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Motivation

Incomplete & Probabilistic Databases
Principled techniques for managing uncertain data
High computational complexity for query answering

Many tractable cases based on query / data structure are known
[DS12, DS07, FO16, FHO12, RS09, ABS15]
intractable even for relatively simple queries
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Incomplete Databases

Definition (Incomplete Database)
An incomplete database is a set D = {D1, . . .Dn} where each Di , called a
possible world, is a deterministic database.

Example
D1

name country
Boris USA
Peter USA

Alexandra USA

D2

name country
Boris Switzerl.

Alexandra USA

D3

name country
Boris Germany
Peter Netherl.

Alexandra USA
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Possible World Semantics

Definition (Possible World Semantics)
Incomplete Databases

Q(D) = {Q(D) | D ∈ D}
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Possible & Certain Tuples

Definition (Possible Tuples)

Possible(D) = {t | ∃D ∈ D : t ∈ D}

Definition (Certain Tuples)

Certain(D) = {t | ∀D ∈ D : t ∈ D}

Definition (Possible & Certain Answers)

Certain(Q,D) = Certain(Q(D))

Possible(Q,D) = Possible(Q(D))
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Desiderata

A practical data model for uncertain data
management

1 Supports bags (in addition to sets)
2 PTIME data complexity (through

approximation)
3 Support for complex queries (full relational

algebra with aggregation, sort-based
operations, recursion)

4 Modular: closed under queries
5 Compact: be able to trade size for

approximation accuracy
6 Compatible: approximate existing uncertain

data models and data cleaning paradigms
(consistent query answering)

Slide 7 of 78 Boris Glavic - Incomplete Databases, Certain & Possible Answers



Outline

1 Incomplete Databases, Certain & Possible Answers

2 Incomplete K-relations

3 Approximating Incomplete K-relations

4 Attribute-level Uncertainty

5 Conclusions & Future Work

6 Appendix and References



Motivation

Incomplete Databases beyond sets
Incomplete bag databases
Incomplete provenance
Incomplete temporal databases
Incomplete access control
. . .
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K-relations

Semirings
semiring (K ,+K , ·K , 0K , 1K )
a set K
binary operations +K and ·K which are associative and commutative
0K (1K ) are the neutral elements of +K and ·K
k ·K 0K = 0K for all k ∈ K

k1 ·K (k2 +K k3) = (k1 ·K k2) + (k1 ·K k3)

Semiring-annotated relations
An n-ary K -relation R is a function Un → K with finite support:
{t | R(t) ̸= 0K} ([GKT07, GT17])
Tuples that are annotated with 0K do not exist (omit them)
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Natural Order

Natural order
k1 ≤K k2 if exists k3 such that k1 + k3 = k2

Semirings where the natural order has a lattice structure are called
l-semirings [KB12]

Each pair of elements k1 and k2 has . . .
a greatest lower bound ⊓K (k1, k2)
a least upper bound ⊔K (k1, k2)

Natural order of N
k1 ≤N k2 is the standard order of natural numbers (e.g., 2 < 3)
⊓N(k1, k2) = min(k1, k2)

⊔N(k1, k2) = max(k1, k2)
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Incomplete K-relations

Definition (Incomplete K-database)
An incomplete K -database is a set D = {D1, . . . ,Dn} such that each Di

is a K -database.

Possible world semantics
Possible world semantics uses K -relational query semantics

Certain and possible answers
Consider only l-semirings
The certain annotation of a tuple

CertK (D, t) = ⊓K{Di (t) | Di ∈ D}
The possible annotation of a tuple

PossK (D, t) = ⊔K{Di (t) | Di ∈ D}
Coincides with certain / possible tuples for sets / bags

Slide 12 of 78 Boris Glavic - Incomplete K-relations



Incomplete Bag Relations

Bag Semantics Example (N annotations)
Annotations encode the multiplicity of tuples under bag semantics
Possible annotation is max, certain annotation is min
The certain (possible) annotation of (Peter ,USA) is 2 (3)
The certain (possible) annotation of (Boris,USA) is 0 (2)

D1

name country N
Boris USA 2
Peter USA 3

D2

name country N
Peter USA 2
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Approximating Certain & Possible

Definition (Containment)
For two K -database D1 and D2 over the same schema, D1 is contained in
D2 (D1 ⊑K D2) iff

∀t : D1(t) ≤K D2(t)

Definition (Under-approximating certain annotations)
A K -database D is an under-approximation of an incomplete K -database
D iff:

D ⊑K Certain(D)

Definition (Over-approximating possible annotations)
A K -database D is an over-approximation of an incomplete K -database
D iff:

D ⊒K Possible(D)
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Example TIDB

Definition (Tuple-independent database (TIDB))
A tuple-independent database D = Dcertain ∪ Dpossible encodes an
incomplete B-database with the possible worlds Mod(D):

Mod(D) = {D ′ | Dcertain ⊑B D ′ ∧ D ′ ⊑B D}

Approximating TIDBs
Under-approximation: D = Dcertain

Over-approximation: D = D
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Example Key-repair

Key repair
Consider a B-relation R(A1, . . . ,An) with a key K ⊆ {A1, . . . ,An} and the
incomplete database of all S-repairs:

R = {R ′ | R ′ ⊆ R ∧ ∀k ∈ πK (R) : ∃t ∈ R ′ : t.K = k

∧ ̸ ∃t1 ̸= t2 ∈ R ′ : t1.K = t2.K}

Approximating key repairs
under-approximation:

R ′ = {t | R(t) = ⊤∧ ̸ ∃t ′ ̸= t : t.K = t ′.K ∧ R(t ′) = ⊤}

over-approximation:
R ′ = R
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UA-DBs

Definition (Uncertainty-annotated databases)
A UA-DB D is a KAU -relation where KAU is the product semiring
K × K restricted to {(kl , ku) | kl ≤K k2}
Addition and multiplication in K 2 are defined point-wise
Define (c , p)↓ = c and (c , p)↑ = p and lift this operation pointwise to
databases

D↓(t) = D(t)↓ and D↑(t) = D(t)↑

Proposition (Structure KAU is a semiring)
For any naturally-ordered semiring K , KAU is a semiring

Slide 18 of 78 Boris Glavic - Approximating Incomplete K-relations



Approximating Certain & Possible Answers

Bounding incomplete K -databases
An K -UA-DB D bounds an incomplete K -database D (D ≶K D) iff:

D↓ ⊑K Certain(D)

D↑ ⊒K Possible(D)

Bound-preserving query semantics
A query semantics for KAU for is called bound-preserving iff for any query
Q:

D ≶K D ⇒ Q(D) ≶K Q(D)
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Bound-preserving Queries

Theorem (Positive relational algebra is bound-preserving)
For any positive relational algebra query Q, standard K-relational query
semantics is bound preserving.

Proof Sketch.
Addition and multiplication are monotone wrt. the natural order. If
k1 ≤K k3 and k2 ≤K k4 then:

k1 +K k2 ≤K k3 +K k4

k1 ·K k2 ≤K k3 ·K k4
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Bound-preserving Queries

Theorem (Full relational algebra is bound-preserving)
Full relational algebra is bound-preserving assuming the monus-semiring
definition from [GP10] and by defining:

(R − S)(t) = (R(t)↓ −K S(t)↑,R(t)↑ −K S(t)↓)
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Recursive Positive Datalog

Theorem (Bound preservation)
Recursive Datalog queries over UA-DBs are bound preserving.

Theorem (Convergence)

As computations in D↓ and D↑ are standard K-relational query evaluation,
existing results for Datalog over K-relations are applicable. Specifically, we
get the same convergence guarantees as proven for K-relations in [KNP+22]
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Compatibility with Existing Work

Consistent query answering & certain answers
The following approach is bound preserving:

Answer a supported subquery of a query Q using an existing technique
for certain / possible answers
Interpret the result as a UA-DB
Evaluate the remainder of the query using UA-DBs
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Motivation

Certain answers are often empty
e.g., operations like aggregation that return different aggregation
function results in each world

Some types of uncertainty cannot be efficiently
over-approximated with "concrete" tuples

This person certainly exists, but their salary is in [100000,200000]

Operations like sum aggregation may produce exponentially
many possible results
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Related work

Representation systems that use (labelled) nulls
C-tables [ILJ84], m-tables [SKL+17], Codd-tables, V-tables, . . .

"Factorized" representations
OR-tables [IVV95], x-tables (block-independent databases)
[BSHW06, VdBS17]

Returning the lowest and highest possible aggregation function
result

[ABC+03, Fux07, ACK+10, LSV02, AK08]
Abstract interpretation

[CC77, CC04]

Slide 26 of 78 Boris Glavic - Attribute-level Uncertainty



Interval domains

Interval domains
Domain (D,≤D) where ≤D is a partial order
Interval domain D≤ = {[l , u] | l , u ∈ D ∧ l ≤D u}
Representation system Mod([l , u]) = {c | c ∈ [l , u]}

Over-approximating operations
[l1, u1] + [l2, u2] :=[l1 + l2, u1 + u2]

[l1, u1] = [l2, u2] :=[l1 = u1 = l2 = u2, l1 ≤ u2 ∧ l2 ≤ u1]
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The AU-DB Model

AU-DB relations
Special type of K-relations

Value domains are intervals
Annotation domain is a UA-semiring KAU

The possible worlds encoded by a UA-DB
A UA-DB D encodes as possible worlds Mod(D) every K-database D
such that we can "redistribute" the annotations of tuples from D to
bounding tuples from D such that

for any tuple t from D, the total annotation mass distributed to t is
withing its annotation bounds
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UA-DB Example

UA-DB

name salary N3

Boris [120k,120k] [0,2]
Peter [140k,400k] [2,3]

Two possible worlds

name salary N
Boris 120k 1
Peter 150k 1
Peter 380k 2

name salary N
Peter 180k 2
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Bounding Uncertain Databases

Bounding incomplete databases
Given an incomplete N database D and selected world Dsg ∈ D
Create UA-DB D with selected-guess Dsg such that
Mod(D) ⊇ Mod(D)

Incomplete bag database
D1

name salary N
Boris 120k 2
Peter 400k 3

D2

name salary N
Peter 140k 2

A Bounding UA-DB for SG D1

name salary N3

Boris [120k,120k] [0,2]
Peter [140k,400k] [2,3]
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Alternative Interpretation of Bounding

Bounding
Given a UA-DB D that bounds an incomplete K-database D

Under-approximation of certain tuples with attribute uncertainty
The lower bound tuple annotations of D

Under-approximation of certain tuples

Generalizes certain answers by allowing attribute-level uncertainty

Over-approximation of possible tuples with attribute uncertainty
The upper bound tuple annotations of D

Over-approximation of possible tuples

Generalizes possible answers by allowing attribute-level uncertainty
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Query Semantics for RA+

Queries over K-relations
Defined using the semiring addition / multiplication operations
Disjunctive use of tuples (union, projection) is addition
Conjunctive use of tuples (join) is multiplication

RA+ Semantics

Union: (R1 ∪ R2)(t) = R1(t) +K R2(t)

Join: (R1 ⋊⋉ R2)(t) = R1(t[Sch(R)1]) ·K R2(t[Sch(R)2])

Projection: (πU(R))(t) =
∑

t=t′[U]

R(t ′)

Selection: (σθ(R))(t) = R(t) ·K θ(t)
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Selections over AU-DBs

Conditional expressions over range-annotated values
Expressions over range-annotated values evaluate to a range of
Boolean values

e.g., [1, 3] = [3, 3] evaluates to [F ,T ]

Evaluating selections
in K-relations selection on θ

false maps to 0K and true to 1K
tuples get their input annotation if they do fulfill θ
tuples get a 0K annotation in the result if they do not fulfill θ

in KAU relations: apply this to every dimension
e.g., [F ,T ] maps to [0, 1]
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Semi-module Aggregation?

Semi-modules
Polynomial representation system for aggregation results [ADT11]

Proposition (SUMI , MAXI , and MINI are monoids)
using our definitions of addition, min, max over the interval domain

Proposition (Semi-modules cannot be bound preserving)
Use NAU and SUMI , set k = (1, 2) and m = [0, 0] and m1 = [−1,−1]
and m2 = [1, 1]
Observe that m = m1 +m2

Based on semi-module laws we have to have
k ⊗m = k ⊗ (m1 +m2) = k ⊗m1 + k ⊗m2

However, k ⊗m2 = (l2, u2) with l2 ≤ 1 < 2 ≤ u2
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Aggregation over AU-DBs

Escape into uncertainty
Use bound-preserving multiplication of intervals instead of a
semimodule
k ⊛m = k ·m

Approach
Group-by attribute bounds in the result determined based on assigning
tuples to groups based on their selected-guess values
Aggregation function result bounds by reasoning about

Which tuples could / have to belong to a group
Taking the lowest / highest possible multiplicities of tuples into account
Using lowest / highest possible values of the attribute we are
aggregating over
Utilize expression semantics for range-annotated values
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Sorting, Top-k, Windowed Aggregation

Sort Order as Data
there is only one physical sort order
encode sort position as UA-DB range-values!

Windowed Aggregation
exploit fixed window sizes

0 1 2 3 4 5 6 7 8 9 10 11 12

t

possible window
certain window

not in window

t1

certainly in

t2

possibly in

t3
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Conclusions

UA-DB Data Model
Lightweight, but powerful uncertain data model
Under-approximation of certain answers
Over-approximation of possible answers

Query semantics
Bound preservation: the bounding of certain and possible answers is
preserved under queries
Ranges (attribute-level uncertainty) as first-class citizens: generalizes

certain answers with nulls [LJ84]
"bounding range semantics" for aggregation over incomplete data
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Future Work

Even more queries
Recursive and iterative computations (e.g., training ML models)

Even better performance
New specialized physical operators
Optimizing representations and queries

Better bounds
Using more expressive set representations instead of boxes

Beyond ranges
Partial orders / Ontologies instead of ranges
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Questions?

Implementations
GProM https://github.com/IITDBGroup/gprom

Vizier https://vizierdb.info/

Su Feng Oliver Kenndy Aaron Huber

Slide 40 of 78 Boris Glavic - Conclusions & Future Work

https://github.com/IITDBGroup/gprom
https://vizierdb.info/


Outline

1 Incomplete Databases, Certain & Possible Answers

2 Incomplete K-relations

3 Approximating Incomplete K-relations

4 Attribute-level Uncertainty

5 Conclusions & Future Work

6 Appendix and References



Experimental Results - TPC-H Queries

Figure: TPC-H (SF=1)
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Experimental Setup - Competitors

Competitors
UA-DB

UA-DB: no over-approximation of possible and no attribute-uncertainty
AU-DB: the model discussed so far

Under-approximation of certain for DBs with nulls (Libkin, [Lib16])
Sampling-based (MCDB w/o probabilities, [JXW+08])
All possible answers

MayBMS w/o probabilitiesa, [AKO07, OHK09])
Trio w/o probabilitiesb, [BSHW06]
Semi-modules w/o probabilities [FHO12]

aDoes not support aggregation
bDoes not support uncertain group-by and querying aggregation results
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Experimental Setup - Datasets & Machines

Datasets
PD-Bench (TPC-H data with errors), [AJKO08]
Real-world open datasets with missing values

Machines
2×6 core AMD Opteron 4238 CPUs
128GB RAM
4×1TB 7.2K HDDs (RAID 5)
Postgres 11
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Experimental Results - SPJ
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Experimental Results - Aggregation
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Experimental Results - Real World Data
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Experimental Results - Real World Data

Datasets Time cert. attr. bounds pos.tup. pos.tup.
& Queries (sec) tup. min max by id by val

N
et

fli
x

(1
.9

%
,

2.
1)

AU-DB 0.011 100% 1 1 100% 100%
Qn,1 Trio 0.900 100% 1 1 100% 100%
SPJ MCDB 0.049 N/A 1 1 99.6% 98.5%

UA-DB 0.006 100% N/A N/A 99.1% 97.3%
AU-DB 0.082 100% 1 4 100% 100%

Qn,2 Trio 1.700 100% 1 1 98.8% 98.0%
GB MCDB 0.118 N/A 1 1 99.9% 97.9%

UA-DB 0.009 0% N/A N/A 99.3% 95.7%

C
rim

es
(0

.1
%

,
3.

2)

AU-DB 1.58 100% 1 1 100% 100%
Qc,1 Trio 59.0 100% 1 1 100% 100%
SPJ MCDB 6.91 N/A 0.6 1 99.9% 92.1%

UA-DB 0.63 100% N/A N/A 99.9% 87.5%
AU-DB 2.09 100% 1 1.01 100% 100%

Qc,2 Trio 103.1 100% 1 1 100% 100%
GB MCDB 5.24 N/A 0.99 0 100% ∼ 0%

UA-DB 0.47 0% N/A N/A 100% ∼ 0%

H
ea

lt
hc

ar
e

(1
.0

%
,

2.
7)

AU-DB 0.179 99.5% 1 1 100% 100%
Qh,1 Trio 20.6 100% 1 1 100% 100%
SPJ MCDB 0.501 N/A 0.4 1 99.9% 87.6%

UA-DB 0.042 98.2% N/A N/A 99.3% 65.4%
AU-DB 0.859 100% 1 45 100% 100%

Qh,2 Trio 29.2 100% 1 1 100% 100%
GB MCDB 2.31 N/A 0.78 1 100% ∼ 0%

UA-DB 0.235 0% N/A N/A 100% ∼ 0%
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Publications & Links

Lenses
Uncertainty-aware Data Cleaning Operations [YMF+15]

UA-DBs
The basic UA-DB model [FHGK19]
Attribute-level uncertainty, range values, and aggregation over
UA-DBs (the AU-DB model) [FHGK21]
Sorting, top-k, and windowed aggregation [FGK23]

Vizer
http://www.vizierdb.info

Publications:
http://www.cs.iit.edu/~dbgroup/publications.html (click on
project Vizier to see relevant publications)
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Relational Encoding

Encode UA-DBs as relational databases
attribute-level ranges

for each attribute A add A_lb and A_ub

annotation ranges
add attributes row_lb, row_sg, row_ub

UA-DB
name salary N3

Boris [120k,120k,120k] [0,2,2]
Peter [140k,400k,400k] [2,3,3]

Relational encoding

name salarylb salary salaryub rowlb rowsg rowub
Boris 120k 120k 120k 0 2 2
Peter 140k 400k 400k 2 3 3
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Implementing UA-DB Query Semantics

Rewrite-based approach

Specialized Operator Implementations
one pass algorithms for sorting and windowed aggregation

Existing implementations
GProM (https://github.com/IITDBGroup/gprom)
Vizier (https://vizierdb.info/)
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Optimizations for Aggregation & Join

Performance of Joins and Aggregation
Aggregation and joins require interval overlap joins
O(n2) in many DBMS

Optimizations
Split possible from selected-guess and process them separately

Selected-guess does not require interval overlap joins
Compress possible, interval overlap joins over smaller inputs

Trade performance for accuracy of the over-approximation

This works, because approximate compression is bound preserving

UA-DB

Selected-GuessSplit

Possible
Split

Selected-Guess
Query Result

Query

Compressed
Possible

Compress

Possible
Query Result

Query

Query Answer

Merge

Merge
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Sorting and Windowed Aggregation

Rewrite-based approach
can be expensive: range-joins and multiple sorting steps

Native Algorithms
one pass algorithms
implemented inside Postgres
requires reasoning about certain and possible windows and maintain
rows in multiple sort orders

Connected Heaps

1h1

2

4

3

1 3t1
2 6t2
3 2t3
4 1t4

1h2

2

6

3

Result of h1.pop()

2h1

4 3

2 6t2
3 2t3
4 1t4

1h2

2 6
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Running Example

COVID infection rate data
COVID infection rate per location from two sources

Query - maximum infection rate per location size

SELECT size, max(rate) as mrate
FROM R GROUP BY size

Source 1
city size rate

Los Angeles Metro 2%
Washington Metro 6%

Chicago City 4%
Springfield Town 2%

Source 2
city size rate

Los Angeles Metro 7%
Washington Village 8%

Chicago City 3%
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Running Example - Conflicting Information

Conflicting Information
Washington may belong to group Metro or Village
Conflicting rates for Los Angeles
Does Springfield exist?

Source 1
city size rate

Los Angeles Metro 2%
Washington Metro 6%

Chicago City 4%
Springfield Town 2%

Source 2
city size rate

Los Angeles Metro 7%
Washington Village 8%

Chicago City 4%
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The Cost of Ignoring Uncertainty

Ignoring uncertainty in data leads to hard to trace errors with severe real
world consequences.

Query - maximum infection rate per location size

SELECT size, max(rate) as mrate
FROM R GROUP BY size

"Cleaned" Sources
city size rate

Los Angeles Metro 2%
Washington Village 8%

Chicago City 4%

Query Result

city rate
Village 8%
Metro 2%
City 4%
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Data Cleaning, Curation and Integration

Why Not Clean Your Data Upfront?
Heuristic algorithms: pick one repair heuristically
Highest probability repair: pick the most likely repair

Cleaned Data = Ground Truth?
The ground truth is typically hard / impossible to determine

Take-away
Effectively, most data cleaning & integration techniques select one possible
repair

All information about uncertainty is lost!
How can we trust any analysis result based on the cleaned data?
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Requirements for Managing Uncertainty

(R1) Efficiency
Efficiently generate compact representations of uncertainty
Running queries over uncertain data should be efficient
Otherwise, users will just ignore uncertainty

(R2) Expressiveness
Model complex types of uncertainty
Complex SQL queries / computations
Unlikely to be adopted otherwise

(R3) Guarantees
Provide as much information about uncertainty as possible
Queries should take uncertainty into account

(R4) Usability
Interpretable by mere mortals
Backwards-compatible with existing cleaning & integration solutions
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Sorting, Top-k, Windowed Aggregation

Sort Order as Data
there is only one physical sort order
encode sort position as UA-DB range-values!

Windowed Aggregation
exploit fixed window sizes

0 1 2 3 4 5 6 7 8 9 10 11 12

t

possible window
certain window

not in window

t1

certainly in

t2

possibly in

t3
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Experimental Results - TPC-H Queries

Queries 2%/SF0.1 2%/SF1 5%/SF1 10%/SF1 30%/SF1

Q1 AU-DB 1.607 15.636 15.746 15.811 16.021
Det 0.560 1.833 1.884 1.882 1.883
MCDB 5.152 19.107 18.938 19.063 19.279

Q3 AU-DB 0.713 7.830 8.170 8.530 7.972
Det 0.394 1.017 1.058 1.092 1.175
MCDB 4.112 11.138 11.222 10.936 11.454

Q5 AU-DB 0.846 8.877 8.803 8.839 8.925
Det 0.247 0.999 1.012 1.123 1.117
MCDB 2.599 10.152 10.981 11.527 11.909

Q7 AU-DB 0.791 7.484 7.537 7.303 7.259
Det 0.145 0.977 0.985 0.989 1.044
MCDB 1.472 10.123 10.277 10.749 10.900

Q10 AU-DB 0.745 7.377 7.283 7.715 8.012
Det 0.263 1.024 0.993 1.004 1.015
MCDB 2.691 10.743 10.937 11.826 11.697
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Experimental Results - Ranking + Windows

MCDB [JXW+08] - sample-based approach (10 or 20 samples)
PT-k [HPZL08] - Full certain / possible answers for top-k queries
Symb - Computing certain (possible) answers with constraint solver

Datasets Imp Det MCDB20 Rewr Symb PT-k
& Queries (time) (time) (time) (time) (time) (time)

Iceberg [ice07]
(1.1%, 167K)

Rank 0.816msms 0.123ms 2.337ms 1.269ms 278ms 1s
Window 2.964ms 0.363ms 7.582ms 1.046ms 589ms N.A.

Crimes [crigo]
(0.1%, 1.45M)

Rank 1043.505ms 94.306ms 2001.12ms 14787.723ms >10min >10min
Window 3.050ms 0.416ms 8.337ms 2.226ms >10min N.A.

Healthcare [heare]
(1.0%, 171K)

Rank 287.515ms 72.289ms 1451.232ms 4226.260ms 15s 8s
Window 130.496ms 15.212ms 323.911ms 13713.218ms >10min N.A.

Datasets & Measures Imp/Rewr MCDB20 PT-k/Symb
Iceberg
[ice07]

bound accuracy 0.891 1 1
bound recall 1 0.765 1

Crimes
[crigo]

bound accuracy 0.996 1 1
bound recall 1 0.919 1

Healthcare
[heare]

bound accuracy 0.990 1 1
bound recall 1 0.767 1
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What is Vizier

Open-source: https://vizierdb.info/
A Data-centric Workflow Engine Instead of a REPL

no hidden state!
incremental workflow execution

A Hybrid Notebook + Spreadsheet UI
build workflows incrementally through a notebook interface
edit datasets as spreadsheets

Caveats: Data Concerns that Propagate
document data errors / concerns / uncertainty
caveats propagate alongside the data
supports quantification of data uncertainty using UA-DBs
summaries as overview of problems with a workflow

Workflow Provenance and Versioning
Versioning (workflow evolution provenance)
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Data-centric Workflows

Datasets
Currently relational tables
Spreadsheet interpretation (co-ordinate system)

Workflow Steps (cells)
Cell executions are isolated from each other
Dataflow through Vizier’s dataset API

Cells consume and produce datasets
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Vizier Architecture

Dataflow Manager

Workflow Manager

Apache Spark

User Interface
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Figure: Vizier’s architecture
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The Notebook UI

Projects consists of a notebook & datasets

A notebook is a sequence of cells
Cells are steps in a workflow
User-facing interface like Jupyter or similar
Cells run in isolation and communicate through datasets

Datasets
Datasets are created / read / updated by cells
Dataset creation

Loading (special cell type)
Result of a cell (e.g., SQL cell)

Dataset update
Spreadsheet operations (e.g., update value)
Curation cells (e.g., impute missing values)
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The Spreadsheet UI & Vizual

Spreadsheet UI
Updates are translated into workflow steps

Spreadsheets as Datasets
Relation + coordinate system (cell locations)

Vizual language
Scripting language for common spreadsheet operations

Figure: Column data distributions shown in the spreadsheet view
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Workflow Evolution and Versioning

Workflow versioning
Vizier captures provenance for the evolution of a user’s workflow
Like Git, but automates versioning

Every edit creates a new version
Branching is supported

Versions of the workflow and of datasets have unique URLs
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Incremental Execution model

Immutable objects
Cells & their outputs are immutable objects (at least conceptually)

Dependency tracking
Cell ordering is sequential (position in the notebook)
Dependencies are tracked automatically

Monitoring Vizier dataset API calls

Automatic refresh
On cell update, we determine automatically which cells are dependent
and need to be re-executed
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Caveats: Uncertainty and Error Handling

Caveats
Caveats are annotations on data (attribute value)
Record concerns / document assumptions about data
May list possible alternative values or may mark value as unknown
(uncertainty)

UA-DBs without boolean attribute markers instead of ranges

Caveat Generation
Users can manually create caveats
Data curation operations can annotated their outputs with caveats
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Caveat Example - Key Repair

Repairing a violated PK constraint
Primary key: Name
Key repair: avg(Age)
Repaired value is caveated (highlighted in red)

Equivalent to annotating with a range that covers the whole domain

Name Age
Peter 30
Peter 35
Bob 25

Name Age
Peter 32.5
Bob 25
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UI & API Support for Caveats

Dataset error summary
Per dataset
Shows counts of caveats grouped by type

Spreadsheet view
Caveated values are shown in red
Users can inspect caveat

Plots
Bars / points based on caveated values are show with a red dot

Dataset API / SQL / Lenses
Functions for accessing / creating / manipulating caveats
SQL functions to create / check for caveats
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Cell types - curation & cleaning

Data curation (lenses)
Missing value imputation
Pivot
Geocoding
Type detection
Schema Matching
. . .

Uncertainty-aware through UA-DBs
Results stored as UA-DBs

Slide 72 of 78 Boris Glavic - Appendix and References



References I

[ABC+03] Marcelo Arenas, Leopoldo Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and Jeremy Spinrad.
Scalar aggregation in inconsistent databases.
Theoretical Computer Science, 296(3):405–434, 2003.

[ABS15] Antoine Amarilli, Pierre Bourhis, and Pierre Senellart.
Probabilities and provenance via tree decompositions.
Preprint: http://a3nm. net/publications/amarilli2015probabilities. pdf. Submitted to PODS, 2015.

[ACK+10] Serge Abiteboul, T.-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre Senellart.
Aggregate queries for discrete and continuous probabilistic XML.
In Luc Segoufin, editor, Database Theory - ICDT 2010, 13th International Conference, Lausanne,
Switzerland, March 23-25, 2010, Proceedings, ACM International Conference Proceeding Series, pages
50–61. ACM, 2010.

[ADT11] Yael Amsterdamer, Daniel Deutch, and Val Tannen.
Provenance for aggregate queries.
In Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 153–164. ACM, 2011.

[AJKO08] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu.
Fast and simple relational processing of uncertain data.
In Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on, pages 983–992. IEEE,
2008.

[AK08] Foto N. Afrati and Phokion G. Kolaitis.
Answering aggregate queries in data exchange.
In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2008, June 9-11, 2008, Vancouver, BC, Canada, pages 129–138, 2008.

Slide 73 of 78 Boris Glavic - Appendix and References



References II

[AKO07] L. Antova, C. Koch, and D. Olteanu.
MayBMS: Managing incomplete information with probabilistic world-set decompositions.
In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 1479–1480.
IEEE, 2007.

[BSHW06] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom.
ULDBs: Databases with Uncertainty and Lineage.
In Proceedings of the 32th International Conference on Very Large Data Bases (VLDB), pages 953–964,
2006.

[CC77] Patrick Cousot and Radhia Cousot.
Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints.
In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 238–252, 1977.

[CC04] P. COUSOT and R. COUSOT.
Abstract Interpretation Frameworks.
Journal of Logic and Computation, 2(4):511–547, 2004.

[crigo] Chicago crimes dataset.
https://www.kaggle.com/currie32/crimes-in-chicago.

[DS07] Nilesh Dalvi and Dan Suciu.
The dichotomy of conjunctive queries on probabilistic structures.
In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 293–302. ACM, 2007.

Slide 74 of 78 Boris Glavic - Appendix and References

https://www.kaggle.com/currie32/crimes-in-chicago


References III

[DS12] Nilesh Dalvi and Dan Suciu.
The dichotomy of probabilistic inference for unions of conjunctive queries.
Journal of the ACM (JACM), 59(6):30, 2012.

[FGK23] Su Feng, Boris Glavic, and Oliver Kennedy.
Efficient approximation of certain and possible answers for ranking and window queries over uncertain
data.
Proceedings of the VLDB Endowment, 16(6):1346 – 1358, 2023.

[FHGK19] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy.
Uncertainty annotated databases - a lightweight approach for approximating certain answers.
In Proceedings of the 44th International Conference on Management of Data, pages 1313–1330, 2019.

[FHGK21] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy.
Efficient uncertainty tracking for complex queries with attribute-level bounds.
In Proceedings of the 46th International Conference on Management of Data, page 528 – 540, 2021.

[FHO12] Robert Fink, Larisa Han, and Dan Olteanu.
Aggregation in probabilistic databases via knowledge compilation.
Proceedings of the VLDB Endowment, 5(5):490–501, 2012.

[FO16] Robert Fink and Dan Olteanu.
Dichotomies for queries with negation in probabilistic databases.
ACM Trans. Database Syst., 41(1):4:1–4:47, 2016.

[Fux07] A.D. Fuxman.
Efficient query processing over inconsistent databases.
PhD thesis, University of Toronto, 2007.

Slide 75 of 78 Boris Glavic - Appendix and References



References IV

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance Semirings.
In PODS ’07: Proceedings of the 26th Symposium on Principles of Database Systems, pages 31–40,
2007.

[GP10] F. Geerts and A. Poggi.
On database query languages for K-relations.
Journal of Applied Logic, 8(2):173–185, 2010.

[GT17] Todd J Green and Val Tannen.
The semiring framework for database provenance.
In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 93–99. ACM, 2017.

[heare] Medicare hospital dataset.
https://data.medicare.gov/data/hospital-compare.

[HPZL08] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin.
Ranking queries on uncertain data: a probabilistic threshold approach.
In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008, pages 673–686, 2008.

[ice07] Iceberg dataset.
https://nsidc.org/data/g00807.

[ILJ84] Tomasz Imieliński and Witold Lipski Jr.
Incomplete Information in Relational Databases.
Journal of the ACM (JACM), 31(4):761–791, 1984.

Slide 76 of 78 Boris Glavic - Appendix and References

https://data.medicare.gov/data/hospital-compare
https://nsidc.org/data/g00807


References V

[IVV95] Tomasz Imielinski, Ron Vandermeyden, and Kumar V Vadaparty.
Complexity tailored design: A new design methodology for databases with incomplete information.
Journal of Computer and System Sciences, 51(3):405–432, 1995.

[JXW+08] R. Jampani, F. Xu, M. Wu, L.L. Perez, C. Jermaine, and P.J. Haas.
MCDB: a monte carlo approach to managing uncertain data.
In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages
687–700. ACM, 2008.

[KB12] Egor V Kostylev and Peter Buneman.
Combining dependent annotations for relational algebra.
In Proceedings of the 15th International Conference on Database Theory, pages 196–207. ACM, 2012.

[KNP+22] Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and Yisu Remy Wang.
Convergence of datalog over (pre-) semirings.
In Leonid Libkin and Pablo Barceló, editors, PODS ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 105–117. ACM, 2022.

[Lib16] Leonid Libkin.
Sql’s three-valued logic and certain answers.
ACM Transactions on Database Systems (TODS), 41(1):1, 2016.

[LJ84] Witold Lipski Jr.
On relational algebra with marked nulls.
In Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of database systems, pages
201–203. ACM, 1984.

[LSV02] Jens Lechtenbörger, Hua Shu, and Gottfried Vossen.
Aggregate Queries over Conditional Tables.
Journal of Intelligent Information Systems, 19(3):343–362, 2002.

Slide 77 of 78 Boris Glavic - Appendix and References



References VI

[OHK09] D. Olteanu, J. Huang, and C. Koch.
Sprout: Lazy vs. eager query plans for tuple-independent probabilistic databases.
In Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on, pages 640–651. IEEE,
2009.

[RS09] Christopher Ré and Dan Suciu.
The trichotomy of HAVING queries on a probabilistic database.
VLDB J., 18(5):1091–1116, 2009.

[SKL+17] Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey Naughton, and Val Tannen.
m-tables: Representing missing data.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 68. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[VdBS17] Guy Van den Broeck and Dan Suciu.
Query processing on probabilistic data: A survey.
2017.

[YMF+15] Ying Yang, Niccolo Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver Kennedy.
Lenses: an on-demand approach to etl.
Proceedings of the VLDB Endowment, 8(12):1578–1589, 2015.

Slide 78 of 78 Boris Glavic - Appendix and References


	Incomplete Databases, Certain & Possible Answers
	Incomplete K-relations
	Approximating Incomplete K-relations
	Attribute-level Uncertainty
	Conclusions & Future Work
	Appendix and References

