
Logic and Algebras for
Cloud Computing

JOE HELLERSTEIN

UC BERKELEY

SUTTER HILL VENTURES

CONOR POWER

UC BERKELEY

2

Cray-1, 1976

Supercomputers

iPhone, 2007

Smart Phones

Macintosh, 1984

Personal Computers

PDP-11, 1970

Minicomputers

Sea Changes in Computing

3

New Platform + New Language = Innovation

Cray-1, 1976

Supercomputers

iPhone, 2007

Smart Phones

PDP-11, 1970

Minicomputers

Macintosh, 1984

Personal Computers

4

?
How will folks program the cloud?

In a way that fosters unexpected innovation

Distributed programming is hard!

• Parallelism, consistency, partial failure, …

Autoscaling makes it harder!

Today’s compilers don’t address distributed concerns

The Big Question

Programming the Cloud:

A Grand Challenge for Computing

Ted Codd
Turing Award 1981

Formalize specification;
automate implementation.

6

Long-Running Agendas, Recent Trends

Declarative Networking

Relational Machine Learning

Compiler Analysis

…

7

Long-Running Agendas, Recent Trends

Declarative Networking

Relational Machine Learning

Compiler Analysis

…

Trend: Logic → Algebra

Semi-Lattices

Semi-Rings

Abelian Groups

Declarative Programming for the Cloud

Relational databases were invented

to hide how data is laid out

and how queries are executed.

The cloud was invented

to hide how computing resources are laid out

and how computations are executed.

10

Goals

11

LLVM for the Cloud?

A language/compiler/debugger that addresses distributed concerns!

Is my program consistent or will different machines disagree?

How can I partition state safely?

What failures can this tolerate and how many?

What data is going where and who can see it?

Tunable objective functions. Please optimize for:

• $$, not latency.

• 99’th percentile, not 95th

• Etc. LLVM
COMPILER INFRASTRUCTURE

12

LLVM for the Cloud?

A language/compiler/debugger that addresses distributed concerns!

Is my program consistent or will different machines disagree?

How can I partition state safely?

What failures can this tolerate and how many?

What data is going where and who can see it?

Tunable objective functions. Please optimize for:

• $$, not latency.

• 99’th percentile, not 95th

• Etc. LLVM
COMPILER INFRASTRUCTURE

13

Hydro

A language/compiler/debugger that addresses distributed concerns!

Is my program consistent or will different machines disagree?

How can I partition state safely?

What failures can this tolerate and how many?

What data is going where and who can see it?

Tunable objective functions. Please optimize for:

• $$, not latency.

• 99’th percentile, not 95th

• Etc.

CIDR 21

HYDRO

Stack

HYDRODEPLOY

An e-graph based “optimizer”

HYDROLOGIC

(global)

HYDROLYSIS Compiler

HYDROFLOW

(local)
A per-node physical algebra

Implemented in Rust.

A machine-oblivious logic (or algebra)?

…Actors
(e.g. Orleans)

Functional
(e.g. Spark)

Logic
(e.g. Bloom)

Futures
(e.g. Ray)

New
DSLs

HYDRAULIC Verified Lifting

Sequential
Code

Initial results

“Katara”: Laddad et al. OOPSLA 22

15

Topics for Today (and WIP)

Automatic Replication (of code and data)

Esp. “free” replication — consistency sans coordination (CALM)

(algebraic CALM Theorem)

Termination detection

Esp. “free” termination — detection sans coordination

(threshold morphisms and equivalences)

Automatic partitioning (of code and data)

Esp. “free” partitioning — parallel execution sans coordination

(functional dependencies integrated into algebraic types)

And excellent performance!

(vs hand-written C++)

HYDROLOGIC
(global)

HYDROLYSIS
Compiler

HYDROFLOW
(local)

17

?

18

Language/Theory Work: 2010-15

Formalism: Dedalus

CALM Theorem: coordination in its place

Consistency ó Monotonicity

: Logic + Lattices

w/stratified neg/agg, morphisms,

semi-naïve eval on lattices, etc

JMH PODS Keynote, 2010
Ameloot, et al PODS 2011
Ameloot et al. TODS 2016

Alvaro/Hellerstein CACM 2020

SOCC 2012

Datalog Reloaded 2010

TR 2011

19

Systems Work: 2015-2021

Cloudburst: Stateful FaaS

Compartmentalized Paxos

Lineage Driven Fault Injection

Why-Across-Time Provenance

VLDB 2020

VLDB 2021

SIGMOD 2015

SOCC 2018

20

Systems Highlight: Anna Key-Value Store

KVS: Petri dish of distributed systems!

“CALM” Semi-lattice Design

Monotonic ⇒ Freely Replicable (w/o coordination)

Update anywhere, gossip lazily

Zero concurrency control (locks, atomics, protocols)

ICDE 18 VLDB 19

21

Systems Highlight: Anna Key-Value Store

KVS: Petri dish of distributed systems!

“CALM” Semi-lattice Design

Monotonic ⇒ Freely Replicable (w/o coordination)

Update anywhere, gossip lazily

Zero concurrency control (locks, atomics, protocols)

ICDE 18 VLDB 19

22

Examples of lattice composition

• Metadata “wrappers” for various replica consistency mechanisms

MapLattice

Key LexicalPair

(ℕ, Max) Data: T

MapLattice

Key LexicalPair

MapLattice Data: L

Key (ℕ, Max)

Last Writer Wins Causal Consistency

23

Anna KVS
Performance + Consistency

700x!

Hand-written in C++ for a Ph.D. dissertation.

Implementation correct by assertion.

Can we formalize and maintain speed?

Fast, especially under contention

Up to 700x faster than Masstree and Intel TBB on multicore

Up to 10x faster than Cassandra in a geo-deployment

350x the performance of DynamoDB for the same price

Formalisms for Distributed Correctness

Desired: type system or compiler guarantee

Starting from a “trusted base”

Basic semi-lattices, e.g.

• Sets: ("(T), ⋃)

• Counters: (ℕ, max)

Composite semi-lattices, e.g.

• KeyValueMap,

• Product, LexicalProduct (when possible)

“Physical Algebra” of operators, e.g.

• ⨆, ⨉, filter, map, fold

• scan, “network”, mux, demux, etc.

// Demux network inputs

network_recv = source_stream_serde(inbound)
-> _upcast(Some(Delta))
-> map(Result::unwrap)
-> map(|(msg, addr)|

KvsMessageWithAddr::from_message(msg, addr))
-> demux_enum::<KvsMessageWithAddr>();

puts = network_recv[Put];
gets = network_recv[Get];

// Join PUTs and GETs by key, persisting the PUTs.
puts -> map(|(key, value, _addr)| (key, value)) -> [0]lookup;
gets -> [1]lookup;

lookup = join::<'static, 'tick>();

// Send GET responses back to the client address.
lookup

-> map(|(key, (value, client_addr))|
(KvsResponse { key, value }, client_addr))

-> dest_sink_serde(outbound);

// Join as a peer if peer_server is set.

source_iter_delta(peer_server)
-> map(|peer_addr| (KvsMessage::PeerJoin, peer_addr))
-> network_send;

// Peers: When a new peer joins, send them all data.
writes_store -> [0]peer_join;

peers -> [1]peer_join;
peer_join = cross_join()

-> map(|((key, value), peer_addr)|
(KvsMessage::PeerGossip { key, value }, peer_addr))

-> network_send;

// Outbound gossip. Send updates to peers.
peers -> peer_store;
source_iter_delta(peer_server) -> peer_store;
peer_store = union() -> persist();
writes -> [0]outbound_gossip;
peer_store -> [1]outbound_gossip;

outbound_gossip = cross_join()
// Don't send gossip back to same sender.
-> filter(|((_key, _value, writer_addr), peer_addr)|

writer_addr != peer_addr)
-> map(|((key, value, _writer_addr), peer_addr)|

(KvsMessage::PeerGossip { key, value }, peer_addr))

-> network_send;

Anna in Hydroflow, a semi-lattice

-inspired dataflow lang

(semi-lattice “query plans”)

// Demux network inputs

network_recv = source_stream_serde(inbound)
-> _upcast(Some(Delta))
-> map(Result::unwrap)
-> map(|(msg, addr)|

KvsMessageWithAddr::from_message(msg, addr))
-> demux_enum::<KvsMessageWithAddr>();

puts = network_recv[Put];
gets = network_recv[Get];

// Join PUTs and GETs by key, persisting the PUTs.
puts -> map(|(key, value, _addr)| (key, value)) -> [0]lookup;
gets -> [1]lookup;

lookup = join::<'static, 'tick>();

// Send GET responses back to the client address.
lookup

-> map(|(key, (value, client_addr))|
(KvsResponse { key, value }, client_addr))

-> dest_sink_serde(outbound);

// Join as a peer if peer_server is set.

source_iter_delta(peer_server)
-> map(|peer_addr| (KvsMessage::PeerJoin, peer_addr))
-> network_send;

// Peers: When a new peer joins, send them all data.
writes_store -> [0]peer_join;

peers -> [1]peer_join;
peer_join = cross_join()

-> map(|((key, value), peer_addr)|
(KvsMessage::PeerGossip { key, value }, peer_addr))

-> network_send;

// Outbound gossip. Send updates to peers.
peers -> peer_store;
source_iter_delta(peer_server) -> peer_store;
peer_store = union() -> persist();
writes -> [0]outbound_gossip;
peer_store -> [1]outbound_gossip;

outbound_gossip = cross_join()
// Don't send gossip back to same sender.
-> filter(|((_key, _value, writer_addr), peer_addr)|

writer_addr != peer_addr)
-> map(|((key, value, _writer_addr), peer_addr)|

(KvsMessage::PeerGossip { key, value }, peer_addr))

-> network_send;

In Hydroflow

(n1v1) union

(n2v1) dest_sink_serde

(n3v1) source_stream_serde

(n4v1) _upcast

(n5v1) map

(n6v1) map

(n7v1) demux_enum

(n8v1) for_each

Server
Response

(n9v1) map

Peer
Join

(n11v1) union

PutPeer
Gossip

(n16v1) join

Get

1

(n10v1) tee

(n20v1) cross_join

1

(n23v1) union

(n12v1) tee

(n13v1) map

(n25v1) cross_join

0

(n14v1) persist

(n15v1) tee

0 0

(n17v1) map

1

(n18v1) source_iter_delta

(n19v1) map (n21v1) map

(n22v1) source_iter_delta

(n24v1) persist

1

(n26v1) filter

(n27v1) map

See The Hydro Book: https://hydro.run/docs/hydroflow/

Original Anna KVS. C++

2018 Amazon m4.16xlarge instances
(64 vCPU, 256GB RAM,)

Fast?

Anna KVS. Hydro

2023 GCP n2-standard-64 instances
(64 vCPU, 256GB RAM)

Fast? ✅

Original Anna KVS. C++

2018 Amazon m4.16xlarge instances
(64 vCPU, 256GB RAM,)

Fast? ✅

30

Consistently Replicable ✅

At a glance!

Sort of

(n1v1) union

(n2v1) dest_sink_serde

(n3v1) source_stream_serde

(n4v1) _upcast

(n5v1) map

(n6v1) map

(n7v1) demux_enum

(n8v1) for_each

Server
Response

(n9v1) map

PeerJoin

(n11v1) union

PutPeer
Gossip

(n16v1) join

Get
1

(n10v1) tee

(n20v1) cross_join

1

(n23v1) union

(n12v1) tee

(n13v1) map

(n25v1) cross_join

0

(n14v1) persist

(n15v1) tee

0 0

(n17v1) map

1

(n18v1) source_iter_delta

(n19v1) map (n21v1) map

(n22v1) source_iter_delta

(n24v1) persist

1

(n26v1) filter

(n27v1) map

31

A DBMS Lens on Cloud Programming

A Classical DBMS Lens

Decreasing declarativity, increasing implementation detail

Relational Calculus

=> Relational Algebra (SPJU...)

=> Physical Algebra (Scan, BtreeScan, Hashjoin, Sort, MergeJoin, etc.)

Good News / Bad News on the state of affairs

Good news: Dedalus is a “Relational calculus” for distributed programming

Bad news: programmers don’t like it. Can we leave the walled garden of logic?

Functional/algebraic expressions are more palatable (ie. they’re in Python)

Good news: An Algebra for distributed updates: Semi-Lattices/CRDTs

Bad news: they define updates on state, but no queries/functions

Also, we can’t ignore the shifting “physical” properties of data in motion

(Randomized) ordering, batching, duplication

Ideally

Unify formalisms across Logic / Algebra / “Physical” Algebra

Physical layer correctness proofs under network non-determinism

Physical algebra rich enough to capture “typical reality”

Correctness under replication, partitioning, batching, incrementalization

Analysis of termination

35

Algebras of Dataflow

Semi-Lattices / CRDTs

Batching of Messages

Reordering of Messages

Duplication of Messages

= Associativity

= Commutativity

= Idempotence

TR 2011

(S, ⊔)

Conflict-Free Replicated Data Types (CRDTs)

CRDT Example: Shopping Cart
SemiLattice: (!(I), ∪) ⨉ (!(I), ∪)

VLDB 2023

Incremental View Maintenance Shopping Cart

Item Count

Potato 1

Ferrari 1

“Remove Ferrari” à

Ferrari -= 1

SemiLattice: (!(I), ∪) ⨉ (!(I), ∪)
vs.

Abelian Group: (ℤ[I], +)

One can put a query language “on top” of this

Desiderata for queries over CRDT state

An expressive & intuitive query interface for programmers (Logic or Algebra or …)

• Negation

• Recursion

Classical query optimization e.g. operation reordering and distributivity

Distributed optimizations

• Monotonicity analysis for replication

• Functional Dependency analysis for partitioning

41

CALM Theorem Revisited

42

Challenge: Replica Consistency

Ensure that distant agents agree (or will agree) on common knowledge.

Classic example: data replication

How do we know if they agree on the value of a mutable variable x?

x = ❤

43

Challenge: Replica Consistency

Ensure that distant agents agree (or will agree) on common knowledge.

Classic example: data replication

How do we know if they agree on the value of a mutable variable x?

If they disagree now, what could happen later?

Split Brain divergence!

We want to generalize to program outcomes

Independent of “data races” along the way

x = ❤x = "

44

Classical Solution: Coordination

Global total order of operations

via atomic instructions, locks, distributed protocols like Paxos and 2-phase commit, etc.

Expensive at every scale

When can we avoid?

45

Generational Shift to Reasoning at the App Level

21st Century

Immutable State

Monotonicity Analysis

Functional Dependencies

Data Provenance

…

app-specific assumptions

Tired:
Reasoning about memory access

Wired:
Reasoning about App Semantics

20th Century

Read/Write

Access/Store

Linearizability

Serializability

…

worst-case assumptions

46

Big Queries: When? Why?

When do I need Coordination?

Why?

No really: Why?

When is Coordination required?

48

Easy and Hard Questions

Is anyone over 18? Who is the youngest?

49

Easy and Hard Questions

Is anyone over 18? Who is the youngest?

∃x∀y (x ≤ y)∃x x > 18

50

Easy and Hard Questions

Is anyone over 18? Who is the person nobody is
younger than?∃x x > 18 ∃x¬∃y (x > y)

51

Hellerstein JM. The Declarative Imperative:
Experiences and conjectures in distributed logic.
ACM PODS Keynote, June 2010
ACM SIGMOD Record, Sep 2010.

Ameloot TJ, Neven F, Van den Bussche J. Relational
transducers for declarative networking.
JACM, Apr 2013.

Ameloot TJ, Ketsman B, Neven F, Zinn D. Weaker forms of
monotonicity for declarative networking: a more fine-grained
answer to the CALM-conjecture.
ACM TODS, Feb 2016.

CALM: CONSISTENCY AS LOGICAL

MONOTONICITY

Theorem (CALM): A distributed program has a
consistent, coordination-free distributed

implementation if and only if it is monotonic.

Hellerstein, JM, Alvaro, P. Keeping CALM: When Distributed
Consistency is Easy.
CACM, Sept, 2020.

52

Definitions

Monotonic: you know

Consistent: produces the same output regardless of data placement

Hence eventually consistent across replicas, runs, gossiping partitions, etc.

Coordination:

“Control” messages, as opposed to “Data” messages.

Coordination-free: there is some partitioning of the data s.t. the query answer is reached

without communication

53

More Detail

Oblivious: does not read Id or All relations

ANVdB JACM 2013

54

Free Termination

55

Semi-Lattices: CALM Algebra

Semi-Lattice: <S, +>

Associative: x + (y + z) = (x + y) + z

Commutative: x + y = y + x

Idempotent: x + x = x

Every semi-lattice corresponds to a partial order:

x <= y ⇔ x + y = y

CALM connection: monotonicity in the lattice’s partial order

56

Free Termination

Without coordination, nodes don’t know if they’ve seen the entire input

What query results are certain regardless of future updates?

Can we detect termination for arbitrary update and query functions?

∅

(!({ , , , }), ∪)

∅

F

T

(!({ , , , }), ∪) (#, ∨)

∅

F

T
has_pair()

(!({ , , , }), ∪) (#, ∨)

Free Termination Beyond Monotonicity

F

T
2

1

a

b

a,b a,b

3

Free Termination Beyond Monotonicity

2

1 F

T

3

a

b

a,b a,b

62

Automatic Partitioning

HYDRO Stack

HYDROLOGIC
(global)

HYDRO LYS IS Compiler

HYDRODEPLOY

HYDROFLOW

(local)

Deda
lus

An optimizer for protocols like Paxos? Tricky!

Challenges in Optimizing Protocols like Paxos

Many published Paxos variants are unrecognizably equivalent

We won’t try to synthesize these human-generated variants

Goal: using simple correct optimizations, achieve excellent performance.

Aim to match performance of the human innovations

In a small, provably equivalent search space of programs

Simple, Provable Equivalence

Two forms of “compartmentalization”

Hand-written in Scala, correct by assertion.

How much can we formalize/automate?

VLDB 2021

Mutually Independent Decoupling

C1 and C2 mutually independent

a

b

Component C

a

Component C1

b

Component C2

Monotonic Decoupling

C1 and C2 mutually independent

C2 monotonic (persistent) a

b

Component C

a

Component C1

b

Component C2

⏰

Functional Decoupling

C1 and C2 mutually independent

C2 monotonic (persistent)

C2 a pure function

a

b

Component C

a

Component C1

b

Component C2

⏰

Partitioning Discovery

Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

Co-Hash predicates in a single rule body

• P(A, B, C) :- R(A, B), S(B, C)

Partitioning Discovery

Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

Co-Hash predicates in a single rule body

• P(A, B, C) :- R(A, B), S(B, C)

Avoid re-partitioning across head-body dependencies

• P(A, B, C) :- R(A, B), S(B, C)

• T(A, C) :- P(A, B, C), Q(B, C)

Partitioning Discovery

Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

Co-Hash predicates in a single rule body

• P(A, B, C) :- R(A, B), S(B, C)

Avoid re-partitioning across head-body dependencies

• P(A, B, C) :- R(A, B), S(B, C)

• T(A, C) :- P(A, B, C), Q(B, C)

Co-Hash by Inverse Functional Dependency

P(A, D) :- R(A, B), H(C, B), S(C, D)

Partitioning Discovery

Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

Co-Hash predicates in a single rule body

• P(A, B, C) :- R(A, B), S(B, C)

Avoid re-partitioning across head-body dependencies

• P(A, B, C) :- R(A, B), S(B, C)

• T(A, C) :- P(A, B, C), Q(B, C)

Co-Hash by Inverse Functional Dependency

P(A, D) :- R(A, B), H(C, B), S(C, D) C → B

Given: h(c1) = h(c2) ⇒ same partition

(c1 = c2) ⇒ h(c1) = h(c2) ⇒ same partition

Partitioning Discovery

Parallel Disjoint Correctness
[Bruhati, Koutris, Schwentick, Dagstuhl 2020]

Co-Hash predicates in a single rule body

• P(A, B, C) :- R(A, B), S(B, C)

Avoid re-partitioning across head-body dependencies

• P(A, B, C) :- R(A, B), S(B, C)

• T(A, C) :- P(A, B, C), Q(B, C)

Co-Hash by Inverse Functional Dependency

P(A, D) :- R(A, B), H(C, B), S(C, D) C → B, D → C

Fast? ✅

Beats SOTA Paxos implementations

Rule-based optimization
(Hydroflow)

Whittaker’s
Compartmentalized Paxos

(Hydroflow)

Whittaker’s
Compartmentalized Paxos

(Scala)

Halfway there!

Rules proven correct, provide desired wins

Need:

Cost model for an objective function

Search techniques to find optimal rewritings

E-graphs meet Query Optimizers

See Max’s prior talk on Egg and Egglog

Very similar technologies!

77

Open Questions

78

Four Open Questions

1. Can we build a unified theory for all this business?

2. What’s a good type system for a physical algebra (Hydroflow)?

3. What role declarative languages in the era of generative AI?

4. What is time for? When should we spend time?

79

1. A Unifying Theory, Please?

CRDTs are semi-lattices for monotonic update across time/space

Dedalus has a model theoretic semantics of time/space

CALM Theorem proved using relational transducers for time/space

Distributed system time often discussed in order theory terms

Programmers willing to embrace functional/algebraic dataflow

People often want to reason about transactions

Not to mention … semi-rings!

80

2. Hydroflow Properties

Stream S characterized by properties
(V,O,P,T,M,@,X):

V: a multiset of values
O: a total order of arrival
P: a parenthesization (batching)
T: a type (possibly algebraic)
M: monotonicity relationship between ≤T and O
@: atomistic or not, i.e. is each item an atom of T
X: are all pairs x, y of items exclusive,
i.e. if z ≤T x, z ≤T y then z = 0

Operators act on properties
Output invariant to input
Output preserves input
Output enforces property

• Deterministically
• Non-Deterministically

4. The Narrow Waist
Between Generative AI
and Reliable Infrastructure

Render
for Human

Review

Check
for Correctness

82

4. What is Time for?

“Time is what keeps everything from happening at once.”

Ray Cummings, The Girl in the Golden Atom, 1922

83

What is Time for?

“Time is what keeps everything from happening at once.”

Ray Cummings, The Girl in the Golden Atom, 1922

path(X,Z) :- link(X,Y), path(Y,Z)
Pipeline Semi-Naïve Evaluation

Loo, et al. SIGMOD 2006

84

What is Time for?

“Time is what keeps everything from happening at once.”

Ray Cummings, The Girl in the Golden Atom, 1922

p :- ¬p

85

What is Time for?

“Time is what keeps everything from happening at once.”

Ray Cummings, The Girl in the Golden Atom, 1922

p@t+1 :- ¬p@t
Dedalus:

Time provides local stratification

of cycles through negation

(every proof tree has finite depth)

86

Time In Distributed Systems is Semi-Lattice Based

Lamport’s Happens-Before: A Partial Order

Total-order per node (a “clock”)

Message send precedes receive

Lamport clock: a semi-lattice (ℕ, max)

Provides Happens-Before relation

Vector clock: a semi-lattice MapLattice(Id ⇒ (ℕ, max))

Provides Happens-Before, Concurrent, Causal relations

https://newbiettn.github.io/2014/05/03/lamport-clock-vs-vector-clock/

87

Time can be Immaterial

Wild assertion: systems folk often “pay too much” to track time.

Dedalus says time is irrelevant unless we cannot stratify, or we are

awaiting a message

But details in the Dedalus paper do enforce causality of messages

Causal order is not needed for positive Datalog.

Can assert facts before their antecedents are known!

(E.g. during recovery).

A variant of the “CRON Conjecture”, which was too broad.

Datalog 2.0, 2012

88

How Many Clocks?

Dedalus has one “clock” per node

Increment on “event”, and to compute a cycle through negation

Timely/Differential Dataflow: Chronomania?

E.g. using clocks to track async-but-monotonic iteration

When/why do we employ a (ℕ, max) semi-lattice wrapper?

Can a compiler decide this?

Thank You!
https://hydro.run

hellerstein@berkeley.edu

conorpower@berkeley.edu

8

https://hydro.run/

