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Fixed-point equations

We study systems of equations of the form

X1 = H(Xy, ..., Xn)
Xo = h(Xy,...,Xn)
Xn = f(Xy,...,Xn)

where the f’s are polynomials over an w-continuous semiring.



w-continuous semirings

w-continuity:

the relation aC b < dc: a-+ ¢ = b is a partial order
[ -chains have limits

Examples: nonnegative integers and reals with oo, tropical semiring,
min-max semirings, complete lattices, Viterbi and tukasiewicz semirings,
language semiring ...

In the rest of the talk:
semiring = w-continuous semiring.




Research program

Develop generic solution or approximation methods,

valid for all semirings or at least large classes.




Kleene iteration

Theorem [Kleene]: A system of fixed-point equations over a semiring has
a least solution uf w.r.t. the natural order C.

This least solution is the supremum of {k;};~q , where

ko = £(0)
ki1 = f(k;)

Basic algorithm for calculation of uf : compute kg, k1, ko, ... until either
Ki = ki1 or the approximation is considered adequate.



The left-linear case
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The left-linear case

(Loosely speaking!) Kleene iteration has linear convergence over the
reals: K iterations give © (k) accurate bits.



The left-linear case

(Loosely speaking!) Kleene iteration has linear convergence over the
reals: K iterations give © (k) accurate bits.

Gauss elimination:
Definea* =1+a+t+a-a+a-a-a+---
Arden’s Lemma: the least solutionof X = aX + bis X := a*b

Algorithm: pick X; and rewrite its equation as X; = aX;+ b;
replace X; in all other equations by a*b



The left-linear case

Gauss elimination reduces solving a system of left-linear equations to
computing a* for a given semiring element a.
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The left-linear case

Gauss elimination reduces solving a system of left-linear equations to
computing a* for a given semiring element a.

Real semiring: either a* =0, a*=1/(1 —a),ora" =

Language semiring: we use a* as representation of > 72, &

(What does it mean to “solve” an equation?)



The non-linear case

Real semiring: convergence of Kleene iteration can be very slow.
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)<:§)<2+5 puf =1=0.99999...

Logarithmic convergence: K iterations give ©(log k) accurate bits.

For example, kogog = 0.9990



The non-linear case

Real semiring: convergence of Kleene iteration can be very slow.

1 1

X=-X°4+-  uf=1=0.99999...
2 2

Logarithmic convergence: k iterations give ©(log k) accurate bits.

For example, kogpo = 0.9990

No reduction to computing Kleene stars



Kleene lteration for X = f(X) (univariate case)
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Newton’s Method for X = f(X) (univariate case)
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Newton’s method is usually very efficient

Often exponential convergence*: k iterations give ©(2) bits.

but not robust.

May not converge, converge only locally (in some neighborhood of the
least fixed-point), or converge very slowly.

* Called quadratic convergence in numerical mathematics.



A frustrating mismatch

e Kleene lteration is robust and applicable to every semiring, but
converges slowly.

e Newton’s Method may converge very fast, but is not robust and can
only be applied to the reals.



A frustrating mismatch and its solution

e Kleene lteration is robust and applicable to every semiring, but
converges slowly.

e Newton’s Method may converge very fast, but is not robust and can
only be applied to the reals.

Main results:

e Newton’'s Method can be generalized to arbitrary semirings, and
becomes as robust as Kleene’'s method (our work).

e Newton's method converges at least linearly and often exponentially
over the real semiring (some work by us + work by Etessami, Stewart
and Yannakakis).



Generalizing Newton’s Method



Derivation trees |

An equation X = f(X) over a semiring induces a context-free grammar G

Examples: X =0.3X240.5 induces X — 03X X | 0.5

X=02XY+03 induces X — 02XY | 0.8
Y=07XY+0.1 Y - 0.7XY | 0.1

Running example with arbitrary semiring elements a, b, c:

X =aX?+bX +c and G: X — aXX | bX | ¢




Derivation trees ||

Assign to a derivation tree t its yield

Y(t) : = (ordered) product of the leaves of t

Assignto aset T of derivation trees its yield

Y (T) : =sum of the yields of the elements of T

G: X - aXX | bX | c

X X X

\ /TN g

C a X X a/X X
| | | / \
c ¢C C b X

|
Yield of the three trees: ¢c+a-c-c+a-c-b-c ¢



Derivation trees |l

Proposition: Let D be the set of all derivation trees of G. Then

uf = Y(D)

X = f(X) = G




Approximants as yields: Kleene iteration

Proposition: The i-th Kleene approximant k; is the yield of all derivation
trees of height at most /.

X = f(X) - G

| |

ki —= Trees of depth < i




Approximants as yields: Newton iteration

Theorem: The /-th Newton approximant v; is the yield of all derivation
trees of Strahler number at most /.

X = f(X) - G

| |

v - Trees of Strahler number < i




Arthur N. Strahler (1952)

BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA
VOL. 63, PP, 1117-1142, 23 FIGS.. 1 PL. NOVEMBER 10862

HYPSOMETRIC (AREA-ALTITUDE) ANALYSIS OF EROSIONAL TOPOG-
RAPHY

By ArTHUR N. STRAHLER



Arthur N.Strahler (1952)

Which is the main
stream?
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Arthur N.Strahler (1952)

The "finger-tip” channels con-
stitute the first-order segments.
[..]

A second-order segment is
formed by the junction of any
two first-order streams; a third-
order segment is formed by the
joining of any two second order
streams, elc.

Streams of lower order joining
a higher order stream do not
change the order of the higher

Stream



Strahler number of a tree

Definition: Strahler number S(t) of a tree t:
If £ has no subtrees (t has only one node), then S(t) := 0.

If t has subtrees t1,. .., tn, then let k := max{S(t;),..., S(tn)}.
If exactly one subtree of t has Strahler number k, then S(t) := k;
otherwise, S(t) := k + 1.
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Understanding Strahler numbers

A tree has Strahler number k > 0O if it consists of a spine

e with subtrees of Strahler number at most kK — 1

e ending at a node with two subtrees of dimension exactly k — 1.




Understanding Strahler numbers

A binary tree tree has Strahler number k > 0 if it consists of a spine

e with subtrees of Strahler number at most kK — 1

e ending at subtrees of dimension exactly k — 1.




Characterizations of the Strahler number

Fact: The Strahler number of a tree is the height of the largest minor that
Is a full binary tree.

Fact: The Strahler number of an arithmetic expression is the minimal
number of registers needed to evaluate it.

X R+ Yy
/ \ R> < z
+ w R> + R; x Ro
/ \ R> + x
X X R1 < R1 + R

/\ RQ(-W
y Z R1<—R1XR2



Computing the k-th Newton approximant

G: X - aXX | bX | c
Define grammars Gg, G1, G> . .. such that:

trees of G, — trees of G of Strahler number < k



Computing the k-th Newton approximant

G: X - aXX | bX | c
Define grammars Gg, G1, G> . .. such that:

trees of G, — trees of G of Strahler number < k

ldea: Xy generates the trees of Strahler number = k
Xy generates the trees of Strahler number < k

Gk X — Xu | Xk-1
Xy — aXu-1yXu-1y | aXk-1Xuw | aXuoXik-11 | bBXy

Gi: Xy — Xuo | Xo
aXo Xy | aXuyXpo | aXoXy | X
Go: X — C

2
!



Computing the k-th Newton approximant

G: X - aXX | bX | c

Define grammars Gg, G1, G> . .. such that:

trees of G, — trees of G of Strahler number < k

ldea: Xy generates the trees of Strahler number = k

Xy generates the trees of Strahler number < k

Xy + X1
aXu—1yXk-1y + aXu-1Xuw + aXu X1 + bX

Xy + Xo
aXoXo + aXuXo + aXjoXy + bXy
c



Computing the k-th Newton approximant

The equation
Xy = aXu-1yXu-1) + aXu-1 X + aXuXix-1 + bXu

IS linear in X.
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The equation
Xy = aXu-1yXk-1y + aX-1Xu + aXuXk-1 + bXi

IS linear in X.

Newton’s method approximates the solution of non-linear equations
assuming
one can solve (or approximate) linear equations.




Computing the k-th Newton approximant

The equation
Xy = aXu-1yXk-1y + aX-1Xu + aXuXk-1 + bXi

IS linear in X.

Newton’s method approximates the solution of non-linear equations
assuming
one can solve (or approximate) linear equations.

Over commutative semirings:
Xy = (2aXy-1 + b) Xy + aXy-1 Xik-1)
Xw = (2aXu 1+ b)* a Xz




Some applications



Termination proofs

Theorem: Let X = f(X) be a system of n polynomial fixpoint equations
over an idempotent and commutative semiring. Then Newton’s method
terminates after at most n 4 1 iterations.

ldempotent: number of copies of each tree is irrelevant

Commutative: trees with different order of leaves have the same yield.

Prove that for every derivation tree there is a derivation tree of Strahler
number at most n 4 1 with the same leaves, possibly in different order



Parikh’s theorem

Theorem [Parikh '66]: For every context-free language there is a regular
language with the same commutative image.

Problem: Given a CFG G, construct an automaton A such that L(G) and
L(A) have the same commutative image.

Solution: Use that L(G) and L(Gpn) have the same commutative image.

Construct A whose runs “simulate” the derivations of Gp.



Parikh’s theorem

Example: AL — A1A> | a

A1 (0,1)
= AA = (1,1)
= AibArahs ba g o
—  A1bcAraAs £ (21
— abcAiaA; 4 (1,1)
= abcaaA; 4, (0,1)
= abcaacA: <, (1,0)
= abcaaca N (0,0)

A> — bA>aA> ‘ CA1




A recommendation system

ldea: design a recommendation system in which:
e individuals can recommend other individuals or groups;
e membership in groups is defined in a fuzzy quantitative way;

e groups can be defined recursively (the friends of my friends are my
friends)

Participants: researchers, universities, conferences, papers ...
Relations: researcher-of, professor-at, student-of, author-of, ...

e Notation: p.r

e Meaning: group of participants that are in relation r with p.



Rules

Information about group membership expressed through
membership rules

Aachen.professor «+— Gradel

Aachen.researcher «+— Aachen.professor
Aachen.researcher +— Aachen.researcher.phd-student
Gradel.phd-student «+— Naaf



Inference

To establish that Naaf is a researcher at Aachen:

Aachen.researcher +— Aachen.researcher.phd-student
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Inference

To establish that Naaf is a researcher at Aachen:

Aachen.researcher +— Aachen.researcher.phd-student
<— Aachen.professor.phd-student
+— Gradel.phd-student

+— Naaf



Weights

Membership rules carry weights (degree of membership)

14/1000 .
LICS.author ¢ / Gradel

1/1000

LICS.author Naaf




Weights

Membership rules carry weights (degree of membership)

LICS.author
LICS.author
Gradel.co-author

Naaf.co-author

14/1000

N

1/1000

1/30

AN

1/2

AN

Gradel
Naaf
Naaf
Gradel



Weights

Membership rules carry weights (degree of membership)

14/1000
LICS.author ¢ / Gradel
1/1000
LICS.author ¢ / Naaf
1/30
Gradel.co-author <« / Naaf
1/2 )
Naaf.co-author ¢ Gradel

Recursive group definitions with damping factors.

Gradel.community # Gradel.co-author

Gradel.community <O—5 Gradel.community.co-author



Recommending individuals and groups

Recommendations

Gradel <12 Naaf

Gradel & LICS.author

Gradel recommends Naaf through two paths

Gradel <29 Naaf

1/1000
Gradel <i LICS.author <« / Naaf

Semiring operations & and ¢ to aggregate values:

10 8©1/30
Gradel <« ® (80 1/30) Naaf




Computing reputation

Assume a given set of weighted rules and recommendations

Reputation of an individual: total weight with which participants
recommend the individual (through all possible paths)

Theorem: The reputation of the individuals is the least fixpoint of a system
of non-linear equations



Thank you for your attention



