
e-graphs, four ways

Max Willsey

1
2023

e-graphs, four ways
● e-graphs, as data structures
● e-graphs, as datalog
● … but fast
● … as datalog again

(a * 2) / 2

a

3

(a * 2) / 2

a

4

(a * 2) / 2 a
rewrite it!

(x * y) / z = x * (y / z)
x / x = 1
x * 1 = x

x * 2 = x << 1
x * y = y * x

 x = x * 1

useful not so useful

5

(x * y) / z = x * (y / z)
x / x = 1
x * 1 = x

happy path

(a * 2) / 2 a * (2 / 2) a * 1 a

6

x * 2 = x << 1
x * y = y * x

 x = x * 1

pitfalls

(a * 2) / 2 (a << 1) / 2 wrong turn

(a * 2) / 2 (2 * a) / 2 (a * 2) / 2
a a * 1 a * 1 * 1 ...

but critical for
other inputs

7

loop

infinite size

(a * 2) / 2 a
which rewrite? when?

(x * y) / z = x * (y / z)
x / x = 1
x * 1 = x

x * 2 = x << 1
x * y = y * x

 x = x * 1

useful not so useful

8

which rewrite? when?
(x * y) / z = x * (y / z)

x
/ x

 =
 1 x *

 1 =
 xx * 2 = x << 1

x * y
 = y

* x

x = x * 1

all of them! all the time!

9

which rewrite? when?
(x * y) / z = x * (y / z)

x
/ x

 =
 1 x *

 1 =
 xx * 2 = x << 1

x * y
 = y

* x

x = x * 1

all of them! all the time!

10

e-graphs
+

equality saturation

e-graphs, four ways
● e-graphs, as data structures
● e-graphs, as datalog
● … but fast
● … as datalog again

e-graphs?

(a * 2) / 2
this e-class represents

e-class

e-node e-node

12

growing an e-graph

13

x * 2 → x << 1

growing an e-graph

this e-class represents
(a * 2) and (a << 1)

this e-class represents
(a * 2) / 2 and (a << 1) / 2

x * 2 → x << 1

14

growing an e-graph

x * 2 → x << 1 (x * y) / z → x * (y / z)

15

e-graphs are compact

x * 2 → x << 1 (x * y) / z → x * (y / z) x / x → 1
x * 1 → x

a, a * 1,
a * 1 * 1, ...

16

saturation

x / x → 1

x * 2 → x << 1
(x * y) / z → x * (y / z)

x * 1 → x

17

extraction

18

this e-class represents
(a * 2) / 2, a, a * 1, …

pick the smallest (cheapest) one

Knuth 76,
Generalization of Dijkstra’s Algo.

extraction

19

x = a + /(y, w) + *(x, z)
y = *(x, w) + <<(x, z)
z = /(w, w) + 1
w = 2

where f(a, b) =
min/+ semi-ring element
in terms of a, b

x

y
z

w

equality saturation

e-graph optimized terminitial term

do rewrites

extract

20

21

e-matching

pattern

f(α, g(α))

terms

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

substs

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

22

e-matching

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:
 yield subst

N2 time, but only N matches
pattern

f(α, g(α))

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

23

e-matching
● existing impls are backtracking based & complex

● doesn’t help with equality constraints

● no data complexity results

○ NP-hard in pattern size… e-graph size??

more than rewriting
● there’s more than syntactic rewriting

● sometimes, it’s useful to consider semantics
○ 17 + 32 → 49, …

● constant folding, nullability, tensor shape, non-zero,
interval arithmetic, etc, ...

24

more than rewriting
● there’s more than syntactic rewriting

● sometimes, it’s useful to consider semantics
○ 17 + 32 → 49, …

● constant folding, nullability, tensor shape, non-zero,
interval arithmetic, etc, ...

25

analyses modulo equality
● uniform interface that works in many cases

● an understanding of analyses mean

constant folding
● Option<Number> per eclass

● try to eval new e-nodes

● Option “or” on merge

2

26

constant folding

2

4

2

merge(a, 2)
27

● Option<Number> per eclass

● try to eval new e-nodes

● Option “or” on merge

● it propagates up!

e-class analysis
● 1 fact per e-class from a join-semilattice D

● make(n) → dc
○ make a new analysis value for a new e-node

● join(dc1, dc2) → dc
○ combine two analysis values

● modify(c) → c’
○ change the e-class (optionally)

28

constant folding
● D = Option<Number>

● make = eval

● join = option “or”

● modify = add the constant 2

29

detour: intervals

30

 x + y in [1, 3]
x in [0, 1]
y in [1, 2]

detour: intervals

31

1 - 2y / (x + y) in [-3, 1/3]
x in [0, 1]
y in [1, 2]

= (x - y) / (x + y) in [-2, 0]

= 2x / (x + y) - 1 in [-1, 1]

intervals modulo equality

32

1 - 2y / (x + y) in [-3, 1/3]
x in [0, 1]
y in [1, 2]

= (x - y) / (x + y) in [-2, 0]

= 2x / (x + y) - 1 in [-1, 1]

[-1, 0]

e-class analysis uses
● lift program analyses to e-graphs

● conditional & dynamic rewrites
○ x / x = 1 iff x != 0

● can express other e-graph “hacks”
○ on-the-fly extraction

33

e-class analysis invariant

2

for each e-class

Analysis data is LUB
(lattice properties)

fixed point

34

egg: fast & easy e-graphs

● Rust library for generic e-graphs and eqsat

● packaged and documented: https://docs.rs/egg

● tutorials, industrial and academic users

35POPL 21★

https://docs.rs/egg

e-graphs, four ways
● e-graphs, as data structures
● e-graphs, as datalog
● … but fast
● … as datalog again

why?
● equality saturation is monotonic (-ish)

○ more equalities, more terms, no “destructive” rewrites

● e-matching is the bottleneck
○ it’s a backtracking search for substitutions that satisfy

a formula…

schema

ca b

+

+

b c bc

a bc abc

“+” table

rewrites as rules
● example: x + (y + z) -> (x + y) + z
● +(x, y, xy), +(xy, z, root2) <- +(x, yz, root), +(y, z, yz)

○ tempting to put root there

● not full existentials, just ADTs
○ existentials always “resolved” by FD, need a hashmap

what about the “e”?
● e-graph is an equivalence relation

○ congruence?

● pattern matching modulo equivalence
● equivalence is user-extensible!

○ think EGDs from chase

eq(x, y)
● just make an equivalence relation

○ symmetric, transitive, reflexive

● all joins modulo eq
○ R(x, y), R(y, z) becomes

R(x, y1), eq(y1, y2), R(y2, z)

rewrites with eq
● example: x + (y + z) -> (x + y) + z
● +(x, y, xy), +(xy, z, root2), eq(xy1, xy2) <-

+(x, yz1, root), +(y, z, yz2), eq(yz1, yz2)
● non-linear patterns tend to be cyclic

○ consider x + (y + x)

congruence
● eq(z1, z2) <-

+(x1, y1, z1), +(x2, y2, z2), eq(x1, y1), eq(x2, y2)

doesn’t work
● too slow
● various tricks don’t fix it

○ specialized eqrel a la Souffle,
○ subsumption
○ see Yihong Zhang’s thesis

lattices
● downside of e-class analyses: there’s only one
● datalog has nice, cooperating “analyses”

○ mutually recursive rules

● requires recursive aggregation
○ LowerBound(expr, number)

e-graphs, four ways
● e-graphs, as data structures
● e-graphs, as datalog
● … but fast
● … as datalog again

PLDI 23

what was the problem?
● eq(x, y) too slow

○ n^2 size, etc.

● no canonicalization!

if you don’t canonicalize…
● e-matching only yields

canonical entries!
● f(g(g(x))
● f(g1(g3(…))), f(g2(g3(…))),

f(g1(g4(…))), f(g2(g4(…)))

g1

f

g2

g3 g4

canonicalize
● use a union-find to define leader(x)

○ leader(x) = leader(y) iff eq(x, y)
● e-graph: explicit maintenance

○ if x = y, replace x, y, with leader(x)
○ collapse e-nodes f(x), f(y) to f(leader(x))
○ massively shrinks the e-graph

canonicalize the db
● could use some form of subsumption

○ f(leader(x)) :- f(x)
○ f(x) <= f(y) :- x = leader(x), x != y
○ way too slow/hacky to implement in, e.g. Souffle

● let’s just do what e-graphs do
○ congruence closure, “rebuilding”

no more eq
● eq relation/joins are gone!
● “semantic” equality becomes “syntactic” (again!)
● R(x, y1), R(y2, z), eq(y1, y2) becomes

R(x, y), R(y, z)

egglog
● datalog + functions + extensible equality
● examples

○ datalog: reachability
○ datalog + equality: reachability with node merging
○ eqsat: simple arithmetic optimization

https://egraphs-good.github.io/egglog/?example=path
https://egraphs-good.github.io/egglog/?example=path-union
https://egraphs-good.github.io/egglog/?example=eqsat-basic

egglog > eqsat
● simple implementation

○ separate optimization pass

● multipatterns
○ a x b = split(1, (a ++ c) x b)
○ a x c = split(2, (a ++ c) x b)

● incrementality via semi-naive

54

above line = faster

simple patterns,
similar speed

building DB +
index takes time

log scale ~ 10 million x

functions + equality
● f(a) = b, f(c) = d
● equality is extensible! user asserts a = c

○ what happens?
○ what happens in datalog when f(x, y) and f(x, z)

■ lattices / semirings

merge expressions
● (function foo (i64) i64 :merge (min old new))
● example

○ (set (foo 7) 5)
○ (set (foo 7) 4)
○ (foo 7) = 4

merge expressions
● also works for conflicts coming from equality
● ex: interval arithmetic

○ (function hi (Expr) Rational :merge (min old new))
(function lo (Math) Rational :merge (max old new))

https://egraphs-good.github.io/egglog/?example=interval

terms?
● (function mul (Expr Expr) Expr …

○ :merge (union old new)
○ :default (mkset))

● congruence!
● labeled null? dynamic lattice?

the chase
● very similar to the Skolem chase
● EGDs capture FDs and “extensible” equality
● egglog has “stable” equality in a way

○ the UF prevents oscillation that can result in the chase

what’s wrong?
● Built-in eq relation is really special

○ Requires infrastructure to do canonicalization

● semantic questions
○ why does this work? what’s special about union-find?

● limits us to equality, and only one version of it

review
good

● fast queries
● fast congruence
● functions modulo eq

○ for e.g. e-class analysis

bad

● no terms!
○ only families of terms

● semantic questions
● only supports eq

○ rebuilding, extraction
are special

e-graphs, four ways
● e-graphs, as data structures
● e-graphs, as datalog
● … but fast
● … as datalog again

WARNING
braindump ahead

criteria
● no “built-in” equality

○ what are the features needed to support this?
● can’t lose terms
● fast e-matching, congruence, etc.

○ via canonicalization?
● other relations

○ partial orders, indexed equality, etc.

new encoding
● can’t canonicalize the term tables
● capture the good part of the union-find
● “term tables” Add, Mul are immutable

○ a “mutable” union-find captures the eqrel
○ canonicalization rules create new terms

new encoding
● (x + y) + z —> Add(x, y, xy), Add(xy, z, root)
● Add(x, y, xy1), Add(xy2, z, root),
● leader(xy1, xy2),
● leader(x, x), leader(y, y), leader(z, z)

egglog views
● views modulo “joining relations” like eq
● AddEq = { (leader(x), leader(y), leader(x))

| (x, y, z) in Add }
● some kind of notion of monotonicity

○ why does this work? what’s the algebraic structure?

monotonicity?
● some kind of notion of monotonicity

○ why does this work? what’s the algebraic structure?

● leader is also aggregation over eqrel

payoff
● other relations than eq

○ non-symmetric: reduction relations
○ other equalities
○ Indexed equality: eq(expr, expr) -> semiring

■ context as a set of assumptions

example
● a + 3b = a + b (mod 3)
● eq(x, y, mod)
● plus(a, b, ab), eq(ab, root, 3) <-

plus(a, m1, root), eq(m1, m2, T), mul(3, b, m2)
● eq(x, y, f), <- eq(x, y, k), factor(k, f)

payoff
● provenance
● semi-naive

○ can you re-derive congruence closure?
● top-down via demand transformation
● closer to “regular” datalog

○ other applications?

questions
● can any of this be implemented efficiently?

○ what algebraic structures are compatible with UF?
○ difficult IVM problem
○ queryable semirings?

● how to control the application of rules?
○ Demand transformation, explicit schedules, etc…

● a more flexible notion of monotonicity
● termination?

