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The Big Question

4 How will folks program the cloud?

n ||

Programmin

4« Autoscaling makes it harder!

-

4 Today’s compilers don’t address distributed concerns



Ted Codd

Turing Award 1981

Formalize specification;

automate implementation.




Long-Running Agendas, Recent Trends

4

4

Declarative Networking

Relational Machine Learning

Compiler Analysis

o




Long-Running Agendas, Recent Trends
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Declarative Networking

Relational Machine Learning

Compiler Analysis

Trend: Logic — Algebra Semi-Rings

Abeliqn GrOUps




clarative Programming for the Cloud

The cloud was invented
to hide how computing resources are laid out

and how computations are executed.

Relational databases were invented
to hide how data is laid out

and how queries are executed.
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LLVM for the Cloud?

4« A language/compiler/debugger that addresses distributed concerns!
4 Is my program consistent or will different machines disagree?
4« How can | partition state safely?
. What failures can this tolerate and how many?
« What data is going where and who can see it?

« Tunable objective functions. Please optimize for:

 $%, not latency.
¢ 99’th percentile, not 95th flice
 Etc.

B ™

I "~ /\\.?}\

COMPILER INFRASTRUCTURE
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LLVM for the Cloud?

4« A language/compiler/debugger that addresses distributed concerns!

y

Is my program consistent or will different machines disagree?
How can | partition state safely?

What failures can this tolerate and how many?

What data is going where and who can see it?

Tunable objective functions. Please optimize for:

+ $$, not latency.
« 99’th percentile, not 95th i,
 Etc.
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Hydro

4« A language/compiler/debugger that addresses distributed concerns!

y

Is my program consistent or will different machines disagree?

How can | partition state safely?
What failures can this tolerate and how many?
What data is going where and who can see it?

Tunable objective functions. Please optimize fo

 $%, not latency.
¢ 99’th percentile, not 95th flice
 Etc.

New Directions in Cloud Programming

Alvin Cheung

Natacha Crooks

Joseph M. Hellerstein

Matthew Milano
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Topics for Today (and WIP)

4 Automatic Replication (of code and data)

4 Esp. “free” replication — consistency sans coordination (CALM)

(algebraic CALM Theorem)
4 lermination detection

4 Esp. “free” termination — detection sans coordination

(threshold morphisms and equivalences)

« Automatic partitioning (of code and data)

-

4« Esp. “free” partitioning — parallel execution sans coordination

(functional dependencies integrated into algebraic types)

C )
HYDROLOGIC

(global)

HYDROFLOW
(local)










Laﬂguage/TheOry WOrk: 2010'15 A Declarative Semantics for Dedalus

Peter Alvaro

. . Tom J. Ameloot
DEepALus: Datalog in Time and Space Joseph M. Hellerstein
William Marczak

4 FOI’mansm: Dedalus Jan Van den Bussche TR 2011

Peter Alvaro', William R. Marczak!, Neil Conwayl,
Joseph M. Hellerstein!, David Maier?, and Russell Sears?
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across many machines. Most scien-

In distributed systems theory' tific compu(i;\)g and mlz;clhinc Icarninlg

I t : ! . systems work in parallel across mul-

D ata I Og ‘ ’ I Oa d ‘ ’d O 1 O CALM presents aresult that delineates tiple processors. Even legacy desktop
the frontier of the pOSSIble. operating systems and applications

like spreadsheets and word processors

I BY JOSEPH M. HELLERSTEIN AND PETER ALVARO are tightly integrated with distributed
backend services.

The challenge of building correct
is »d systems is increasi

— distributed systems is increasingly ur

ee I n gent, but it is not new. One traditional
answer has been to reduce this com-

plexity with memory consistency guar-

antees—assurances that accesses to

[ memory (heaj ables, database keys,

B and so on) occ *ontrolled fashion.

« CALM Theorem: coordination in its place When LI

cols—a ed a: s
to high performance, scale, and avail-
ability of distributed systems.

= = The high cost of coordination.
Joordination protocols enable auton-
omous, loosely coupled machines to
= = = - jointly decide how to control basic be-
<:> eyno e = haviors, including the order of access to
‘ ) shared memory. These protocols are
- among the m ran ly citec
Ameloot, et al PODS 2011
b) well-known e
Paxos™ and Two-Phase Commit (2PC)***
Am e Ioot et aI TO D S 20 & 6 y protocols, and global barriers underly-
n

key insights

Alvaro/Hellerstein CACM 2020 " Somtinl oton st ttr

DISTRIBUTED SYSTEMS ARE tricky. Multiple unreliable sary for co s,

Logic and Lattices for Distributed Programming
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semi-naive eval on lattices, etc
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Systems Work: 2015-2021

4

Cloudburst: Stateful FaaS

Compartmentalized Paxos

Lineage Driven Fault Injection

Why-Across-Time Provenance ™

VLDB 2020

SIGMOD 2015
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University of Cambridge UC Berkeley VMWare
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Lineage-driven Fault Injection

Peter Alvaro
UC Berkeley
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Joshua Rosen
UC Berkeley
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Systems Highlight: Anna Key-Value Store

4« KVS: Petri dish of distributed systems!

4« "CALM” Semi-lattice Design

« Monotonic = Freely Replicable (w/o coordination)

« Update anywhere, gossip lazily

« Zero concurrency control (locks, atomics, protocols)

Anna: A KVS For Any Scale Autoscaling Tiered Cloud Storage in Anna

Chenggang Wu #', Jose M. Faleiro *?, Yihan Lin ***, Joseph M. Hellerstein #*

Chenggang Wu, Vikram Sreekanti, Joseph M. Hellerstein
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Systems Highlight: Anna Key-Value Store

2022 SIGMOD Jim Gray
Doctoral Dissertation Award

4« KVS: Petri dish of distributed systems!

4« "CALM” Semi-lattice Design

ACM SIGMOD is pleased to present the 2022 SIGMOD Jim Gray Doctoral Dissertation Award to Chenggang Wu.

Chenggang Wu is Co-founder and CTO at Aqueduct, a SaaS startup
building machine learning prediction infrastructure. He received his Ph.D.
in 2020 from UC Berkeley, advised by Joseph M. Hellerstein. He is the
recipient of best-of-conference citations for research appearing in both
VLDB 2019 and ICDE 2018. He frequently serves as a PC member and a
reviewer for conferences and journals such as SIGMOD, ICDE, VLDBJ,
and TKDE. Chenggang'’s Ph.D. dissertation develops design principles for
building serverless infrastructure that can achieve excellent performance,
seamless scalability, and rich consistency guarantees. The dissertation
proposes two key ideas that are fundamental to achieving the
combination of these goals: lattice-based coordination-free consistency,
and LDPC (logical disaggregation with physical colocation). These ideas

« Monotonic = Freely Replicable (w/o coordination)

« Update anywhere, gossip lazily

« Zero concurrency control (locks, atomics, protocols)

Anna: A KVS For Any Scale Autoscaling Tiered Cloud Storage in Anna

Chenggang Wu #', Jose M. Faleiro *?, Yihan Lin ***, Joseph M. Hellerstein #*

Chenggang Wu, Vikram Sreekanti, Joseph M. Hellerstein
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Examples of lattice composition

. Metadata “wrappers” for various replica consistency mechanisms

E MapLattice }
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Last Writer Wins Causal Consistency



Anna KVS
Performance + Consistency

+ Fast, especially under contention

4 Up to 700x faster than Masstree and Intel TBB on multicore
4 Up to 10x faster than Cassandra in a geo-deployment

4 350x the performance of DynamoDB for the same price

++ for a Ph.D. disserfation.

Hand-written in C

rtion.
mentation correct by 0S5€

Imple
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Formalisms for Distributed Correctness

4 Desired: type system or compiler guarantee

4 Starting from a “trusted base”
4« Basic semi-lattices, e.q.
» Sets: (P(T), U)
» Counters: (N, max)
« Composite semi-lattices, e.g.
 KeyValueMap,
 Product, LexicalProduct (when possible)
« “Physical Algebra” of operators, e.gf_
e ||, X, filter, map, fold

e scan, “network”, mux, demux, etc.



Anna in Hydroflow, a semi-lattice

-iInspired dataflow lang
(semi-lattice “query plans”™)

// Demux network inputs
network recv = source stream serde(inbound)
-> _upcast(Some(Delta))
-> map(Result: :unwrap)
-> map( | (msg, addr) |
KvsMessageWithAddr: :from message(msg, addr))
-> demux_enum: :<KvsMessageWithAddr>();
puts = network recv|[Put];

gets = network recv|[Get];

// Join PUTs and GETs by key, persisting the PUTs.
puts -> map(|(key, value, _addr)| (key, value)) -> [0]lookup;
gets -> [1]lookup;

lookup = join::<'static, 'tick>(); 7

// Send GET responses back to the client address.
lookup
-> map( | (key, (value, client_addr)) |
(KvsResponse { key, value }, client addr))

-> dest_sink_serde(outbound);

// Join as a peer if peer_server 1is set.
source_iter delta(peer_server)
-> map(|peer_addr| (KvsMessage::PeerJoin, peer_addr))

-> network_send;

// Peers: When a new peer joins, send them all data.
writes store -> [O]peer _join;
peers -> [1l]peer_join;
peer_join = cross_join()
-> map(| ((key, value), peer addr)|
(KvsMessage: :PeerGossip { key, value }, peer_addr))

-> network_send;

// Outbound gossip. Send updates to peers.
peers -> peer_store;
source_iter_delta(peer_server) -> peer_store;
peer_store = union() -> persist();
writes -> [@]outbound gossip;
peer_store -> [1l]outbound gossip;
outbound gossip = cross_join()
// Don't send gossip back to same sender.
-> filter(|((_key, value, writer addr), peer_addr)|
writer_addr != peer_addr)
-> map(| ((key, value, writer_addr), peer addr)|
(KvsMessage: :PeerGossip { key, value }, peer_addr))

-> network_send;
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Fast?

Original Anna KVS. C++

2018 Amazon m4.16xlarge instances
(64 vCPU, 256GB RAM,)
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Fast?

Original Anna KVS. C++ Anna KVS. Hydro
2018 Amazon m4.16xlarge instances 2023 GCP n2-standard-64 instances
(64 vCPU, 256GB RAM,) (64 vCPU, 256GB RAM)
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Fast?

Hydro Anna Throughput

High contention |zipf coefficient = 4]
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Consistently Replicable

« At a glance!

4 Sort of
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A DBMS Lens on Cloud Programming



A Classical DBMS Lens

Decreasing declarativity, increasing implementation detall
Relational Calculus

=> Relational Algebra (SPJU...)

=> Physical Algebra (Scan, BtreeScan, Hashjoin, Sort, MergedJoin, etc.)



Good News / Bad News on the state of affairs

« Good news: Dedalus is a “Relational calculus” for distributed programming

« Bad news: programmers don’t like it. Can we |leave the walled garden of logic?

4« Functional/algebraic expressions are more palatable (ie. they’re in Python)

4« Good news: An Algebra for distributed updates: Semi-Lattices/CRDTs

4« Bad news: they define updates on state, but no queries/functions

4 Also, we can’t ignore the shifting “physical” properties of data in motion

« (Randomized) ordering, batching, duplication



|deally

4 Unify formalisms across Logic / Algebra / “Physical” Algebra

« Physical layer correctness proofs under network non-determinism

« Physical algebra rich enough to capture “typical reality”
4 Correctness under replication, partitioning, batching, incrementalization

4« Analysis of termination






Semi-Lattices / CRDTs (S, U)

4« Batching of Messages = Associativity

« Reordering of Messages = Commutativity

< C @ crdt.tech/papers.html G h % ¢ © & » L O O
i i — ©.+ Conflict-free Replicated Data Types GitHub
4 Duplication of Messages = ldempotence P P
About CRDTs [177]
e Stéphane Weiss, Pascal Urso, and Pascal Molli. Wooki: A P2P
5 wiki-based collaborative writing tool. In 8th International
dBsts Conference on Web Information Systems Engineering, WISE 2007,
Implementations pages 503--512. Springer LNCS volume 4831, December 2007.
Conflict-free Replicated Data Types T ElEE 0| BSbldR
p yp Community Keywords: text-editing, WOOTO
[178]
Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine.
Marc Shaplro, INRIA & LIP6, Paris, France T Data consistency for P2P collaborative editing. In 20th ACM
Nuno Pr eguiga, CITI, Universidade Nova de Lisboa, Portugal Conjerence omComputer Stpportes Copperative Wouks £SO
2006, pages 259--268. ACM, November 2006. [ bib | DOI | .pdf]
Carlos Baquero, Universidade do Minho, Portugal -
Marek Zawirski, INRIA & UPMC, Paris, France 23] | |
Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine.

Real time group editors without operational transformation.
TR 2011 Research Report RR-5580, INRIA, May 2005. [ bib | http ]
Keywords: text-editing, WOOT




Conflict-Free Replicated Data Types (CRDTs)

UPDATE UPDATE

MONOTONE MONOTONE

MERGE

QUERY QUERY



SemiLattice: (P(I), U) X (P(I), V)

CRDT Example: Shopping Cart

INSERTS REMOVES

Iltem

Item checkout service

Potato

Ferrari

Ferrari
<~

INSERTS REMOVES

Iltem Iltem
Potato Ferrari
Ferrari

0,0

query contents =
INSERTS - REMOVES

Keep CALM and CRDT On
Shadaj Laddad’ Conor Power” Mae Milano
University of California, Berkeley University of California, Berkeley University of California, Berkeley
shadaj@cs.berkeley.edu conorpower@cs.berkeley.edu mpmilano@cs.berkeley.edu
Alvin Cheung Natacha Crooks Joseph M. Hellerstein

University of California, Berkeley
ncrooks@cs.berkeley.edu

University of California, Berkeley
akcheung@cs.berkeley.edu

University of California, Berkeley
hellerstein@cs.berkeley.edu




Incremental View Maintenance Shopping Cart

ltem

Count

Potato

Ferrari

“Remove Ferrari” -

Ferrari -= 1

SemiLattice: (P(I), U) X (P(I), V)
VS.
Abelian Group: (Z[1], +)




One can put a query language “on top” of this

4« Desiderata for gueries over CRDT state

4« An expressive & intuitive query interface for programmers (Logic or Algebra or ...)
 Negation

e Recursion

4« Classical query optimization e.g. operation reordering and distributivity
4« Distributed optimizations

« Monotonicity analysis for replication

 Functional Dependency analysis for partitioning



CALM Theorem Revisited



Challenge: Replica Consistency

« Ensure that distant agents agree (or will agree) on common knowledge.
4 Classic example: data replication

« How do we know If they agree on the value of a mutable variable x?
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Challenge: Replica Consistency

« Ensure that distant agents agree (or will agree) on common knowledge.
4« Classic example: data replication
« How do we know If they agree on the value of a mutable variable x?

4« If they disagree now, what could happen later?

4« Split Brain divergence!
« We want to generalize to program outcomes «

4« Independent of “data races” along the way
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Classical Solution: Coordination

4 Global total order of operations

4« Via atomic instructions, locks, distributed protocols like Paxos and 2-phase commit, etc.

4« Expensive at every scale

4« When can we avoid?




Generational Shift to Reasoning at the App Level

20th Century 215t Century
Read/Write Immutable State
Access/Store Monotonicity Analysis
Linearizability Functional Dependencies
Serializability Data Provenance
worst-case assumptions - P app-specific assumptions

Tired: Wired:
Reasoning about App Semantics

Reasoning about memory access
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Big Queries: When? Why?

4 When do | need Coordination?
’ oo Why’P
4« No really: Why?

red?
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EFasy and Hard Questions

Who Is the youngest”?




EFasy and Hard Questions

Who Is the youngest”?

IAxVy (x <)




EFasy and Hard Questions

Who Is the person nobody iIs

younger than?
3 Ix=3y (X > y)

MOV NL




CALM

Theorem (CALM): A distributed program has a
consistent, coordination-free distributed
implementation ifand only if it is

Hellerstein JM. The Declarative Imperative: Ameloot TJ, Ketsman B, Neven F, Zinn D. Weaker forms of
Experiences and conjectures in distributed logic. monotonicity for declarative networking: a more fine-grained
ACM PODS Keynote, June 2010 answer to the CALM-conjecture.

ACM SIGMOD Record, Sep 2010. ACM TODS, Feb 2016.

Ameloot TJ, Neven F, Van den Bussche J. Relational Hellerstein, JM, Alvaro, P. Keeping CALM: When Distributed

transducers for declarative networking. Consistency is Easy.
JACM, Apr 2013. CACM, Sept, 2020.
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Definitions

4« Monotonic: you know

4 Consistent: produces the same output regardless of data placement

« Hence eventually consistent across replicas, runs, gossiping partitions, etc.

« Coordination:
4 “Control” messages, as opposed to "Data” messages.

« Coordination-free: there is some partitioning of the data s.t. the query answer is reached

without communication



More Detall

THEOREM 5.11. Let L be a query language containing UCQ. For every query Q that
1s expressible in L, the following are equivalent:

(1) Q can be distributedly computed by a coordination-free L-transducer;
(2) Q can be distributedly computed by an oblivious L-transducer; and,

(3) Qs monotone. ANVAB JACM 2013

4 ( does not read /d or A/l relations






Semi-Lattices: CALM Algebra

4 Semi-Lattice: <§, +>
4 Associative: X+ (y+2z)=(X+Yy) + z

« Commutative: x + y =y + X

« ldempotent: x + x = X

4 BEvery semi-lattice corresponds to a partial order:

4 X <<=y & X+Yy =Y

(oo Ow 4T 3\

_ et
o/

CALM connection: monotonicity in the lattice’s partial order



Free Termination

4 Without coordination, nodes don’t know If they’ve seen the entire input
4« What query results are certain regardless of future updates?

4 Can we detect termination for arbitrary update and query functions?
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Free Termination Beyond Monotonicity

\
\
\:

\

\
\

L

o

D
o

\
€

©
I

® G



Free Termination Beyond Monotonicity

\
\
\:

\

D
o

\
€=

® G






HYDRO Stack

@

L1
pedoM

d T

HYDROLYSIS Compileg

(@ )
HYDROFLOW

(local)
l

HYDRODEPLOY




An optimizer for protocols like Paxos? Tricky!
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Challenges in Optimizing Protocols like Paxos

« Many published Paxos variants are unrecognizably equivalent
« We won’t try to synthesize these human-generated variants

4« Goal: using simple correct optimizations, achieve excellent performance.

4« Aim to match performance of the human innovations

4« In a small, provably equivalent search space of programs

R ——



Simple, Provable Equivalence

Two forms of “compartmentalization”
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rect by assertion.

Hand-written in Scala, cor

' ?
How much can We formalize/ automate



Mutually Independent Decoupling

4 Cl and C2 mutually independent @

E] Component C1

Component C [E

Component C2




Monotonic Decoupling

4« C2 monotonic (persistent) - I

Compo:nent C1

Component C [E

Component C2




Functional Decoupling

|
i - Compo:nent C1

4« C2 a pure function n
Component C [E

Component C2




Partitioning Discovery

4 Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

4« Co-Hash predicates in a single rule body

* PCA,

3. C) - R(A,

3), S(

B3, C)

Definition 4.1. A distribution policy D over component C is
parallel disjoint correct if for any fact f of C, for any two facts f1,f>
in the proof tree of f, D(f1)=D(f2).



Partitioning Discovery

4 Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

4

Definition 4.1. A distribution policy D over component C is
parallel disjoint correct if for any fact f of C, for any two facts f1,f>
in the proof tree of f, D(f1)=D(f2).

« Avolid re-partitioning across head-body dependencies

* P(A, B, C) - R(A,

(A, C) - P(A, B, C), Q(B, C)

3), S(

B3, C)



Partitioning Discovery

4 Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

4

Definition 4.1. A distribution policy D over component C is
parallel disjoint correct if for any fact f of C, for any two facts f1,f>
in the proof tree of f, D(f1)=D(f2).

4 Co-Hash by Inverse Functional Dependency

« PCA, D) - R(A,

3), H(C,

B), S(C, D)



Partitioning Discovery

4 Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

y

4 Co-Hash by Inverse Functional Dependency

4« PCA, D) - R(A,

3), H(C,

B3), S(C, D)

Definition 4.1. A distribution policy D over component C is
parallel disjoint correct if for any fact f of C, for any two facts f1,f>
in the proof tree of f, D(f1)=D(f2).

=

Given: h(c,) = h(c,) = same partition

(¢, = ¢,) = h(c,) = h(c,) = same partition



Partitioning Discovery

4 Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

y

Definition 4.1. A distribution policy D over component C is
parallel disjoint correct if for any fact f of C, for any two facts f1,f>
in the proof tree of f, D(f1)=D(f2).

4 Co-Hash by Inverse Functional Dependency

« PCA, D) - R(A,

3), H(C,

B), S(C, D)
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Fast?

Beats SOTA Paxos implementations
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Halfway there!

4« Rules proven correct, provide desired wins

4 Need:

« Cost model for an objective function

4« Search techniques to find optimal rewritings

4 E-graphs meet Query Optimizers

« See Max’s prior talk on Egg and Egglog

4« Very similar technologies!






Four Open Questions

Can we build a unified theory for all this business?
2. What’s a good type system for a physical algebra (Hydroflow)?
3. What role declarative languages in the era of generative Al?

4. What is time for? When should we spend time?



1. A Unifying Theory, Please?

4« CRDTs are semi-lattices for monotonic update across time/space

4 Dedalus has a model theoretic semantics of time/space

« CALM Theorem proved using relational transducers for time/space
4 Distributed system time often discussed in order theory terms

4« Programmers willing to embrace functional/algebraic dataflow

4« People often want to reason about transactions

« Not to mention ... semi-rings!



2. Hydroflow Properties

4 Stream S characterized by properties 4 Operators act on properties

(V OPTM @ )() 4 Output invariant to input

: 4« Output preserves input
4 V:amultiset of values
4« QOutput enforces property

4 O: atotal order of arrival
* Deterministically

P:a thesization (batchin
‘ parenthesization { 2) * Non-Deterministically
4« T: atype (possibly algebraic)
4« M: monotonicity relationship between <; and O
4 (@. atomistic or not, i.e. 1s each item an atom of T

« X are all pairs x, y of items exclusive,
1.e.ifz<;x,z<;ythenz =0

80



4. The Narrow Waist

. _— . e Render
Between Generative Al "<y P
and Reliable Infrastructure ' Review

J S atiop:
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Check
for Correctness
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4. What i1s Time for?

“Time is what keeps everything from happening at once.”
Ray Cummings, 7he Girl in the Golden Atom, 1922

Fantastic




What is Time for?

“Time is what keeps everything from happening at once.”
Ray Cummings, 7he Girl in the Golden Atom, 1922

path(X,2) :- link(X,Y), path(Y,2) oo, et 1.5\0
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What is Time for?

“Time is what keeps everything from happening at once.”
Ray Cummings, 7he Girl in the Golden Atom, 1922

Fantasti
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Time In Distributed Systems is Semi-Lattice Based

4« Lamport’'s Happens-Before: A Partial Order
« Total-order per node (a “clock™)

4« Message send precedes receive

« Lamport clock: a semi-lattice (NN, max)

4« Provides Happens-Before relation

4« Vector clock: a semi-lattice MapLattice(Id = (IN, max))

4« Provides Happens-Before, Concurrent, Causal relations
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https://newbiettn.github.io/2014/05/03/lamport-clock-vs-vector-clock/



Time can be Immaterial

Wild assertion: systems folk often “pay too much” to track time.

4« Dedalus says time is irrelevant unless we cannot stratify, or we are
awalting a message

« But details in the Dedalus paper do enforce causality of messages

« Causal order is not needed forpositive Datalog. Datalog 2.0, 2012

« Can assert facts before their antecedents are known! On the CRON Conjecture

(E.g. during recovery).

. Tom J. Ameloot * and Jan Van den Bussche

« A variant of the “CRON Conjecture”, which was too broad.



88

How Many Clocks?

4« Dedalus has one “clock” per node

4« Increment on “event”, and to compute a cycle through negation

4 Timely/Differential Dataflow: Chronomania?

4« E.9. using clocks to track async-but-monotonic iteration

R

-

« When/why do we employ a (N, max) semi-lattice wrapper?

« Can a compiler decide this?



Thank Youl!
https://hydro.run

hellerstein@berkeley.edu
conorpower@berkeley.edu


https://hydro.run/

