e-graphs, four ways

Max Willsey

2023

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast
- ... as datalog again

$(a * 2) / 2$
 ת
 a

$(a * 2) / 2$

\square
a

$$
(a * 2) / 2 \Rightarrow a
$$

rewrite itl

Useful	not so useful		
$(x * y / z=x *(y / z)$	$x * 2$	$=x<1$	
$x / x=1$	$x * y$	$=y * x$	
$x * 1$	$=x$	x	$=x * 1$

$(a * 2) / 2 \Rightarrow a *(2 / 2) \triangleleft a * 1 \Rightarrow a$

$$
\begin{gathered}
\text { happy path } \\
\begin{array}{c}
(x * y) / z=x *(y / z) \\
x / x=1 \\
x * 1=x
\end{array}
\end{gathered}
$$

$(a * 2) / 2 \Rightarrow(a \ll 1) / 2 \geqslant$ wrong turn

$a \Rightarrow a * 1 \Rightarrow a * 1 * 1$

$$
\begin{aligned}
& \text { pitfalls } \\
& x * 2=x \ll 1 \\
& x * y=y * x \\
& x=x * 1
\end{aligned}
$$

$$
(a * 2) / 2 \Rightarrow a
$$

which rewrite? when?
$\left.\begin{array}{cr}\begin{array}{l}\text { Useful }\end{array} & \text { not so useful } \\ (x * y) / z=x *(y / z) & x * 2=x \ll 1 \\ x / x=1 & x * y=y * x \\ x * 1=x & x\end{array}\right)$
which rewrite? when? all of them all the timed

$$
(2(1) * *=21(1) * x)
$$

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast
- ... as datalog again

e-graphs?

this e-class represents

$$
(a * 2) / 2
$$

growing an e-graph

growing an e-graph

$$
x * 2 \rightarrow x \ll 1
$$

this e-class represents $(a * 2) / 2$ and $(a \ll 1) / 2$
this e-class represents

$$
(a * 2) \text { and }(a \ll 1)
$$

growing an e-graph

e-graphs are compact

$$
\begin{gathered}
a_{1} a * 1_{1} \\
a * 1 * 1_{1} \ldots
\end{gathered}
$$

$x^{*} 2 \rightarrow x \ll 1 \quad\left(x^{*} y\right) / z \rightarrow x^{*}(y / z)$

$$
\begin{aligned}
& x / x \rightarrow 1 \\
& x * 1 \rightarrow x
\end{aligned}
$$

saturation

$$
\begin{aligned}
\quad x * 2 & \rightarrow x \ll 1 \\
\sqrt{ }\left(x^{*} y\right) / z & \rightarrow x *(y / z) \\
\sqrt{ } \quad x / x & \rightarrow 1 \\
x * 1 & \rightarrow x
\end{aligned}
$$

extraction
this e-class represents ($a * 2$) /2 $, a, a * 1 .$.
pick the smallest (cheapest) one
Knuth 76, Generalization of Dijkstra's Algo.
extraction

$$
\begin{aligned}
& x=a+/(y, w)+*(x, z) \\
& y=*(x, w)+\ll(x, z) \\
& z=/(w, w)+1 \\
& w=2
\end{aligned}
$$

where $f(a, b)=$ min/+ semi-ring element in terms of a, b

equality saturation

e-matching

$f \quad g \quad$ e-nodes

e-classes

e-matching

for e-class c in e-graph E:
for f-node \mathbf{n}_{1} in \mathbf{c} :
subst $=\left\{\right.$ root $\mapsto \mathbf{c}, \alpha \mapsto \mathbf{n}_{1}$. child $\left._{1}\right\}$ for g-node $\mathbf{n}_{\mathbf{2}}$ in $\mathbf{n}_{\mathbf{1}}$. child ${ }_{2}$ if subst $[\alpha]=\mathbf{n}_{\mathbf{2}}$.child :
yield subst
N^{2} time, but only N matches

e-matching

- existing impls are backtracking based \& complex
- doesn't help with equality constraints
- no data complexity results
- NP-hard in pattern size... e-graph size??

more than rewriting

- there's more than syntactic rewriting
- sometimes, it's useful to consider semantics - $17+32 \rightarrow 49, \ldots$
- constant folding, nullability, tensor shape, non-zero, interval arithmetic, etc, ...

more than rewriting

analyses modulo equality

- uniform interface that works in many cases
- an understanding of analyses mean

constant folding

- Option<Number> per eclass
- try to eval new e-nodes
- Option "or" on merge

constant folding

- Option<Number> per eclass
- try to eval new e-nodes
- Option "or" on merge
- it propagates up!

e-class analysis
- 1 fact per e-class from a join-semilattice D
- make $(n) \rightarrow d_{c}$
- make a new analysis value for a new e-node
- $\operatorname{join}\left(d_{c 1^{\prime}} d_{c 2}\right) \rightarrow d_{c}$
- combine two analysis values
- modify $(c) \rightarrow C^{\prime}$
- change the e-class (optionally)

constant folding

- $D=$ Option<Number>
- make = eval
- join = option "or"
- modify $=$ add the constant

detour: intervals

x in $[0,1]$
y in $[1,2]$
$x+y$ in $[1,3]$
detour: Intervals

$$
\begin{aligned}
& x \text { in }[0,1] \\
& y \text { in }[1,2] 1-2 y /(x+y) \text { in }[-3,1 / 3] \\
&=(x-y) /(x+y) \text { in }[-2,0] \\
&= 2 x /(x+y)-1 \text { in }[-1,1]
\end{aligned}
$$

intervals modulo equality

$$
\left.\begin{array}{rrrr}
\begin{array}{l}
x \text { in }[0,1] \\
y \text { in }[1,2]
\end{array} & 1-2 y /(x+y) & \text { in } & {[-3,1 / 3]} \\
& (x-y) /(x+y) & \text { in } & {[-2,0]} \\
& =2 x /(x+y)-1 & \text { in } & {[-1,1]}
\end{array}\right\}[-1,0]
$$

e-class analysis uses

- lift program analyses to e-graphs
- conditional \& dynamic rewrites
- $x / x=1$ iff $x!=0$
- can express other e-graph "hacks"
- on-the-fly extraction

e-class analysis invariant

egg: fast \& easy e-graphs

- Rust library for generic e-graphs and eqsat
- packaged and documented: https://docs.rs/egg
- tutorials, industrial and academic users

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast
- ... as datalog again
why?
- equality saturation is monotonic (-ish)
- more equalities, more terms, no "destructive" rewrites
- e-matching is the bottleneck
- it's a backtracking search for substitutions that satisfy a formula...

schema

"+" table

b	c	$b c$
a	$b c$	$a b c$

rewrites as rules

- example: $x+(y+z) \rightarrow(x+y)+z$
- +(x, y, wy $,+(x y, z$, root 2$)<-+(x, y z$, root $),+(y, z, y z)$ - tempting to put root there
- not full existentials, just ADTs - existentials always "resolved" by FD, need a hashmap

what about the "e"?

- e-graph is an equivalence relation
- congruence?
- pattern matching modulo equivalence
- equivalence is user-extensible!
- think EGDs from chase

$$
e q(x, y)
$$

- just make an equivalence relation
- symmetric, transitive, reflexive
- all joins modulo eq
- $R(x, y), R(y, z)$ becomes

$$
R(x, y), e q(y, y), R(y, z)
$$

rewrites with eq

- example: $x+(y+z) \rightarrow(x+y)+z$
- +($x, y, x y),+(x y, z, r$ root 2), eq (xy, wy 2$)<-$ $+(x, y z 1$, root $),+(y, z, y z z)$, eq (yzz,$y z 2)$
- non-linear patterns tend to be cyclic - consider $x+(y+x)$
congruence
- eq(z1, z2) <-

$$
+(x 1, y 1, z 1),+(x 2, y 2, z 2), e q(x 1, y 1), \text { eq }(x 2, y 2)
$$

doesn't work

- too slow
- various tricks don't fix it
- specialized eqrel a la Souffle,
- subsumption
- see Yihong Zhang's thesis

lattices

- downside of e-class analyses: there's only one
- datalog has nice, cooperating "analyses"
- mutually recursive rules
- requires recursive aggregation
- LowerBound(expr, number)

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast PLDI 23
- ... as datalog again

what was the problem?

- eq(x, y) too slow
- $n^{\wedge} 2$ size, etc.
- no canonicalization!
- e-matching only yields canonical entries!
- $f(g(g(x))$
- $f\left(g_{1}\left(g_{3}(\ldots)\right)\right), f\left(g_{2}\left(g_{3}(\ldots)\right)\right)$,
$f\left(g_{1}\left(g_{4}(\ldots)\right)\right), f\left(g_{2}\left(g_{4}(\ldots)\right)\right)$

canonicalize

- use a union-find to define leader(x)
- leader $(x)=$ leader (y) iff eq (x, y)
- e-graph: explicit maintenance
- if $x=y$, replace x, y, with leader (x)
- collapse e-nodes $f(x), f(y)$ to $f(l e a d e r(x))$
- massively shrinks the e-graph
canonicalize the db
- could use some form of subsumption
- $f($ leader $(x))$:- $f(x)$
- $f(x)<=f(y):-x=\operatorname{leader}(x), x \mid=y$
- way too slow/hacky to implement in, egg. Souffle
- let's just do what e-graphs do
- congruence closure, "rebuilding"
no more eq
- eq relation/joins are gone!
- "semantic" equality becomes "syntactic" (again!)
- $R(x, y 1), R(y z, z)$, eq(y1, yr) becomes $R(x, y), R(y, z)$
egglog
- datalog + functions + extensible equality
- examples
- datalog: reachability
- datalog + equality: reachability with node merging
- eqsat: simple arithmetic optimization

egglog > eqsat

- simple implementation
- separate optimization pass
- multipatterns
- $a \times b=\operatorname{split}(1, \quad(a++c) \times b)$
- $a \times c=$ split $(2, \quad(a++c) \times b)$
- incrementality via semi-naive

functions + equality

- $f(a)=b, f(c)=d$
- equality is extensible! user asserts $a=c$
- what happens?
- what happens in datalog when $f(x, y)$ and $f(x, z)$
- lattices / semirings
merge expressions
- (function foo (i64) 164 :merge (min old new))
- example
- (set (foo 7) 5)
- (set (foo 7) 4)
- $($ foo 7$)=4$
merge expressions
- also works for conflicts coming from equality
- ex: interval arithmetic
- (function hi (Expr) Rational :merge (min old new)) (function lo (Math) Rational:merge (max old new))

terms?

- (function mul (Expr Expr) Expr ...
- :merge (union old new)
- :default (mkset))
- congruence!
- labeled null? dynamic lattice?

the chase

- very similar to the Skolem chase
- EGDs capture FDs and "extensible" equality
- egglog has "stable" equality in a way
- the UF prevents oscillation that can result in the chase
what's wrong?
- Built-in eq relation is really special
- Requires infrastructure to do canonicalization
- semantic questions
- why does this work? what's special about union-find?
- limits us to equality, and only one version of it

review

good

bad

- fast queries
- fast congruence
- functions modulo eq
- for e.g. e-class analysis
- no terms!
- only families of terms
- semantic questions
- only supports eq
- rebuilding, extraction are special

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast
- ... as datalog again
criteria
- no "built-in" equality
- what are the features needed to support this?
- can't lose terms
- fast e-matching, congruence, etc.
- via canonicalization?
- other relations
- partial orders, Indexed equality, etc.

new encoding

- can't canonicalize the term tables
- capture the good part of the union-find
- "term tables" Add, Mul are immutable
- a "mutable" union-find captures the eqrel
- canonicalization rules create new terms

new encoding

- $(x+y)+z \quad \rightarrow \quad \operatorname{Add}(x, y, x y), \operatorname{Add}(x y, z$, root $)$
- $\operatorname{Add}(x, y, x y 1), \operatorname{Add}(x y 2, z$, root),
- leader(xy1, xyz),
- leader(x, x), leader(y, y), leader (z, z)

egglog views

- views modulo "joining relations" like eq
- $\operatorname{AddEq}=\{$ (leader (x), leader(y), leader $(x))$ I (x, y, z) in Add \}
- some kind of notion of monotonicity
- why does this work? what's the algebraic structure?

monotonicity?

- some kind of notion of monotonicity
- why does this work? what's the algebraic structure?
- leader is also aggregation over eqrel

payoff

- other relations than eq
- non-symmetric: reduction relations
- other equalities
- Indexed equality: eq(expr, expr) -> semiring
- context as a set of assumptions
example
- $a+3 b=a+b(\bmod 3)$
- eq(x, y, \bmod)
- plus($a, b, \underline{a b})$, eq(ab, root, 3) <plus($a, m 1$, root), eq(m1, m2, T), mule($3, b, m 2$)
- eq $(x, y, f),<-e q(x, y, k)$, factor (k, f)

payoff

- provenance
- semi-naive
- can you re-derive congruence closure?
- top-down via demand transformation
- closer to "regular" datalog
- other applications?

questions

- can any of this be implemented efficiently?
- what algebraic structures are compatible with UF?
- difficult IVM problem
- queryable semirings?
- how to control the application of rules?
- Demand transformation, explicit schedules, etc...
- a more flexible notion of monotonicity
- termination?

