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Sum-Product Network is

▶ a tractable univariate distribution (i.e., we can
efficiently find all modes and compute density)

▶ a positive combination of SPNs with same scope

▶ a product of SPNs with disjoint scopes
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A Gaussian Sum-Product Network has only Gaussian distributions at leaves
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Modes of a Probability Distribution
Given a probabilistic circuit encoding Pr(X), we say that a configuration x∗ is a mode if

∃Ne(x∗) ⊂ {x∗} such that Pr(X = x∗) = max
x∈Ne(x∗)

Pr(X = x)
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Finding Modes

Motivation
Modes provide good summary of distribution ▶ Number of modes can be 1, some

1 < k < ∞ or ∞

▶ Related Tasks:
• Find all modes
• Find mode from some point
• Find most probable modes
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Finding A Most Probable Mode (MAP)

▶ Given Probabilistic circuit encoding Pr(X), find

x∗ ∈ argmaxPr(X = x∗)

▶ Mode such that Ne(x∗) is entire domain

▶ Complexity
• NP-hard [de Campos 2011]
• NP-hard to approximate [Conaty et al. 2017], gets

harder with increasing depth
• Tractable if PC is deterministic [Peharz et al. 2016]

▶ Applications: Structured prediction, imputation
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NP-hardness of Most Probable Mode [Conaty et al. 2017]

Proof: Reduction from maximum independent set:
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NP-hardness of Most Probable Mode
Complexity for Gaussian Mixture Models (is this known?)

+

S

×S1

X1
N (µ1;σ)

X2
N (µ0;σ)

X3
N (µ0;σ)

X4
N (µ0;σ)

×S2

X1
N (µ0;σ)

X2
N (µ1;σ)

X3
N (µ0;σ)

X4
N (µ1; kσ)

×S3

X1
N (µ0;σ)

X2
N (µ0;σ)

X3
N (µ1;σ)

X4
N (µ0;σ)

×S4

X1
N (µ0;σ)

X2
N (µ1; kσ)

X3
N (µ0;σ)

X4
N (µ1;σ)

1 k 1 k 1 2

34

6



The Max-Product Algorithm [Poon & Domingos 2011]

+

×0.42 ×0.48 ×0.72

X1

0.4

0 X1

0.9

1X2

0.7

1 X2

0.2

00.6 0.90.7 0.8

0.2
0.5

0.3

max

×0.42 ×0.48 ×0.72

X1

0.4

0 X1

0.9

1X2

0.7

1 X2

0.2

00.6 0.90.7 0.8

0.2
0.5

0.3

+

X

N (x;µ = 1, σ = 3)

0 X

N (x;µ = 3, σ = 3)
1

0.5 0.5

−4 −2 0 2 4 6 8

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

7



The Max-Product Algorithm [Poon & Domingos 2011]
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The Max-Product Algorithm [Conaty et al. 2017]
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Let x̄ be the solution of Max-Product:

max
x
S(x) ≤

m∑

i=1

max
x
wiSi(x)

≤ mmax
x
wiSi(x)

≤ mS(x̄)
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The Max-Product Algorithm [Conaty et al. 2017]
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Approximation factor for discrete SPNs:

HEIGHT LOWER BOUND MAX-PRODUCT
1 1 1
2 nε n

≥ 3 2sε 2s
n: number of internal nodes - 1
s: size of the encoding

If we assume that we can find MAP of mixture
of univariate Gaussians, then same upper

bounds apply
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Continuation Methods [Pulkkinen et al. 2013]

Significant mode: Mode in a area of high probability (not necessarily a MAP)

▶ Convolution of Gaussian and GMM has
closed form solution in the form of
unscaled GMM
• Under certain conditions, convolved

dist. is strictly concave

▶ Mapping between modes of convolved
distribution and GMM (differential
equation)

▶ Works for GMMs with negative weights

J Glob Optim (2013) 56:459–487 463

Fig. 1 A Gaussian mixture p and its concave Gaussian convolution ⟨p⟩γ in the interval [−6, 6] with γ = 3

Proof Let γ > 0 and ϕi (x) = exp
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The above expression is a product of one-dimensional integrals. Thus, by virtue of Lemma
2.1 we have
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from which Eq. 5 follows, since ⟨p⟩γ (x) = 1

(2π)
d
2

∑n

i=1

wi

σ d
i

⟨ϕi ⟩γ (x). ⊓⊔

Remark 2.1 We can extend Eq. 5 continuously to γ = 0 by defining ⟨p⟩0 = p.

The Gaussian convolution ⟨p⟩γ of the Gaussian mixture (4) is illustrated in Fig. 1. In
this case, the convolution produces a strictly concave function in the interval [−6, 6], and its
unique global maximizer gives a good approximation of the global maximizer of the original
Gaussian mixture. The concavity of the transformed Gaussian mixture is not a coincidence.
Namely, in Sect. 4 we establish the conditions for strict concavity of ⟨p⟩γ in a given ball for
sufficiently large γ and describe a way of estimating such a value.

123
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Finding a Mode From a Starting Point

▶ Given Initial point x0, find improving solution x1 with

Pr(X = x1) > Pr(X = x0)

or decide that x0 is mode

▶ Complexity (on discrete PCs)
• NP-hard [Bodlaender et al. 2002, Villanueva & Mauá 2020]
• Tractable if PC is deterministic [Peharz et al. 2016]
• Tractable if neighborhood is small and fixed (e.g., Hamming distance < constant)

▶ Applications: Multiple imputation, modal clustering
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Finding a Mode From Starting Point
▶ Gradient Ascent: xt+1 = xt + ηt∇Pr(X = xt)

▶ Gaussian Mean-Shift [Carreira-Perpiñán 2000]:

xt+1 =
∑

x∈D

x
σ2

wxN (xt;µ = x, σ)∑
x∈D wxN (xt;µ = x, σ)

▶ Modal EM for GMMs [Li et al. 2007, Carreira-Perpiñán 2007]:

Expectation:

qk =
wkN (xt;µk, σk)∑
k wkN (xt;µk, σk)

Maximization:

xt+1 = argmax
x

∑

k

qk logN (x;µk, σk)
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Induced Circuits [Zhao et al. 2015]

An induced circuit T of a circuit C is a subcircuit obtained by selecting exactly one child
(input) for each sum node.
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Modal EM for Gaussian SPNs [Madeira & Mauá, 2022]

Let Tk(x) = wk
∏

ℓN (x[ℓ];µk,ℓ, σk,ℓ) be the distribution of the k-th induced circuit of C

The Modal EM on circuit C satisfies

Expectation:

qk =
wk

∏
ℓN (xt;µk,ℓ, σk,ℓ)∑

k wk
∏

ℓN (xt;µk,ℓ, σk,ℓ)

Maximization:

xt+1[j] = argmax
x

∑

k

qk
∑

ℓ

logN (x[ℓ];µℓ, σℓ)

=
∑

k

µk,j

σ2
k,j

Tk(x)∑
k σ

−2
k,ℓ Tk(x)
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Modal EM for GSPNs I

Input: Gaussian Sum-Product Network Cwithm nodes and configuration x ∈ Rn

1. Create sparse arrays N and D of sizem-by-n

2. Visit each node u from the leaves (inputs) to the root (output) and compute:
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Modal EM for GSPNs II

• Leaf Node with scope Xi and parameters µ and σ

Nu,i =
µ

σ2 N (x[i];µ, σ) Du,i =
1
σ2 N (x[i];µ, σ)

Nu,j = N (x[i];µ, σ) Du,j = N (x[i];µ, σ) [∀Xj ̸= Xi]
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Modal EM for GSPNs III
• Product Node

Nu,i =
∏

(u,v)

Nv,i Du,i =
∏

(u,v)

Dv,i

• Sum Node

Nu,i =
∑

(u,v)

wu,vNv,i Du,i =
∑

(u,v)

wu,vDv,i

3. Return x′ = Nr,·/Dr,· for root node r
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Modal EM for Gaussian SPNs [Madeira & Mauá, 2022]

Thm: Modal EM outputs x′ such that C(x′) ≥ C(x) in time O(mn).

Caveat: If C(x′) = C(x) then x′ might be saddle point, not mode (but seldom occurs in
practice).
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Modal Clustering [Madeira & Mauá, 2022]

Learn GSPN using LearnSPN, then associate find mode from each datapoint
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Modal Clustering
GMM (modal) GMM (EM) K-Means Mean Shift

20



Modal Clustering For Image Segmentation1

Original GMM (k = 6) 6-means

1Experiments/images made by Jonas Gonçalves
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Modal Clustering For Image Segmentation2

k = 20 k = 30 k = 50

77 modes 77 modes 87 modes

2Experiments/images made by Jonas Gonçalves
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Finding All Modes

General Search Strategy:

1. Determine/estimate number of modes N

2. While number of modes found < N do:

2.1 Find point x in candidate region (of mode yet to be found)

2.2 Run Modal EM from x, check if new mode is found

23



Finding All Modes [Améndola et al. 2019]

+

× ×

X1

N (1, 1)

X2

N (0, 0.1)

X1

N (0, 0.1)

X2

N (1, 1)

0.5 0.5

8 GAUSSIAN MIXTURE MODELS 2.3

(a) (b) (c)

Figure 2.2: Bivariate GMMs with more modes than components. Component means are
represented by + (black crosses) and GMM modes are represented by • (red bullets). (a)
2 components and 3 modes. (b) 3 isotropic components and 4 modes. (c) 3 components
and 6 modes. Source: Améndola et al. (2019).

Let m(d, k) denote the maximal number of modes for d-dimensional Gaussian mixtures

with k components. As previously stated, m(d, 1) = 1, because a GMM with one compo-

nent is simply a Gaussian distribution. Numerous studies have examined the lower and

upper bounds of m(d, k) for greater values of d and k, and we will briefly review some of

the most recent ones, such as the ones by Carreira-Perpiñán and Williams (2003b), Ray

and Ren (2012), and Améndola et al. (2019).

While Carreira-Perpiñán and Williams (2003a) proved that the number of modes of

univariate GMMs is limited by its number of components (m(1, k) = k), the result does

not hold in higher dimensions. Figure 2.2(a) presents a counterexample that shows the

mixture of two Gaussians in two dimensions, X1 ⇠ N (µ1,⌃1) and X2 ⇠ N (µ2,⌃2),

where µ1 = (1, 0), ⌃1 = [(1, 0), (0, 0.1)], µ2 = (0, 1), and ⌃2 = [(0.1, 0), (0, 1)], with

coe�cients w1 = w2 = 1
2 . The mixture has two modes near the original means at (1, 0)

and (0, 1), and a third mode near the origin.

In a conjecture, the same article suggested that the number of modes of an isotropic

GMM could not exceed its number of components. However, a counterexample presented

by J. J. Duistermaat (Carreira-Perpiñán and Williams, 2003b) proved that conjecture to be

false. The counterexample, shown in Figure 2.2(b), consists of an homoscedastic isotropic

GMM with three components positioned at the vertices of an equilateral triangle and four

modes. The mixture is formed by X1 ⇠ N
�
(1, 0), �2I2

�
, X2 ⇠ N

⇣⇣
�1

2 ,
p

3
2

⌘
, �2I2

⌘
, and

X3 ⇠ N
⇣⇣
�1

2 ,�
p

3
2

⌘
, �2I2

⌘
, where �2 = 0.53, I2 is the identity matrix of size 2⇥ 2, and

w1 = w2 = w3 = 1
3 .

Ray and Ren (2012) proved that one can get as many as d + 1 modes from a Gaussian

mixture of two components in Rd and that is always possible to find a GMM of only two

components with d + 1 modes in d dimensions, therefore m(d, 2) = d + 1. GMMs with

Modes at x1 ≈ [0, 0.9], x2 ≈ [0.9, 0], x3 ≈ [0.09, 0.09] (MAP)
24



Finding All Modes [Améndola et al. 2019]
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Figure 2.2: Bivariate GMMs with more modes than components. Component means are
represented by + (black crosses) and GMM modes are represented by • (red bullets). (a)
2 components and 3 modes. (b) 3 isotropic components and 4 modes. (c) 3 components
and 6 modes. Source: Améndola et al. (2019).

Let m(d, k) denote the maximal number of modes for d-dimensional Gaussian mixtures

with k components. As previously stated, m(d, 1) = 1, because a GMM with one compo-

nent is simply a Gaussian distribution. Numerous studies have examined the lower and

upper bounds of m(d, k) for greater values of d and k, and we will briefly review some of

the most recent ones, such as the ones by Carreira-Perpiñán and Williams (2003b), Ray

and Ren (2012), and Améndola et al. (2019).

While Carreira-Perpiñán and Williams (2003a) proved that the number of modes of

univariate GMMs is limited by its number of components (m(1, k) = k), the result does

not hold in higher dimensions. Figure 2.2(a) presents a counterexample that shows the

mixture of two Gaussians in two dimensions, X1 ⇠ N (µ1,⌃1) and X2 ⇠ N (µ2,⌃2),

where µ1 = (1, 0), ⌃1 = [(1, 0), (0, 0.1)], µ2 = (0, 1), and ⌃2 = [(0.1, 0), (0, 1)], with

coe�cients w1 = w2 = 1
2 . The mixture has two modes near the original means at (1, 0)

and (0, 1), and a third mode near the origin.

In a conjecture, the same article suggested that the number of modes of an isotropic

GMM could not exceed its number of components. However, a counterexample presented

by J. J. Duistermaat (Carreira-Perpiñán and Williams, 2003b) proved that conjecture to be

false. The counterexample, shown in Figure 2.2(b), consists of an homoscedastic isotropic

GMM with three components positioned at the vertices of an equilateral triangle and four

modes. The mixture is formed by X1 ⇠ N
�
(1, 0), �2I2
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, where �2 = 0.53, I2 is the identity matrix of size 2⇥ 2, and

w1 = w2 = w3 = 1
3 .

Ray and Ren (2012) proved that one can get as many as d + 1 modes from a Gaussian

mixture of two components in Rd and that is always possible to find a GMM of only two

components with d + 1 modes in d dimensions, therefore m(d, 2) = d + 1. GMMs with

Modes at x1 ≈ [1.98, 1], x2 ≈ [0.5, 1.8], x3 ≈ [0.5, 0159], x4 ≈ [1, 1] (all are MAP)
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Finding All Modes

Where to search for modes?

▶ The modes of isotropic (equal variance) GMMs lie in the convex hull
of the component means [Améndola et al. 2019]:

• Use max-product to find starting point

• Use constrained version to find second point, and so on... (beam
search)

▶ For non-isotropic, modes can lie outside convex hull (including
MAP)

▶ Data-centric: Use some training data as starting points
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Figure 2.2: Bivariate GMMs with more modes than components. Component means are
represented by + (black crosses) and GMM modes are represented by • (red bullets). (a)
2 components and 3 modes. (b) 3 isotropic components and 4 modes. (c) 3 components
and 6 modes. Source: Améndola et al. (2019).

Let m(d, k) denote the maximal number of modes for d-dimensional Gaussian mixtures

with k components. As previously stated, m(d, 1) = 1, because a GMM with one compo-

nent is simply a Gaussian distribution. Numerous studies have examined the lower and

upper bounds of m(d, k) for greater values of d and k, and we will briefly review some of

the most recent ones, such as the ones by Carreira-Perpiñán and Williams (2003b), Ray

and Ren (2012), and Améndola et al. (2019).

While Carreira-Perpiñán and Williams (2003a) proved that the number of modes of

univariate GMMs is limited by its number of components (m(1, k) = k), the result does

not hold in higher dimensions. Figure 2.2(a) presents a counterexample that shows the

mixture of two Gaussians in two dimensions, X1 ⇠ N (µ1,⌃1) and X2 ⇠ N (µ2,⌃2),

where µ1 = (1, 0), ⌃1 = [(1, 0), (0, 0.1)], µ2 = (0, 1), and ⌃2 = [(0.1, 0), (0, 1)], with

coe�cients w1 = w2 = 1
2 . The mixture has two modes near the original means at (1, 0)

and (0, 1), and a third mode near the origin.

In a conjecture, the same article suggested that the number of modes of an isotropic

GMM could not exceed its number of components. However, a counterexample presented

by J. J. Duistermaat (Carreira-Perpiñán and Williams, 2003b) proved that conjecture to be

false. The counterexample, shown in Figure 2.2(b), consists of an homoscedastic isotropic
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Ray and Ren (2012) proved that one can get as many as d + 1 modes from a Gaussian

mixture of two components in Rd and that is always possible to find a GMM of only two

components with d + 1 modes in d dimensions, therefore m(d, 2) = d + 1. GMMs with
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Let m(d, k) denote the maximal number of modes for d-dimensional Gaussian mixtures

with k components. As previously stated, m(d, 1) = 1, because a GMM with one compo-

nent is simply a Gaussian distribution. Numerous studies have examined the lower and

upper bounds of m(d, k) for greater values of d and k, and we will briefly review some of

the most recent ones, such as the ones by Carreira-Perpiñán and Williams (2003b), Ray

and Ren (2012), and Améndola et al. (2019).

While Carreira-Perpiñán and Williams (2003a) proved that the number of modes of

univariate GMMs is limited by its number of components (m(1, k) = k), the result does

not hold in higher dimensions. Figure 2.2(a) presents a counterexample that shows the

mixture of two Gaussians in two dimensions, X1 ⇠ N (µ1,⌃1) and X2 ⇠ N (µ2,⌃2),

where µ1 = (1, 0), ⌃1 = [(1, 0), (0, 0.1)], µ2 = (0, 1), and ⌃2 = [(0.1, 0), (0, 1)], with

coe�cients w1 = w2 = 1
2 . The mixture has two modes near the original means at (1, 0)

and (0, 1), and a third mode near the origin.

In a conjecture, the same article suggested that the number of modes of an isotropic

GMM could not exceed its number of components. However, a counterexample presented

by J. J. Duistermaat (Carreira-Perpiñán and Williams, 2003b) proved that conjecture to be

false. The counterexample, shown in Figure 2.2(b), consists of an homoscedastic isotropic

GMM with three components positioned at the vertices of an equilateral triangle and four

modes. The mixture is formed by X1 ⇠ N
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Ray and Ren (2012) proved that one can get as many as d + 1 modes from a Gaussian

mixture of two components in Rd and that is always possible to find a GMM of only two

components with d + 1 modes in d dimensions, therefore m(d, 2) = d + 1. GMMs with
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Finding All Modes

When to stop searching for modes:

▶ Unidimensional mixtures have at most number of components [Carreira-Perpiñán &
Williams 2003]

▶ There are n-dimensional GMM with 2 components and n+ 1 modes [Ray & Ren 2012]

▶ For any k, n ≥ 2, there are n-dimensional GMMs with k components and O(kn) modes
[Améndola et al. 2019]

• Number of stationary points is at most O(2n+k
2
nk)

• For k = 100 and n = 50 that gives us roughly 1029 possible modes

▶ Practice: Modes appear near components (which can exponentially many in GSPNs)
27



Summary

▶ Modes give a good summary of model, with useful applications

▶ Finding Modes of SPNs is a challenging problem

▶ There is much less work done for the continuous case (and even less in the mixed
discrete-continuous case)

▶ Theoretical open questions about number and location of modes of GSPNs
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