Measuring the Importance of Database Elements

Benny Kimelfeld

Importance of Database Tuples

From Explanation to Responsibility Attribution

$\exists x, y[\operatorname{Salary}(x$, low $) \wedge \operatorname{Salary}(y$, high $) \wedge \operatorname{Manages}(x, y)]$

Descriptive: Why is $Q(D)$ true?

- Limited attention budget ; find a compact and informative explanation
- Arbitrary homomorphism may miss a bigger story ; find the hotspots

Prescriptive: How to make $Q(D)$ false?

- Limited repair budget ; minimize the extent of $Q(D)$
- Find the tuples that maximize the benefit of fixing

Beyond simple degrees, e.g., $\operatorname{Manages}(x, y) \wedge \operatorname{Manages}(y, z) \wedge \operatorname{Family}(x, z)$

Another Example (Data Credit Distribution)

[Dosso-Davidson-Silvello22]

Credit to tuples of curated data based on references from British Journal of Pharma.

Top 20 authors credit-wise

Credit to data curators (vs. their citation scores)

[^0]
Annotation vs. Contribution

- Opposite flows:
- Annotated DBs: annotate output tuples according to the annotation of input tuples
- Tuple contribution: annotate input tuples according to their impact on output tuples
- Abstractly - how does each input annotation contribute to the output annotation?
- Useful abstraction for aggregate queries (e.g., sum)
- Relationship between the two... to be explored

Approaches to Contribution Measurement

- Causality (level of responsibility)
- Idea: Query answers depend causally on tuples ; to what degree?
- Counterfactual dependence under contingency [Meliou-Gatterbauer-Moore-Suciu10] [Meliou-Roy-Suciu15]
- Based on [Chockler-Halpern04]: "... minimal number of changes [...] to obtain a contingency where B counterfactually depends on A"
- Here, min \#tuples to delete so the answer depends on the tuple's existence
- Causal effect [Salimi-Bertossi-Suciu-VanDenBroeck16]
- Based on Pearl's degree of responsibility [Pearl09]
- $\mathbb{E}[Q \mid$ tuple $]-\mathbb{E}[Q \mid \neg$ tuple $]$ when the DB is considered a probabilistic DB
- Similar to earlier ideas [Kanagal-Li-Deshpande11]
- Cooperative Games (profit sharing)
- Idea: tuples cooperate towards the answer ; what is their "share"?
- The Shapley value [Livshits-Bertossi-K-Sebag20] (next...)
- The Banzhaf Power Index (= causal effect) [Abramovich-Deutch-Frost-Kara-Olteanu23]

The Shapley Value

- Widely known profit-sharing formula in cooperative game theory by Shapley
- [L.S. Shapley: A value for n-person games, 1953]
- Theoretical justification: unique under axioms of rationality (symmetry, linearity, efficiency, null player)
- Many application areas
- Pollution responsibility in environmental management
- Influence measurement in social networks
- Identifying candidate autism genes
- Bargaining foundations in economics
- Takeover corporate rights in law
- Explanations (local) in machine learning
- Explanations in databases

Shapley Definition

Set A of players
Wealth function $v: \mathcal{P}(A) \rightarrow \mathbb{R}$ maps each coalition to a utility

How to share the wealth among the players?
$\operatorname{Shapley}(A, v, a)=\sum_{B \subseteq A \backslash\{a\}} \frac{|B|!(|A|-|B|-1)!}{|A|!}(v(B \cup\{a\})-v(B))$

Shapley Explained

Shapley value: expected δ

Examples of Database Usage

Computation Techniques

- Factorization through linearity of expectation
- Example: Inconsistency measure \#violations under functional dependencies, \#problematic tuples [Livshits-K21]
- Reduction to queries over probabilistic DBs
- General result [Deutch-Frost-K-Monet22]
- Knowledge compilation (to d-DNNF)
- Daniel's talk... [Deutch-Frost-K-Monet22]
- Approximation via sampling [Reshef-K-Livshits20]
[Livshits-K21] [Khalil-K23]
- Additive approx gives multiplicative approx via the gap property: the Shapley value is either zero or large

Reduction to PQE

For every Boolean query Q, Shapley[Q] reduces in PTime to Eval[Q] over tuple-independent databases [Deutch-Frost-K-Monet22]

- Proof idea:

1. Reduce Shapley to the problem of counting the size- k-sets of tuples that satisfy the query
2. Produce from the database multiple TIDs, each with a different (uniform) probability for the endogenous tuples
3. Each probability gives a linear combination over the counts of size- k-sets ; all linearly independent (Vandermonde)
\Rightarrow Solve equation system to find the counts

- Similar to a known reduction for the SHAP score [VandenBroeck-Lykov-Schleich-Suciu21]

Other Direction?

- The other direction is open: we do not know whether Shapley $[Q]$ and $P Q E[Q]$ have the same complexity
- Solved positively for the class CQs w/o self-joins
- For both, the tractable CQs are the hierarchical CQs [Livshits+20]

Importance of Query Parameters

(preliminary work, unpublished yet)

$\exists x, y[\operatorname{Salary}(x, a) \wedge \operatorname{Salary}(y, b) \wedge \operatorname{Manages}(x, y) \wedge a<40 \wedge b>90]$
How critical are the exact parameter values?
Maybe they are chosen arbitrarily... does it matter?

Another Example

$$
Q(D):=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f}, \mathrm{~g}\}
$$

How arbitrary is the choice of parameter values?

- Changing each of the three alone does not change $Q(D):=\{\mathrm{a}, \ldots, \mathrm{g}\}$
- The value of p_{3} really makes no difference
- What about p_{1} and p_{2} ?
- Changing each separately makes no difference
- ... even if p_{3} changed in parallel
- Changing both empties the result

Concepts of Sensitivity to Parameters

- The empty-answer problem: which small param changes cause the result to be nonempty?
- [Koudas+06] [Mottin+13]
- Parameter perturbations to explain non-answers
- [Chapman-Jagadish09] [Tran-Chan10]
- Fact checking, cherry-picked queries
- [Wu+17] [Lin+21]
- We study the application of the Shapley value to assess the contribution of parameters

Parameter Contribution as Coop. Game

- Goal: assess the contribution of individual parameter values to the outcome
- What is the cooperative game here?
- Unlike other settings, we cannot just throw away parameters outside of the coalition ; what else?
- Similar situation in feature contribution for ML classifiers
\Rightarrow The SHAP score [Lundberg-Lee17]
- We apply a similar approach

The Shap Score for ML Classifiers

[Lundberg-Lee17]
Feature values

SHAP score: Shapley value for the utility $v(S)=\mathbb{E}\left[M\left(\vec{a}^{\prime}\right)\right]$
Idea: high utility \Rightarrow values of S lead to $M(x)=1$ regardless of the rest

Adapting SHAP to Query Parameters

- We treat parameters similarly to features
- Assume distributions over parameter values
- Uniform, perturbations, ad-hoc, ...
- Hence, the query (and result) are random
- Unlike classifiers, the outcome is not binary, but a set of tuples
- Different random changes have different impacts on this set
- Hence, the utility function compares the random result with the actual result

SHAP Score for Query Parameters

Parameter values \vec{p}

Idea: high utility \Rightarrow values of S give the actual result, regardless of the rest

Alternative View

$v(S)=\mathbb{E}\left[\right.$ dissimilarity $\left.\left(Q_{\vec{p}}(D), Q_{\vec{p}}(D)\right)\right]=\mathbb{E}\left[K-\operatorname{similarity}\left(Q_{\vec{p}}(D), Q_{\vec{p} \prime}(D)\right)\right]$
Idea: high utility \Rightarrow changing S greatly impacts the result

Equivalent SHAP Definitions

The two cooperative games lead to the same Shapley value!

Complexity Study

- Algorithms use a general reduction of Van den Broeck-Lykov-Schleich-Suciu22] from SHAP to expectation calculation
- Polynomial-time algorithms for full acyclic CQs
- Extends to acyclic CQs with inequalities (e.g., $x<p$)
- In contrast, even one existential variable can make an acyclic CQ \#P-hard
- Efficient approximation scheme under general conditions
- Conditions - we can efficiently sample parameters, evaluate queries, and calculate similarity

Conclusion

- Contribution measurement in databases: not new (e.g., past proposals based on causality)
- As done in other disciplines, recent efforts to deploy cooperative game theory, specifically the Shapley value
- Also others, e.g., Banzhaff [Abramovich+23]
- Several deployments: queries, cleaning, ..., query design
- Tight connections to probabilistic databases, not fully resolved yet
- Many other directions for future work
- Database-specific axioms for contribution measures?
- Non-monotonicity: negation [Reshef+20], non-tuples, non-answers
- Connection to semiring annotation?
- Tractability conditions on similarity functions?

[^0]: * Dennis Dosso, Susan B. Davidson, Gianmaria Silvello: Credit distribution in relational scientific databases, Information Systems, Volume 109, 2022.

