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Sum-Product Network is

» atractable univariate distribution (i.e., we can (+)
efficiently find all modes and compute density)

> apositive combination of SPNs with same scope

» aproduct of SPNs with disjoint scopes N(3,10) N(2,18) N(-47) N(1L,8)

A Gaussian Sum-Product Network has only Gaussian distributions at leaves



Modes of a Probability Distribution
Given a probabilistic circuit encoding Pr(X), we say that a configuration x* is a mode if

dNe(x*) C {x*} such that Pr(X = x*) = r,Ua(x )Pr(X = X)
xeNe(x*
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Finding Modes

Modes provide good summary of distribution » Number of modes can be 1, some
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Finding A Most Probable Mode (MAP)

» Given Probabilistic circuit encoding Pr(X), find

x* € argmax Pr(X = x*)

» Mode such that Ne(x*) is entire domain

» Complexity
e NP-hard [de Campos 2011]
e NP-hard to approximate [Conaty et al. 2017], gets
harder with increasing depth
e Tractable if PCis deterministic [Peharz et al. 2016]

> Structured prediction, imputation




NP-hardness of Most Probable Mode [Conaty et al. 2017]

Proof: Reduction from maximum independent set:




NP-hardness of Most Probable Mode

Complexity for Gaussian Mixture Models (is this known?)
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The Max-Product Algorithm [Poon & Domingos 2011]




The Max-Product Algorithm [Poon & Domingos 2011]




The Max-Product Algorithm [Conaty et al. 2017]

Let x be the solution of Max-Product:

maxS ) < Z max w;S;j(x

< mmax W,'S,'(X)
X

< mS(x)




The Max-Product Algorithm [Conaty et al. 2017]

Approximation factor for discrete SPNs:

HEIGHT LOWERBOUND MAX-PrRODUCT
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n: number of internal nodes - 1
s: size of the encoding

If we assume that we can find MAP of mixture
of univariate Gaussians, then same upper
bounds apply




Continuation Methods [Pulkkinen et al, 2013]

Significant mode: Mode in a area of high probability (not necessarily a MAP)

» Convolution of Gaussian and GMM has
closed form solution in the form of
unscaled GMM

e Under certain conditions, convolved .

dist. is strictly concave

» Mapping between modes of convolved
distribution and GMM (differential
equation)

6 —4 -2 0 2 1 6

Fig. 1 A Gaussian mixture p and its concave Gaussian convolution (p),, in the interval [—6, 6] with y =3

» Works for GMMs with negative weights
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Finding a Mode From a Starting Point

» Given Initial point xo, find improving solution x; with

PF(X :Xl) > PI’(X :Xo)

or decide that xy is mode

» Complexity (on discrete PCs)

e NP-hard [Bodlaender et al. 2002, Villanueva & Maua 2020]
e Tractable if PCis deterministic [Peharz et al. 2016]
e Tractable if neighborhood is small and fixed (e.g., Hamming distance < constant)

> Multiple imputation, modal clustering
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Finding a Mode From Starting Point

» Gradient Ascent: x¢y1 = x¢ + n:tV Pr(X = x¢)

» Gaussian Mean-Shift [Carreira-Perpifian 2000]:

. _Zi WxN (Xe; o = X, 0)
A 023 ep WxN (Xe; 0 = X, 0)

xeb

» Modal EM for GMMs [Li et al. 2007, Carreira-Perpifian 2007]:
Expectation: Maximization:

o = wiN (Xt g, o)
Ek WkN(Xt; ke Ok

Xt41 = arg max ; qk log N (x; ik, o)
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Induced Circuits [Zhao et al. 2015]

An induced circuit T of a circuit C is a subcircuit obtained by selecting exactly one child
(input) for each sum node.

:w1+wz+w3

» Eachinduced circuit T is a tree/product distribution and

Clx) = Tulx)
k
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Modal EM for Gaussian SPNs [Madeira & Maua, 2022]

Let Ty (x) = wy [T, N (X[4]; puc ¢- 0 ) be the distribution of the k-th induced circuit of C

The Modal EM on circuit C satisfies

Expectation: Maximization:

_ wie JT N (X s o) Xe1l] = arg meZ Ak Z log N (x[€]; pee, o¢)
qk Do Wi [T N (s e o) k ¢

-y ey Tw(x)

P A Uk_,ka(X)
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Modal EM for GSPNs |

Input: Gaussian Sum-Product Network C with m nodes and configuration x € R”

1. Create sparse arrays N and D of size m-by-n

2. Visit each node u from the leaves (inputs) to the root (output) and compute:
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Modal EM for GSPNs ||

e Leaf Node with scope X; and parameters pand o

Nug = LN (il . ) Dui = Nl 1.0)
Noj = N (0l 1.0) Duy = Nl . ) (v # X]
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Modal EM for GSPNs Il

e Product Node

e Sum Node

Nyi= E Wy vNy i

(uv)

3. Returnx’ = N, ./D; . for root node r
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Modal EM for Gaussian SPNs [Madeira & Maua, 2022]

Thm: Modal EM outputs x” such that C(x") > C(x) in time O(mn).

Caveat: If C(x") = C(x) then x’ might be saddle point, not mode (but seldom occurs in
practice).
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Modal Clustering [Madeira & Maus, 2022]

Learn GSPN using LearnSPN, then associate find mode from each datapoint
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Modal Clustering

GMM (modal)

Mean Shift

20



Modal Clustering For Image Segmentation?

Original 6-means

!Experiments/images made by Jonas Goncalves
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Modal Clustering For Image Segmentation?

77 modes 77 modes 87 modes

2Experiments/images made by Jonas Goncalves
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Finding All Modes

General Search Strategy:

1. Determine/estimate number of modes N

2. While number of modes found < N do:

2.1 Find point x in candidate region (of mode yet to be found)

2.2 Run Modal EM from x, check if new mode is found
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Flndlng All Modes [Améndola et al. 2019]

N(0,0.1)  N(1,1)  AMN(1,1) N(0,0.1)

Modes at x; ~ [0,0.9],x, ~ [0.9, 0], x3 ~ [0.09, 0.09] (MAP) 5y



Flndlng All Modes [Améndola et al. 2019]

N(@2,0) N@o) N(Go) N+ B,0) NG

Modes at x; &~ [1.98,1],x; ~ [0.5,1.8],x3 ~ [0.5,0159], x4 ~ [1, 1] (all are MAP)
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Finding All Modes

Where to search for modes?

» The modes of isotropic (equal variance) GMMs lie in the convex hull
of the component means [Améndola et al. 2019]: I \
e Use max-product to find starting point & -

e Use constrained version to find second point, and so on... (beam
search)

» For non-isotropic, modes can lie outside convex hull (including
MAP)

» Data-centric: Use some training data as starting points
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Finding All Modes

When to stop searching for modes:

» Unidimensional mixtures have at most number of components [Carreira-Perpifian &
Williams 2003]

» There are n-dimensional GMM with 2 components and n + 1 modes [Ray & Ren 2012]

» Foranyk,n > 2,there are n-dimensional GMMs with k components and O(k”) modes
[Améndola et al. 2019]

o Number of stationary points is at most 0(2" % n¥)

e Fork =100 and n = 50 that gives us roughly 10%° possible modes

» Practice: Modes appear near components (which can exponentially many in GSPNs)
27



Summary

» Modes give a good summary of model, with useful applications
» Finding Modes of SPNs is a challenging problem

» Thereis much less work done for the continuous case (and even less in the mixed
discrete-continuous case)

» Theoretical open questions about number and location of modes of GSPNs
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