,1]	0	1	max	min	$\lambda t.1 - t$	==	id	id
	add-mult-prob	[0,1]	0	1	$\lambda t_1, t_2.\operatorname{clamp}(t_1+t_2)$	$\lambda t_1, t_2.(t_1 \cdot t_2)$	$\lambda t.1 - t$	λt.T	id	id
Drobabiliatia	nand-min-prob	[0,1]	0	1	$\lambda t_1, t_2 (1 - t_1)(1 - t_2)$	min	$\lambda t.1 - t$	λt.T	id	id
Probabilistic	nand-mult-prob	[0,1]	0	1	$\lambda t_1, t_2 (1 - t_1)(1 - t_2)$	$\lambda t_1, t_2.t_1 \cdot t_2$	$\lambda t.1 - t$	$\lambda t. \top$	id	id
	top-k-proofs	Φ	Ø	{Ø}	$\vee_{\mathrm{top-}k}$	\wedge_{top-k}	¬top-k	==	$\lambda p_i.\{\{pos(i)\}\}$	$\lambda \varphi$.WMC(φ , Γ)
	sample-k-proofs	Φ	Ø	{Ø}	$\vee_{\text{sample-}k}$	$\wedge_{\text{sample-}k}$	¬sample-k	==	$\lambda p_i.\{\{\operatorname{pos}(i)\}\}$	$\lambda \varphi$.WMC(φ , Γ)
	diff-max-min-prob	\mathbb{D}	Ô	î	max	min	$\lambda \hat{t}.\hat{1} - \hat{t}$	==	id	id
	diff-add-mult-prob	\mathbb{D}	Ô	î	$\lambda \hat{t}_1, \hat{t}_2.\mathrm{clamp}(\hat{t}_1 + \hat{t}_2)$	$\lambda \hat{t}_1, \hat{t}_2.\hat{t}_1\cdot \hat{t}_2$	$\lambda \hat{t}.\hat{1} - \hat{t}$	λî.⊤	id	id
Differentiable	diff-nand-min-prob	[Ô, Î]	Ô	î	$\lambda \hat{t}_1, \hat{t}_2 (\hat{1} - \hat{t}_1)(\hat{1} - \hat{t}_2)$	min	$\lambda \hat{t}.\hat{1} - \hat{t}$	$\lambda \hat{t}. \top$	id	id
Differentiable	diffnand-mult-prob	[Ô, Î]	Ô	î	$\lambda \hat{t}_1, \hat{t}_2 (\hat{1} - \hat{t}_1)(\hat{1} - \hat{t}_2)$	$\lambda \hat{t}_1, \hat{t}_2.\hat{t}_1\cdot \hat{t}_2$	$\lambda \hat{t}.\hat{1} - \hat{t}$	$\lambda \hat{t}. \top$	id	id
	diff-top-k-proofs	Φ	Ø	{Ø}	$\vee_{\mathrm{top-}k}$	\wedge_{top-k}	¬top-k	==	$\lambda \hat{p}_i.\{\{\mathrm{pos}(i)\}\}$	$\lambda \varphi$.WMC(φ , $\hat{\Gamma}$)
	diff-sample-k-proofs	Φ	Ø	{Ø}	$\vee_{\text{sample-}k}$	$\wedge_{\text{sample-}k}$	¬sample-k	==	$\lambda \hat{p}_i.\{\{\mathrm{pos}(i)\}\}$	$\lambda \varphi$.WMC($\varphi, \hat{\Gamma}$)

Built-in Library of Provenance Structures

Kind	Provenance	Т	0	1	\oplus	\otimes	θ	\ominus	τ	ρ
Discrete	unit bool	$\begin{array}{c} \left\{ \left(\right) \right\} \\ \left\{ \top, \bot \right\} \end{array}$	() 	() T	$\lambda t_1, t_2.()$ \vee	$\lambda t_1, t_2.()$ \wedge	$\lambda a.FAIL$	==	λi.() id	λt.() id
	natural	N	0	1	+	×	$\lambda n. \mathbb{T}[n > 0]$	==	id	id
Probabil Syntax and semantics of Scallop programs remains familiar to users. The provenance framework allows to customize learning performance and scalability via a rich and extensible library. $C(\varphi,\Gamma)$										
Differentiable	diffnand-mult-prob	[Ô, Î]	ô	î	$\lambda \hat{t}_1, \hat{t}_2 (\hat{1} - \hat{t}_1)(\hat{1} - \hat{t}_2)$	$\lambda \hat{t}_1, \hat{t}_2.\hat{t}_1\cdot \hat{t}_2$	$\lambda \hat{t}.\hat{1} - \hat{t}$	$\lambda \hat{t}. \top$	id	id
	diff-top-k-proofs	Φ	Ø	$\{\emptyset\}$	$\vee_{\mathrm{top-}k}$	$\wedge_{\mathrm{top-}k}$	¬top-k	==	$\lambda \hat{p}_i.\{\{\mathrm{pos}(i)\}\}$	$\lambda \varphi$.WMC $(\varphi, \hat{\Gamma})$
	diff-sample-k-proofs	Φ	Ø	$\{\emptyset\}$	$\vee_{\text{sample-}k}$	$\wedge_{\text{sample-}k}$	¬sample-k	==	$\lambda \hat{p}_i.\{\{\operatorname{pos}(i)\}\}$	$\lambda \varphi. WMC(\varphi, \hat{\Gamma})$

Evaluation

Benchmark Suite

Involves Computer Vision (Images & Videos)

Benchmark Suite

Involves Natural Language Processing (Natural Text)

Benchmark Suite

Requires Multi-Modal Capability (Combination of CV & NLP)

Performance: Scallop vs. Baselines

Testing Accuracy (%) on Selected Benchmark Tasks

Scallop 😴 Foundation Models

Foundation Models

Foundation Models

Context:

[Cristina] was afraid of heights just like her daughters, [**Sheila**] and [Diana]. However, [Diana]'s father, [Jonathan], loved heights and even went skydiving a few times. [**Ruth**] and her son, [Jeremy], went to the park, and had a wonderful time. [Jeremy] went to the bakery with his uncle [Jonathan] to pick up some bread for lunch.

Question:

What is the relationship between **Ruth** and **Sheila**?

Context:

[Cristina] was afraid of heights just like her daughters, [**Sheila**] and [Diana]. However, [Diana]'s father, [Jonathan], loved heights and even went skydiving a few times. [**Ruth**] and her son, [Jeremy], went to the park, and had a wonderful time. [Jeremy] went to the bakery with his uncle [Jonathan] to pick up some bread for lunch.

Context:

[Cristina] was afraid of heights just like her daughters, [**Sheila**] and [Diana]. However, [Diana]'s father, [Jonathan], loved heights and even went skydiving a few times. [**Ruth**] and her son, [Jeremy], went to the park, and had a wonderful time. [Jeremy] went to the bakery with his uncle [Jonathan] to pick up some bread for lunch.


```
@gpt_extract_relation(
    prompt="Please extract the kinship relationships from the context:",
    examples=[("Alice is Bob's mother", [("alice", "bob", "son"), ...]), ...])
type parse_relations(bound context: String, sub: String, obj: String, rela: String), ...
```


Context: [Cristina] was afraid of heights just like her daughters, [**Sheila**] and [Diana]. However, [Diana]'s father, [Jonathan], loved heights and even went skydiving a few times. [**Ruth**] and her son, [Jeremy], went to the park, and had a wonderful time. [Jeremy] went to the bakery with his uncle [Jonathan] to pick up some bread for lunch. What is the relationship between **Sheila** and **Ruth**?

```
@gpt_extract_relation(
    prompt="Please extract the kinship relationships from the context:",
    examples=[("Alice is Bob's mother", [("alice", "bob", "son"), ...]), ...])
type parse_relations(bound context: String, sub: String, obj: String, rela: String), ...
```


Context: [Cristina] was afraid of heights just like her daughters, [**Sheila**] and [Diana]. However, [Diana]'s father, [Jonathan], loved heights and even went skydiving a few times. [**Ruth**] and her son, [Jeremy], went to the park, and had a wonderful time. [Jeremy] went to the bakery with his uncle [Jonathan] to pick up some bread for lunch. What is the relationship between **Sheila** and **Ruth**?

```
@gpt_extract_relation(
    prompt="Please extract the kinship relationships from the context:",
    examples=[("Alice is Bob's mother", [("alice", "bob", "son"), ...]), ...])
type parse_relations(bound context: String, sub: String, obj: String, rela: String), ...
```


Context: [Cristina] was afraid of heights just like her daughters, [**Sheila**] and [Diana]. However, [Diana]'s father, [Jonathan], loved heights and even went skydiving a few times. [**Ruth**] and her son, [Jeremy], went to the park, and had a wonderful time. [Jeremy] went to the bakery with his uncle [Jonathan] to pick up some bread for lunch. What is the relationship between **Sheila** and **Ruth**?

```
@gpt_extract_relation(
    prompt="Please extract the kinship relationships from the context:",
    examples=[("Alice is Bob's mother", [("alice", "bob", "son"), ...]), ...])
type parse_relations(bound context: String, sub: String, obj: String, rela: String), ...
```

```
rel kinship(p1,p2,rela) = context(ctx) and parse_relations(ctx,p1,p2,rela)
rel kinship(p1,p3,r3) = kinship(p1,p2,r1) and kinship(p2,p3,r2) and composition(r1,r2,r3)
rel answer(r) = question(p1,p2) and kinship(p1,p2,r)
```


Image Classification as Probabilistic Relation

@clip_classifier(["cat","dog"])
type cat_or_dog(
 bound img: Tensor,
 free label: String,

Image Classification as Probabilistic Relation

 \Box

```
@clip_classifier(["cat","dog"])
type cat_or_dog(
    bound img: Tensor,
    free label: String,
```

Page 42

Image Classification as Probabilistic Relation

prob	id	label
0.00	0	cat
0.99	0	dog
0.98	1	cat
0.02	1	dog

Image Segmentation as Probabilistic Relation

Segment Anything

Research by Meta Al

@segment_anything
type image_segment(
 bound img: Tensor,
 free id: u32,
 free segment: Tensor,

Image Segmentation as Probabilistic Relation

@segment_anything
type image_segment(
 bound img: Tensor,
 free id: u32,
 free segment: Tensor,

Image Segmentation as Probabilistic Relation

@segment_anything
type image_segment(
 bound img: Tensor,
 free id: u32,
 free segment: Tensor,

Combining Foundation Models

Question: How many green objects are there in the image?

@segment_anything
type image_segment(
 bound img: Tensor,
 free id: u32,
 free segment: Tensor)

```
@clip_classifier(["green","red",...])
type obj_color(
    bound object_segment: Tensor,
    free label: String)
```

@gpt_complete(prompt=
 "Please semantically parse the
 following question...")
type semantic_parse(
 bound question: String,
 free answer: Expr)

Evaluation

Page 48

scallop-lang.org

scallop.build/featured

Documentation | Downloads | Resources | Tutorials

