Solving Marginal MAP Exactly by Probabilistic Circuit Transformations

YooJung Choi Joint work with Tal Friedman and Guy Van den Broeck

Probabilistic Circuits and Logic Workshop @ Simons Institute - Oct 18, 2023

Marginal MAP (MMAP)

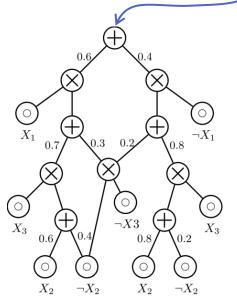
Given a set of query variables $Q \subset X$ and evidence e,

$$\underset{\boldsymbol{q}\in\mathsf{val}(\mathbf{Q})}{\arg\max} p(\boldsymbol{q},\boldsymbol{e}) = \underset{\boldsymbol{q}\in\mathsf{val}(\mathbf{Q})}{\arg\max} \sum_{\boldsymbol{h}\in\mathsf{val}(\mathbf{H})} p(\boldsymbol{q},\boldsymbol{h},\boldsymbol{e})$$

⇒ i.e. MAP of a marginal distribution on Q⇒ in general, NP^{PP}-hard

MMAP on PCs

$$\underset{\boldsymbol{q}\in\mathsf{val}(\mathbf{Q})}{\operatorname{arg\,max}} p(\boldsymbol{q},\boldsymbol{e}) = \underset{\boldsymbol{q}\in\mathsf{val}(\mathbf{Q})}{\operatorname{arg\,max}} \sum_{\boldsymbol{h}\in\mathsf{val}(\mathbf{H})} p(\boldsymbol{q},\boldsymbol{h},\boldsymbol{e})$$



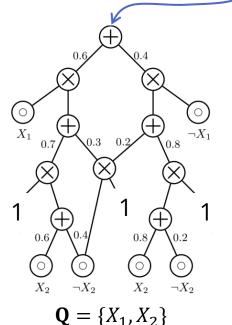
- Smooth + decomposable \Rightarrow tractable marginal
 - e.g. $p(X_1 = 1, X_2 = 0)$
- + deterministic ⇒ tractable MAP

• e.g.
$$\max_{X_1X_2X_3} p(X_1, X_2, X_3)$$

- MMAP: NP-hard even for PCs that are tractable for marginals & MAP
 - Intuition: need the PC $p(\mathbf{Q})$ to be deterministic

MMAP on PCs

$$\underset{\boldsymbol{q} \in \mathsf{val}(\mathbf{Q})}{\operatorname{arg\,max}} p(\boldsymbol{q}, \boldsymbol{e}) = \underset{\boldsymbol{q} \in \mathsf{val}(\mathbf{Q})}{\operatorname{arg\,max}} \sum_{\boldsymbol{h} \in \mathsf{val}(\mathbf{H})} p(\boldsymbol{q}, \boldsymbol{h}, \boldsymbol{e})$$



- Smooth + decomposable \Rightarrow tractable marginal
 - e.g. $p(X_1 = 1, X_2 = 0)$
- + deterministic \Rightarrow tractable MAP

• e.g.
$$\max_{X_1X_2X_3} p(X_1, X_2, X_3)$$

- MMAP: NP-hard even for PCs that are tractable for marginals & MAP
 - Intuition: need the PC $p(\mathbf{Q})$ to be deterministic

MMAP on PCs

- Enforce circuit constraints to get linear-time MMAP
 - E.g. constrained pseudo-tree (AND/OR search) [Marinescu, Dechter & Ihler '14], constrained vtree ((P)SDD) [Oztok, Choi & Darwiche '16]
 - Marginal determinism (aka Q-determinism)
 - Circuit size may blow up
 - Need to change the circuit for a different query variable set ${\pmb Q}$
- Branch-and-bound search [Huang, Chavira & Darwiche '06; Mei, Jiang & Tu '18]

Our approach: iterative circuit transformations

Bounds on MMAP

Upper bound through a single feedforward pass [Huang et al. '06]

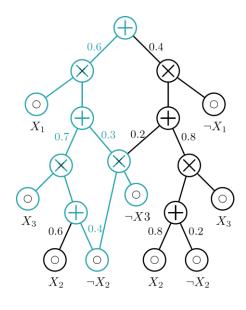
Lower bound: p(q) for any $q \in val(Q)$ works

Q: can we tighten these bounds further?

⇒ transform the PC to get better bounds

Circuit pruning for MMAP

 \dot{Q} Some parts of the circuit may be irrelevant for the MMAP solution



- Example: computing $p(X_1 = 1, X_2 = 0)$
 - Only the highlighted edges are used
 - Remaining edges propagate zero
- $X_1 = 1, X_2 = 0$ is the MMAP solution for $\mathbf{Q} = \{X_1, X_2\}$
 - Pruning any black edge does not affect the MMAP solution

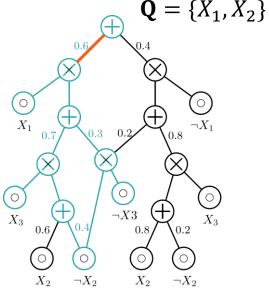
Q: can we efficiently identify which edges can be safely pruned?

Edge bounds for MMAP

For every edge, what is the maximum marginal probability p(q) that uses/activates that edge?

 $\forall (n, c): \text{ define EB}(n, c) \ge \max_{q \in C_{n,c}} p(q)$ $C_{n,c} = \{ q \in \text{val}(Q): p(q) \text{ "activates" edge } (n, c) \}$

 $(X_1 = 1, X_2 = 0) \in \mathcal{C}_{n,c}, \quad (X_1 = 1, X_2 = 0) \notin \mathcal{C}_{n,c}$ $\mathcal{C}_{r,1} = \{(X_1 = 1, X_2 = 0), (X_1 = 1, X_2 = 1)\}$



Edge bounds for MMAP

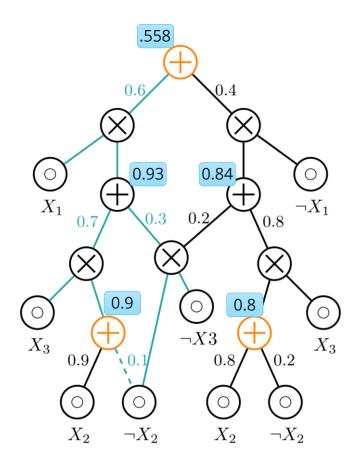
For every edge, what is the maximum marginal probability p(q) that uses/activates that edge?

 $\forall (n, c)$: define $EB(n, c) \ge \max_{q \in C_{n,c}} p(q)$

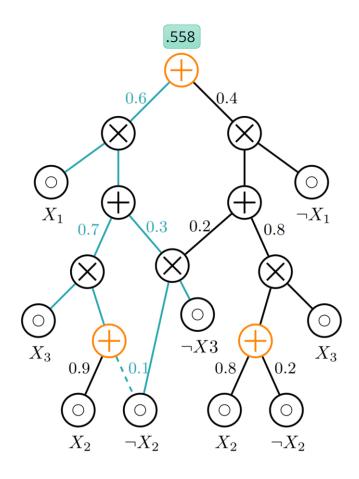
 $\mathcal{C}_{n,c} = \{ \boldsymbol{q} \in \text{val}(\boldsymbol{Q}) : p(\boldsymbol{q}) \text{ "activates" edge } (n,c) \}$

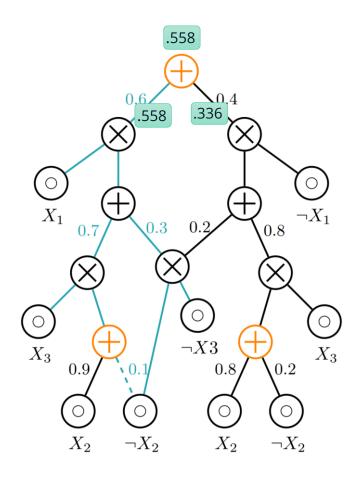
Given a lower bound *l* on MMAP, we can *safely prune any edge* (n, c) *if* EB(n, c) < l.

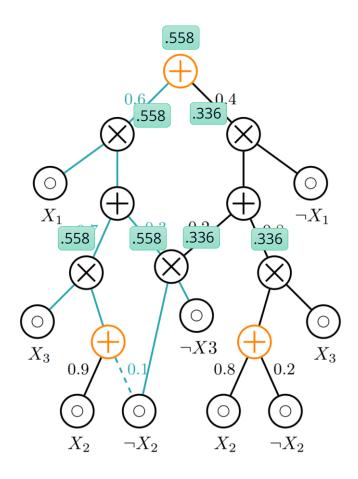
For a smooth and decomposable PC, *all edge bounds* can be computed with *a single feedforward & backward pass* through the circuit.

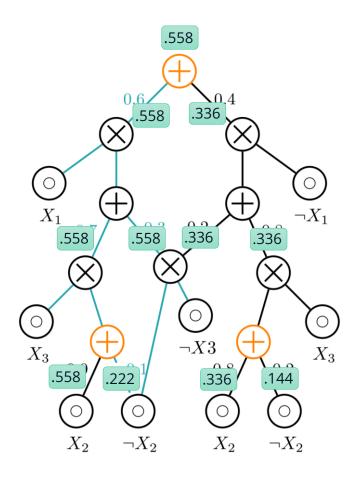


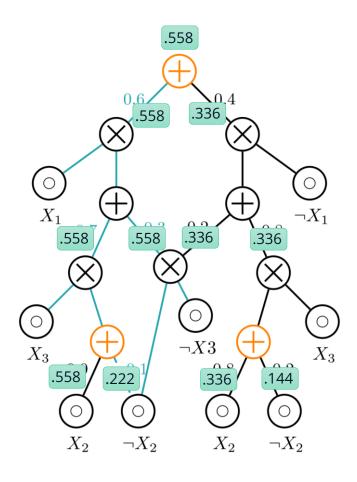
Q-deterministic sum => max



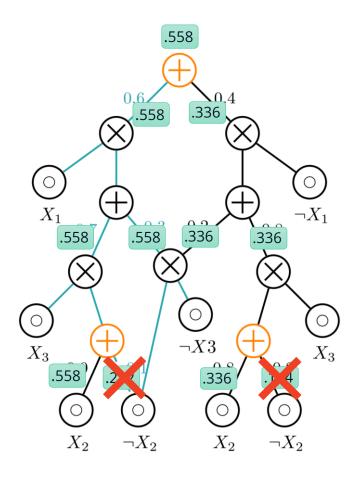




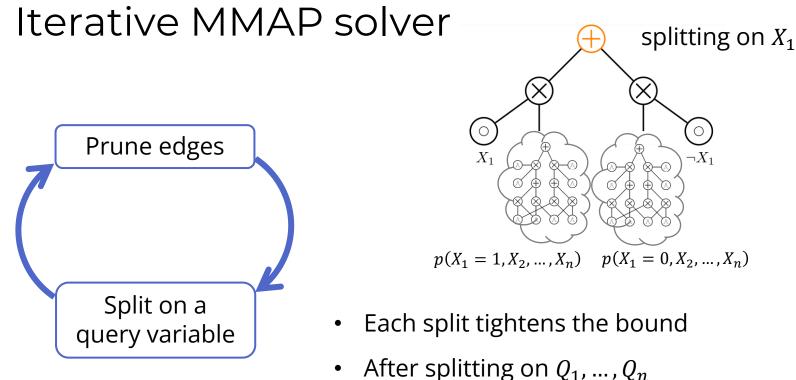




e.g. using
$$p(X_1 = 0, X_2 = 1) = 0.256$$
 as
lower bound

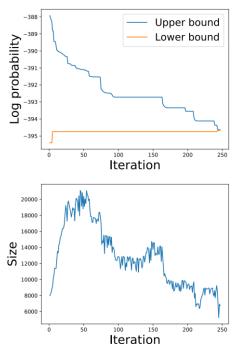


e.g. using
$$p(X_1 = 0, X_2 = 1) = 0.256$$
 as
lower bound



 $\Rightarrow \text{ linear-time MMAP for } \boldsymbol{Q} = \{Q_1, \dots, Q_n\}$

Empirical evaluation



Example run

Average run time in seconds (# instances solved)

	(30%, 30%, 40%)		(50%, 20%, 30%)	
Dataset	MaxSPN	(ours)	MaxSPN	(ours)
NLTCS	0.004 (10)	0.54 (10)	0.01 (10)	0.63 (10)
MSNBC	0.01 (10)	0.50 (10)	0.03 (10)	0.73 (10)
KDD	0.02 (10)	0.64 (10)	0.04 (10)	0.68 (10)
Plants	0.27 (10)	1.36 (10)	2.95 (10)	2.72 (10)
Audio	188.59 (10)	2.87 (10)	2041.33 (6)	13.70 (10)
Jester	265.50 (10)	6.17 (10)	2913.04 (2)	14.74 (10)
Netflix	344.71 (10)	5.61 (10)	- (0)	47.18 (10)
Accidents	0.54 (10)	2.00 (10)	109.56 (10)	15.86 (10)
Retail	0.03 (10)	0.61 (10)	0.06 (10)	0.81 (10)
Pumsb-star	273.70 (10)	6.04 (10)	2208.27 (7)	20.88 (10)
DNA	2809.44 (4)	9.16 (10)	- (0)	505.75 (9)
Kosarek	1.60 (10)	0.98 (10)	48.74 (10)	3.41 (10)
MSWeb	25.70 (10)	0.96 (10)	1543.49 (10)	1.28 (10)
Book	- (0)	7.25 (10)	- (0)	46.50 (10)
EachMovie	- (0)	93.66 (10)	- (0)	1216.89 (8)
WebKB	- (0)	102.37 (10)	- (0)	575.68 (10)
Reuters-52	- (0)	22.91 (10)	- (0)	120.58 (10)
20 NewsGrp.	- (0)	88.13 (10)	- (0)	504.52 (9)
BBC	- (0)	766.93 (9)	- (0)	2757.18 (3)
Ad	- (0)	344.81 (10)	- (0)	1254.37 (8)
Total Solved	124	199	105	187

Jun Mei, Yong Jiang, and Kewei Tu. "Maximum A Posteriori Inference in Sum-Product Networks." In: AAAI 2018.

Conclusion

- Iterative pruning and splitting to tighten MMAP bounds
 - Each split may (worst-case) double the circuit size, but pruning can be effective *in practice*
- Also an iterative MPE solver for non-deterministic PCs
- Can we generalize the bounds to other queries that require determinism for tractability?