e-graphs, four ways

Max Willsey

2023

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast
- ... as datalog again

(a * 2) / 2

$$(a * 2) / 2 \Rightarrow a$$
rewrite itl
useful
$$(x * y) / z = x * (y / z)$$

$$x / x = 1$$

$$x * y = y * x$$

$$x = x * 1$$

$(a * 2) / 2 \Rightarrow a * (2 / 2) \Rightarrow a * 1 \Rightarrow a$

$$\frac{happy path}{(x * \gamma) / z} = x * (\gamma / z)$$
$$x / x = 1$$
$$x * 1 = x$$

$(a * 2) / 2 \Rightarrow a$ which rewrite? when? useful not so useful (x * y) / z = x * (y / z)x * 2 = x << 1 x * y = y * xx / x = 1x * 1 = xx = x * 1

8

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast
- ... as datalog again

e-graphs?

this e-class represents

(a * 2) / 2

growing an e-graph

 $x * 2 \rightarrow x \ll 1$

growing an e-graph

 $x * 2 \rightarrow x \ll 1$

growing an e-graph

e-graphs are compact

 $\begin{array}{c} x / x \to 1 \\ x * 1 \to x \end{array}$

saturation

 $\checkmark x * 2 \rightarrow x << 1$ $\checkmark (x * y) / z \rightarrow x * (y / z)$ \checkmark x / x \rightarrow 1 $x * 1 \rightarrow x$

extraction

this e-class represents (a * 2) / 2, a, a * 1, ...

pick the smallest (cheapest) one

Knuth 76, Generalization of Dijkstra's Algo.

extraction

$$\begin{array}{l} x &= \alpha + /(\gamma, w) + *(x, z) \\ \gamma &= *(x, w) + <<(x, z) \\ z &= /(w, w) + 1 \\ w &= 2 \end{array}$$

where f(a, b) = min/+ semi-ring element in terms of a, b

equality saturation

e-matching

f(α, g(α))	$\{\alpha \mapsto 1\}$	$f(1 \sigma(1))$
	$\{\alpha \mapsto 2\}$	f(2, g(2))
	 {α ↦ N}	 f(N, g(N))

e-matching

e-matching

- existing impls are **backtracking** based & complex
- doesn't help with <u>equality constraints</u>
- no data complexity results
 - NP-hard in pattern size... e-graph size??

more than rewriting

- there's more than <u>syntactic</u> rewriting
- sometimes, it's useful to consider <u>semantics</u> \circ 17 + 32 \rightarrow 49, ...
- constant folding, nullability, tensor shape, non-zero, interval arithmetic, etc, ...

more than rewriting

analyses modulo equality

- uniform interface that works in many cases
- an understanding of analyses mean

constant folding

- Option<Number> per eclass
- try to eval new e-nodes
- Option "or" on merge

constant folding

- Option<Number> per eclass
- try to eval new e-nodes
- Option "or" on merge
- it propagates up!

e-class analysis

- 1 fact per e-class from a join-semilattice D
- make(n) $\rightarrow d_c$ • make a new analysis value for a new e-node
- join(d_{c1}, d_{c2}) $\rightarrow d_{c}$ • combine two analysis values
- modify(c) \rightarrow c'
 - change the e-class (optionally)

constant folding

- D = Option<Number>
- make = eval
- join = option "or"
- modify = add the constant

detour: intervals

x in [0, 1] y in [1, 2]

x+y in [1, 3]

detour: intervals

x in [0, 1] y in [1, 2] 1 - 2y / (x + y) in [-3, 1/3] = (x - y) / (x + y) in [-2, 0]

= 2x / (x + y) - 1 in [-1, 1]

intervals modulo equality

$$x in [0, 1]$$

 $y in [1, 2]$
 $1 - 2y / (x + y) in [-3, 1/3]$
 $= (x - y) / (x + y) in [-2, 0]$
 $= 2x / (x + y) - 1 in [-1, 1]$

e-class analysis uses

- lift program analyses to e-graphs
- conditional & dynamic rewrites $\circ x / x = 1$ iff x != 0
- can express other e-graph "hacks"
 on-the-fly extraction

e-class analysis invariant

for each e-class fixed point $\forall c \in G. \quad d_c = \bigvee \mathsf{make}(n) \quad \text{and} \quad \mathsf{modify}(c) = c$ $n \in c$ Analysis data is LUB (lattice properties)

egg: fast & easy e-graphs

- Rust library for generic e-graphs and eqsat
- packaged and documented: <u>https://docs.rs/egg</u>
- tutorials, industrial and academic users

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast
- ... as datalog again

- equality saturation is monotonic (-ish)
 - more equalities, more terms, no "destructive" rewrites
- e-matching is the bottleneck
 - it's a backtracking search for substitutions that satisfy a formula...

schema

"+" table

b	С	bc
а	bc	abc

rewrites as rules

- example: $x + (y + z) \rightarrow (x + y) + z$
- +(x, y, \underline{xy}), +(xy, z, $\underline{root2}$) <- +(x, yz, root), +(y, z, yz)
 - tempting to put root there
- not full existentials, just ADTs
 - o existentials always "resolved" by FD, need a hashmap

what about the "e"?

- e-graph is an equivalence relation
 - congruence?
- pattern matching modulo equivalence
- equivalence is <u>user-extensible</u>!
 - think EGDs from chase

eq(x, y)

- just make an equivalence relation
 - symmetric, transitive, reflexive
- all joins modulo eq
 - R(x, y), R(y, z) becomes R(x, y), eq(y), y2), R(y2, z)

rewrites with eq

- example: $x + (y + z) \rightarrow (x + y) + z$
- +(x, y, <u>xy</u>), +(xy, z, <u>root2</u>), eq(xy1, xy2) <-
 +(x, yz1, root), +(y, z, yz2), eq(yz1, yz2)
- non-linear patterns tend to be cyclic
 - \circ consider x + (y + x)

congruence

- eq(z1, z2) <-
 - +(x1, y1, z1), +(x2, y2, z2), eq(x1, y1), eq(x2, y2)

doesn't work

- too slow
- various tricks don't fix it
 - specialized eqrel a la Souffle,
 - subsumption
 - o see Yihong Zhang's thesis

lattices

- downside of e-class analyses: there's only one
- datalog has nice, cooperating "analyses"
 - mutually recursive rules
- requires recursive aggregation
 - LowerBound(expr, number)

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast PLDI 23
- ... as datalog again

what was the problem?

- eq(x, y) too slow
 n^2 size, etc.
- no canonicalization!

if you don't canonicalize ...

- e-matching only yields canonical entries!
- f(g(g(x))
- $f(g_1(g_3(...))), f(g_2(g_3(...))),$ $f(g_1(g_4(...))), f(g_2(g_4(...)))$

canonicalize

- use a union-find to define leader(x)
 - \circ leader(x) = leader(y) iff eq(x, y)
- e-graph: explicit maintenance
 - if x = y, <u>replace</u> x, y, with leader(x)
 - **<u>collapse</u>** e-nodes f(x), f(y) to f(leader(x))
 - massively shrinks the e-graph

canonicalize the db

- could use some form of subsumption
 - f(leader(x)) :- f(x)
 - $f(x) \le f(y) := x = leader(x), x != y$
 - way too slow/hacky to implement in, e.g. Souffle
- let's just do what e-graphs do
 - congruence closure, "rebuilding"

no more eq

- eq relation/joins are gone!
- "semantic" equality becomes "syntactic" (again!)
- R(x, y1), R(y2, z), **eq(y1, y2)** becomes

R(x, y), R(y, z)

egglog

- datalog + functions + extensible equality
- examples
 - datalog: <u>reachability</u>
 - datalog + equality: <u>reachability with node merging</u>
 - eqsat: simple arithmetic optimization

egglog > eqsat

- simple implementation
 separate optimization pass
- multipatterns
 - \circ a x b = split(1, (a ++ c) x b)
 - \circ axc = split(2, (a ++ c) x b)
- incrementality via semi-naive

functions + equality

- f(a) = b, f(c) = d
- equality is extensible! user asserts a = c
 - what happens?
 - \circ what happens in datalog when f(x, y) and f(x, z)
 - lattices / semirings

merge expressions

- (function foo (i64) i64 :merge (min old new))
- example
 - o (set (foo 7) 5)
 - (set (foo 7) 4)
 - (foo 7) = 4

merge expressions

- also works for conflicts coming from equality
- ex: interval arithmetic
 - (function hi (Expr) Rational :merge (min old new))
 (function lo (Math) Rational :merge (max old new))

terms?

- (function mul (Expr Expr) Expr ...
 - :merge (union old new)
 - :default (mkset))
- congruence!
- labeled null? dynamic lattice?

the chase

- very similar to the Skolem chase
- EGDs capture FDs and "extensible" equality
- egglog has "stable" equality in a way
 - \circ the UF prevents oscillation that can result in the chase

what's wrong?

- Built-in eq relation is really special
 - Requires infrastructure to do canonicalization
- semantic questions
 - why does this work? what's special about union-find?
- limits us to equality, and only one version of it

review

good

- fast queries
- fast congruence
- functions modulo eq
 for e.g. e-class analysis

- no terms!
 - o only families of terms

bad

- semantic questions
- only supports eq
 - rebuilding, extraction are special

e-graphs, four ways

- e-graphs, as data structures
- e-graphs, as datalog
- ... but fast

• <u>... as datalog again</u>

criteria

- no "built-in" equality
 - what are the features needed to support this?
- can't lose terms
- fast e-matching, congruence, etc.
 via canonicalization?
- other relations
 - o partial orders, indexed equality, etc.

new encoding

- can't canonicalize the term tables
- capture the good part of the union-find
- "term tables" Add, Mul are immutable
 - o a "mutable" union-find captures the eqrel
 - o canonicalization rules create new terms

new encoding

- $(x + y) + z \longrightarrow Add(x, y, xy), Add(xy, z, root)$
- Add(x, y, xy1), Add(xy2, z, root),
- leader(xy1, xy2),
- leader(x, x), leader(y, y), leader(z, z)

egglog views

- views modulo "joining relations" like eq
- $AddEq = \{ (leader(x), leader(y), leader(x)) \}$

1 (x, y, z) in Add }

• some kind of notion of monotonicity

• why does this work? what's the algebraic structure?

monotonicity?

- some kind of notion of monotonicity
 - why does this work? what's the algebraic structure?
- leader is also aggregation over eqrel

- other relations than eq
 - non-symmetric: reduction relations
 - o other equalities
 - Indexed equality: eq(expr, expr) -> semiring
 context as a set of assumptions

example

- $a + 3b = a + b \pmod{3}$
- eq(x, y, mod)
- plus(a, b, <u>ab</u>), eq(ab, root, 3) <-
 plus(a, m1, root), eq(m1, m2, T), mul(3, b, m2)
- eq(x, y, f), <- eq(x, y, k), factor(k, f)

- provenance
- semi-naive
 - can you re-derive congruence closure?
- top-down via demand transformation
- closer to "regular" datalog
 o ther applications?

questions

- can any of this be implemented efficiently?
 - what algebraic structures are compatible with UF?
 - difficult IVM problem
 - queryable semirings?
- how to control the application of rules?
 - Demand transformation, explicit schedules, etc...
- a more flexible notion of monotonicity
- termination?