On Finding Modes of Sum-Product Networks

Denis Mauá

joint work with Tiago Madeira and Cassio de Campos

Simons Probabilistic Circuits Workshop - October 20, 2023

Sum-Product Network is

- a tractable univariate distribution (i.e., we can efficiently find all modes and compute density)
- a positive combination of SPNs with same scope
- a product of SPNs with disjoint scopes

A Gaussian Sum-Product Network has only Gaussian distributions at leaves

Modes of a Probability Distribution

Given a probabilistic circuit encoding Pr(X), we say that a configuration x^* is a mode if

$$\exists Ne(x^*) \subset \{x^*\}$$
 such that $\Pr(X = x^*) = \max_{x \in Ne(x^*)} \Pr(X = x)$

Finding Modes

Motivation

Modes provide good summary of distribution

- ▶ Number of modes can be 1, some $1 < k < \infty$ or ∞
- Related Tasks:
 - Find all modes
 - Find mode from some point
 - Find most probable modes

Finding A Most Probable Mode (MAP)

► **Given** Probabilistic circuit encoding Pr(X), find

 $x^* \in \operatorname{arg\,max} \Pr(X = x^*)$

- Mode such that Ne(x*) is entire domain
- Complexity
 - NP-hard [de Campos 2011]
 - NP-hard to approximate [Conaty et al. 2017], gets harder with increasing depth
 - Tractable if PC is deterministic [Peharz et al. 2016]
- Applications: Structured prediction, imputation

NP-hardness of Most Probable Mode

[Conaty et al. 2017]

Proof: Reduction from maximum independent set:

NP-hardness of Most Probable Mode

Complexity for Gaussian Mixture Models (is this known?)

 $\mathcal{N}(\mu_{1};\sigma) \, \mathcal{N}(\mu_{0};\sigma) \, \mathcal{N}(\mu_{0};\sigma) \, \mathcal{N}(\mu_{0};\sigma) \, \mathcal{N}(\mu_{1};\sigma) \, \mathcal{N}(\mu_{1};\sigma) \, \mathcal{N}(\mu_{1};\sigma) \mathcal{N}(\mu_{1};\sigma) \, \mathcal{N}(\mu_{0};\sigma) \, \mathcal{N}(\mu_{1};\sigma) \, \mathcal{N}(\mu_{0};\sigma) \, \mathcal{N}(\mu_{1};\sigma) \, \mathcal{N}(\mu_{1};\sigma)$

[Poon & Domingos 2011]

[Poon & Domingos 2011]

[Conaty et al. 2017]

Let \overline{x} be the solution of Max-Product:

$$egin{aligned} \max_{x} S(x) &\leq \sum_{i=1}^{m} \max_{x} w_i S_i(x) \ &\leq m \max_{x} w_i S_i(x) \ &\leq m S(ar{x}) \end{aligned}$$

[Conaty et al. 2017]

Approximation factor for **discrete SPNs**:

Height	Lower bound	Max-Product
1	1	1
2	$n^{arepsilon}$	п
\ge 3	$2^{s^{\varepsilon}}$	2 ^s

n: number of internal nodes - 1

s: size of the encoding

If we assume that we can find MAP of mixture of univariate Gaussians, then same upper bounds apply

Continuation Methods

Significant mode: Mode in a area of high probability (not necessarily a MAP)

- Convolution of Gaussian and GMM has closed form solution in the form of unscaled GMM
 - Under certain conditions, convolved dist. is strictly concave
- Mapping between modes of convolved distribution and GMM (differential equation)
- Works for GMMs with negative weights

Fig. 1 A Gaussian mixture p and its concave Gaussian convolution $\langle p \rangle_{\gamma}$ in the interval [-6, 6] with $\gamma = 3$

Finding a Mode From a Starting Point

• **Given** Initial point x_0 , find improving solution x_1 with

$$\Pr(X = x_1) > \Pr(X = x_0)$$

or decide that x₀ is mode

- Complexity (on discrete PCs)
 - NP-hard [Bodlaender et al. 2002, Villanueva & Mauá 2020]
 - Tractable if PC is deterministic [Peharz et al. 2016]
 - Tractable if neighborhood is small and fixed (e.g., Hamming distance < constant)
- Applications: Multiple imputation, modal clustering

Finding a Mode From Starting Point

- Gradient Ascent: $x_{t+1} = x_t + \eta_t \nabla \Pr(X = x_t)$
- Gaussian Mean-Shift [Carreira-Perpiñán 2000]:

$$x_{t+1} = \sum_{x \in D} \frac{x}{\sigma^2} \frac{w_x \mathcal{N}(x_t; \mu = x, \sigma)}{\sum_{x \in D} w_x \mathcal{N}(x_t; \mu = x, \sigma)}$$

Modal EM for GMMs [Li et al. 2007, Carreira-Perpiñán 2007]:

Expectation:

Maximization:

$$q_k = \frac{w_k \mathcal{N}(x_t; \mu_k, \sigma_k)}{\sum_k w_k \mathcal{N}(x_t; \mu_k, \sigma_k)}$$

$$x_{t+1} = rg\max_{x}\sum_{k} q_k \log \mathcal{N}(x; \mu_k, \sigma_k)$$

Induced Circuits

[Zhao et al. 2015]

An **induced circuit** *T* of a circuit *C* is a subcircuit obtained by selecting exactly one child (input) for each sum node.

Each induced circuit T_k is a tree/product distribution and

$$C(x)=\sum_k T_k(x)$$

Let $T_k(x) = w_k \prod_{\ell} \mathcal{N}(x[\ell]; \mu_{k,\ell}, \sigma_{k,\ell})$ be the distribution of the *k*-th induced circuit of *C*

The Modal EM on circuit C satisfies

Expectation:

Maximization:

$$q_k = \frac{w_k \prod_{\ell} \mathcal{N}(x_t; \mu_{k,\ell}, \sigma_{k,\ell})}{\sum_k w_k \prod_{\ell} \mathcal{N}(x_t; \mu_{k,\ell}, \sigma_{k,\ell})}$$

$$egin{aligned} & x_{t+1}[j] = rg\max_{x} \sum_{k} q_k \sum_{\ell} \log \mathcal{N}(x[\ell]; \mu_\ell, \sigma_\ell) \ & = \sum_{k} rac{\mu_{k,j}}{\sigma_{k,j}^2} rac{T_k(x)}{\sum_{k} \sigma_{k,\ell}^{-2} T_k(x)} \end{aligned}$$

Input: Gaussian Sum-Product Network *C* with *m* nodes and configuration $x \in \mathbb{R}^n$

1. Create sparse arrays *N* and *D* of size *m*-by-*n*

2. Visit each node *u* from the leaves (inputs) to the root (output) and compute:

Modal EM for GSPNs II

• Leaf Node with scope X_i and parameters μ and σ

$$N_{u,i} = rac{\mu}{\sigma^2} \mathcal{N}(\mathbf{x}[i]; \mu, \sigma)$$
 $D_{u,i} = rac{1}{\sigma^2} \mathcal{N}(\mathbf{x}[i]; \mu, \sigma)$

$$N_{u,j} = \mathcal{N}(x[i]; \mu, \sigma)$$
 $D_{u,j} = \mathcal{N}(x[i]; \mu, \sigma)$ $[\forall X_j \neq X_i]$

Modal EM for GSPNs III

• Product Node

$$N_{u,i} = \prod_{(u,v)} N_{v,i} \qquad \qquad D_{u,i} = \prod_{(u,v)} D_{v,i}$$

• Sum Node

$$N_{u,i} = \sum_{(u,v)} w_{u,v} N_{v,i} \qquad \qquad D_{u,i} = \sum_{(u,v)} w_{u,v} D_{v,i}$$

3. Return $x' = N_{r,\cdot}/D_{r,\cdot}$ for root node r

Thm: Modal EM outputs x' such that $C(x') \ge C(x)$ in time O(mn).

Caveat: If C(x') = C(x) then x' might be saddle point, not mode (but seldom occurs in practice).

Modal Clustering

Learn GSPN using LearnSPN, then associate find mode from each datapoint

Modal Clustering

Modal Clustering For Image Segmentation¹

¹Experiments/images made by Jonas Gonçalves

Modal Clustering For Image Segmentation²

$$k = 20 \qquad \qquad k = 30 \qquad \qquad k = 50$$

77 modes

77 modes

87 modes

²Experiments/images made by Jonas Gonçalves

General Search Strategy:

- 1. Determine/estimate number of modes N
- 2. While number of modes found < N do:
 - 2.1 Find point *x* in candidate region (of mode yet to be found)
 - 2.2 Run Modal EM from *x*, check if new mode is found

[Améndola et al. 2019]

Modes at $x_1 \approx [0, 0.9], x_2 \approx [0.9, 0], x_3 \approx [0.09, 0.09]$ (MAP)

[Améndola et al. 2019]

Modes at $x_1 \approx [1.98, 1], x_2 \approx [0.5, 1.8], x_3 \approx [0.5, 0159], x_4 \approx [1, 1]$ (all are MAP)

Where to search for modes?

- The modes of isotropic (equal variance) GMMs lie in the convex hull of the component means [Améndola et al. 2019]:
 - Use max-product to find starting point
 - Use constrained version to find second point, and so on... (beam search)
- For non-isotropic, modes can lie outside convex hull (including MAP)
- **Data-centric**: Use some training data as starting points

When to stop searching for modes:

- Unidimensional mixtures have at most number of components [Carreira-Perpiñán & Williams 2003]
- ▶ There are *n*-dimensional GMM with 2 components and *n* + 1 modes [Ray & Ren 2012]
- ► For any k, n ≥ 2, there are n-dimensional GMMs with k components and O(kⁿ) modes [Améndola et al. 2019]
 - Number of stationary points is at most $O(2^{n+k^2}n^k)$
 - For k = 100 and n = 50 that gives us roughly 10^{29} possible modes

Practice: Modes appear near components (which can exponentially many in GSPNs)

- Modes give a good summary of model, with useful applications
- Finding Modes of SPNs is a challenging problem
- There is much less work done for the continuous case (and even less in the mixed discrete-continuous case)
- Theoretical open questions about number and location of modes of GSPNs