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Fixed-point equations

We study systems of equations of the form

X1 = f1(X1, . . . ,Xn)

X2 = f2(X1, . . . ,Xn)

· · ·
Xn = fn(X1, . . . ,Xn)

where the fi ’s are polynomials over an ω-continuous semiring.



ω-continuous semirings

ω-continuity:

the relation a v b ⇔ ∃c : a + c = b is a partial order

v-chains have limits

Examples: nonnegative integers and reals with∞, tropical semiring,
min-max semirings, complete lattices, Viterbi and Łukasiewicz semirings,
language semiring . . .

In the rest of the talk:
semiring ≡ ω-continuous semiring.



Research program

Develop generic solution or approximation methods,

valid for all semirings or at least large classes.



Kleene iteration

Theorem [Kleene]: A system of fixed-point equations over a semiring has
a least solution µf w.r.t. the natural order v.

This least solution is the supremum of {ki}i≥0 , where

k0 = f(0)

ki+1 = f(ki)

Basic algorithm for calculation of µf : compute k0, k1, k2, . . . until either
ki = ki+1 or the approximation is considered adequate.



The left-linear case

X1 = a11X1 + · · ·+ a1nXn + b1

X2 = a21X1 + · · ·+ a2nXn + b2

· · ·
Xn = an1X1 + · · ·+ annXn + bn



The left-linear case

(Loosely speaking!) Kleene iteration has linear convergence over the
reals: k iterations give Θ(k) accurate bits.

Gauss elimination:

Define a∗ := 1 + a + a · a + a · a · a + · · ·

Arden’s Lemma: the least solution of X = aX + b is X := a∗b

Algorithm: pick Xi and rewrite its equation as Xi = aXi +b;

replace Xi in all other equations by a∗b



The left-linear case

(Loosely speaking!) Kleene iteration has linear convergence over the
reals: k iterations give Θ(k) accurate bits.

Gauss elimination:

Define a∗ := 1 + a + a · a + a · a · a + · · ·

Arden’s Lemma: the least solution of X = aX + b is X := a∗b

Algorithm: pick Xi and rewrite its equation as Xi = aXi +b;

replace Xi in all other equations by a∗b



The left-linear case

Gauss elimination reduces solving a system of left-linear equations to
computing a∗ for a given semiring element a.

Real semiring: either a∗ = 0, a∗ = 1/(1− a), or a∗ =∞

Language semiring: we use a∗ as representation of
∑∞

i=0 ai

(What does it mean to “solve” an equation?)
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The non-linear case

Real semiring: convergence of Kleene iteration can be very slow.

X =
1

2
X2 +

1

2
µf = 1 = 0.99999 . . .

Logarithmic convergence: k iterations give Θ(log k) accurate bits.

For example, k2000 = 0.9990

No reduction to computing Kleene stars
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Kleene Iteration for X = f(X) (univariate case)
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Newton’s Method for X = f(X) (univariate case)
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Newton’s method is usually very efficient

Often exponential convergence∗: k iterations give Θ(2k) bits.

but not robust.

May not converge, converge only locally (in some neighborhood of the
least fixed-point), or converge very slowly.

∗ Called quadratic convergence in numerical mathematics.



A frustrating mismatch and its solution

• Kleene Iteration is robust and applicable to every semiring, but
converges slowly.

• Newton’s Method may converge very fast, but is not robust and can
only be applied to the reals.

Main results:

• Newton’s Method can be generalized to arbitrary semirings, and
becomes as robust as Kleene’s method (our work).

• Newton’s method converges at least linearly and often exponentially
over the real semiring (some work by us + work by Etessami, Stewart
and Yannakakis).
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Generalizing Newton’s Method



Derivation trees I

An equation X = f(X) over a semiring induces a context-free grammar G

Examples: X = 0.3 X2 + 0.5 induces X → 0.3 X X | 0.5

X = 0.2 XY + 0.3

Y = 0.7 XY + 0.1

induces X → 0.2 X Y | 0.8

Y → 0.7 X Y | 0.1

Running example with arbitrary semiring elements a, b, c:

X = a X2 + b X + c and G : X → a X X | b X | c



Derivation trees II

Assign to a derivation tree t its yield

Y(t) : = (ordered) product of the leaves of t

Assign to a set T of derivation trees its yield

Y(T ) : = sum of the yields of the elements of T

G : X → a X X | b X | c

X

c

X

a X

c

X

c

X

a X

c

X

b X

cYield of the three trees: c + a · c · c + a · c · b · c



Derivation trees III

Proposition: Let D be the set of all derivation trees of G. Then

µf = Y (D)

X = f(X)

µf

=

Y (D) D

G



Approximants as yields: Kleene iteration

Proposition: The i-th Kleene approximant ki is the yield of all derivation
trees of height at most i .

ki Trees of depth ≤ i

X = f(X) G



Approximants as yields: Newton iteration

Theorem: The i-th Newton approximant νi is the yield of all derivation
trees of Strahler number at most i .

Trees of Strahler number ≤ i

X = f(X) G

νi



Arthur N. Strahler (1952)



Arthur N.Strahler (1952)

Which is the main
stream?



Arthur N.Strahler (1952)

The ”finger-tip” channels con-

stitute the first-order segments.

[. . . ].

A second-order segment is

formed by the junction of any

two first-order streams; a third-

order segment is formed by the

joining of any two second order

streams, etc.

Streams of lower order joining

a higher order stream do not

change the order of the higher

stream
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Strahler number of a tree

Definition: Strahler number S(t) of a tree t :

If t has no subtrees (t has only one node), then S(t) := 0.

If t has subtrees t1, . . . , tn, then let k := max{S(t1), . . . ,S(tn)}.
If exactly one subtree of t has Strahler number k , then S(t) := k ;
otherwise, S(t) := k + 1.
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Understanding Strahler numbers

A tree has Strahler number k > 0 if it consists of a spine

• with subtrees of Strahler number at most k − 1

• ending at a node with two subtrees of dimension exactly k − 1.
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Understanding Strahler numbers

A binary tree tree has Strahler number k > 0 if it consists of a spine

• with subtrees of Strahler number at most k − 1

• ending at subtrees of dimension exactly k − 1.

k−1

k−1

k−1

k−1

k−1

k−1

k−1k−1



Characterizations of the Strahler number

Fact: The Strahler number of a tree is the height of the largest minor that
is a full binary tree.

Fact: The Strahler number of an arithmetic expression is the minimal
number of registers needed to evaluate it.

×

+

x ×

y z

w

R1 ← y

R2 ← z

R2 ← R1 × R2

R2 ← x

R1 ← R1 + R2

R2 ← w

R1 ← R1 × R2



Computing the k -th Newton approximant

G : X → a X X | b X | c

Define grammars G0,G1,G2 . . . such that:

trees of Gk = trees of G of Strahler number ≤ k

Idea: X〈k〉 generates the trees of Strahler number = k

X[k] generates the trees of Strahler number ≤ k

Gk : X[k] → X〈k〉 | X[k−1]

X〈k〉 → aX〈k−1〉X〈k−1〉 | aX[k−1]X〈k〉 | aX〈k〉X[k−1] | bX〈k〉
. . .

G1 : X[1] → X〈1〉 | X[0]

X〈1〉 → aX[0]X[0] | aX[1]X[0] | aX[0]X[1] | bX〈1〉

G0 : X[0] → c
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Computing the k -th Newton approximant

G : X → a X X | b X | c

Define grammars G0,G1,G2 . . . such that:

trees of Gk = trees of G of Strahler number ≤ k

Idea: X〈k〉 generates the trees of Strahler number = k

X[k] generates the trees of Strahler number ≤ k

Gk : X[k] = X〈k〉 + X[k−1]
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G0 : X[0] = c



Computing the k -th Newton approximant

The equation

X〈k〉 = aX〈k−1〉X〈k−1〉 + aX[k−1]X〈k〉 + aX〈k〉X[k−1] + bX〈k〉

is linear in X〈k〉.

Newton’s method approximates the solution of non-linear equations
assuming

one can solve (or approximate) linear equations.

Over commutative semirings:

X〈k〉 = (2aX[k−1] + b)X〈k〉 + aX〈k−1〉X〈k−1〉

X〈k〉 = (2aX[k−1] + b)∗ a X2
〈k−1〉
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Some applications



Termination proofs

Theorem: Let X = f(X) be a system of n polynomial fixpoint equations
over an idempotent and commutative semiring. Then Newton’s method
terminates after at most n + 1 iterations.

Idempotent: number of copies of each tree is irrelevant

Commutative: trees with different order of leaves have the same yield.

Prove that for every derivation tree there is a derivation tree of Strahler
number at most n + 1 with the same leaves, possibly in different order



Parikh’s theorem

Theorem [Parikh ’66]: For every context-free language there is a regular
language with the same commutative image.

Problem: Given a CFG G, construct an automaton A such that L(G) and
L(A) have the same commutative image.

Solution: Use that L(G) and L(Gn) have the same commutative image.

Construct A whose runs “simulate” the derivations of Gn.



Parikh’s theorem

Example: A1 → A1A2 | a A2 → bA2aA2|cA1

A1 (0,1)

⇒ A1A2
ε−→ (1,1)

⇒ A1bA2aA2
ba−−→ (1,2)

⇒ A1bcA1aA2
c−→ (2,1)

⇒ abcA1aA2
a−→ (1,1)

⇒ abcaaA2
a−→ (0,1)

⇒ abcaacA1
c−→ (1,0)

⇒ abcaaca a−→ (0,0)

0,0 2,01,0 3,0

2,11,10,1

0,2 1,2

0,3

a

a a

a

a a

εc ba c

cc

ba

ba c

c ε ε



A recommendation system

Idea: design a recommendation system in which:

• individuals can recommend other individuals or groups;

• membership in groups is defined in a fuzzy quantitative way;

• groups can be defined recursively (the friends of my friends are my
friends)

Participants: researchers, universities, conferences, papers . . .

Relations: researcher-of, professor-at, student-of, author-of, . . .

• Notation: p.r

• Meaning: group of participants that are in relation r with p.



Rules

Information about group membership expressed through
membership rules

Aachen.professor←− Grädel

Aachen.researcher←− Aachen.professor

Aachen.researcher←− Aachen.researcher.phd-student

Grädel.phd-student←− Naaf



Inference

To establish that Naaf is a researcher at Aachen:

Aachen.researcher←− Aachen.researcher.phd-student

←− Aachen.professor.phd-student

←− Grädel.phd-student

←− Naaf
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Weights

Membership rules carry weights (degree of membership)

LICS.author
14/1000
←−−−−−−−− Grädel

LICS.author
1/1000
←−−−−−−− Naaf

Grädel.co-author
1/30
←−−−−− Naaf

Naaf.co-author
1/2
←−−−−− Grädel

Recursive group definitions with damping factors.

Grädel.community 1←−−− Grädel.co-author

Grädel.community 0.5←−−−− Grädel.community.co-author
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Recommending individuals and groups

Recommendations

Grädel 10←−−−− Naaf

Grädel 8←−−− LICS.author

Grädel recommends Naaf through two paths

Grädel 10←−−−− Naaf

Grädel 8←−−− LICS.author
1/1000
←−−−−−−− Naaf

Semiring operations ⊕ and � to aggregate values:

Grädel
10⊕ (8� 1/30)
←−−−−−−−−−−−− Naaf



Computing reputation

Assume a given set of weighted rules and recommendations

Reputation of an individual: total weight with which participants
recommend the individual (through all possible paths)

Theorem: The reputation of the individuals is the least fixpoint of a system
of non-linear equations



Thank you for your attention


