Subtractive mixture models

 representation and learning
antonio vergari (he/him)

@ @tetraduzione
joint work with Lorenzo Loconte, Aleksanteri M. Sladek, Stefan Mangel, Martin Trapp, Arno Solin, Nicolas Gillis

19th Oct 2023 - Simons Institute

april

april is
probably a
recursive, identifier of a lab

$$
\begin{aligned}
& 0 \square 0 ~ \\
& \text { about } \\
& \text { probabilities } \\
& \text { reasoning, } \\
& \text { integrals \& } \\
& \text { Iogic }
\end{aligned}
$$

why subtractions in mixture models

how to represent them as deep squared circuits?
 what inference and model classes they support?
 When are they more expressive
 open problems

why subtractions in mixture models
 how to represent them as deep squared circuits?

what inference and model classes they support?

when are they more expressive

open problems

why subtractions in mixture models

how to represent them as deep squared circuits?

what inference and model classes they support?

when

are they more expressive
open
p roblems

why subtractions in mixture models

how to represent them as deep squared circuits?

What inference and model classes they support?
when are they more expressive

open problems

why subtractions in mixture models
how to represent them as deep squared circuits?

What inference and model classes they support?
when are they more expressive

open problems

TCS crowd

a circuit lowerbound to play with
connections with mixtures/PGMs/learning

ML crowd

(some) new tractable model(s) to play with
a tensorized way to represent circuits
why subtractions in mixture models

mixtures are a staple in probML

additive MMs

are so cool!
easily represented as shallow probabilistic circuits (PCs)

\Rightarrow smooth, (structured) decomposable
these are monotonic PCs
if marginals/conditionals are tractable for the components, they are tractable for the MM
universal approximators...

additive MMs

are so cool!
easily represented as shallow probabilistic circuits (PCs)

\Rightarrow smooth, (structured) decomposable
these are monotonic PCs
if marginals/conditionals are tractable for the components, they are tractable for the MM
universal approximators..

additive MMs

are so cool!

easily represented as shallow probabilistic circuits (PCs)

\Rightarrow smooth, (structured) decomposable

these are monotonic PCs
if marginals/conditionals are tractable for the components, they are tractable for the MM
universal approximators...

additive MMs

are so cool!

easily represented as shallow probabilistic circuits (PCs)

\Rightarrow smooth, (structured) decomposable

these are monotonic PCs
if marginals/conditionals are tractable for the components, they are tractable for the MM
universal approximators...

additive MMs

additive MMs

additive MMs

additive MMs

however...

however...

GMM $(K=2)$

however...

however...

GMM $(K=2)$
GMM $(K=16)$

$\mathrm{nGMM}^{2}(K=2)$

SPOILER ALERT

Shallow mixtures with negative parameters can be exponentially more compact than deep ones with positive ones.

subtractive MMs

sometimes called negative MMs \Rightarrow or non-monotonic circuits,...
issue: how to preserve non-negative outputs?
well understood for simple parametric forms
e.g., Weibulls, Gaussians
constraints on variance, mean

subtractive MMs

sometimes called negative MMs \Rightarrow or non-monotonic circuits,...
issue: how to preserve non-negative outputs?
well understood for simple parametric forms
e.g., Weibulls, Gaussians
constraints on variance, mean

subtractive MMs

sometimes called negative MMs \Rightarrow or non-monotonic circuits,...
issue: how to preserve non-negative outputs?
well understood for simple parametric forms
e.g., Weibulls, Gaussians
\Rightarrow constraints on variance, mean

t/pdr

"Understand when and how we can use negative parameters in deep subtractive mixture models"

t/pdr

"Understand when and how we can use negative parameters in deep non-monotonic squared circuits"

t/pdr

"Understand when and how we can use negative parameters in deep non-monotonic squared circuits"
$\Rightarrow \quad$ Iater PSD kernel models, tensor networks, ...

subtractive MMs as circuits

a non-monotonic smooth and (structured) decomposable circuit
\Rightarrow possibly with negative outputs

$$
c(\mathbf{X})=\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X}), \quad w_{i} \in \mathbb{R}
$$

squaring shallow MMs

$$
\begin{aligned}
& c^{2}(\mathbf{X})=\left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2} \\
& \Rightarrow \text { ensure non-negative output }
\end{aligned}
$$

squaring shallow MMs

$$
\begin{aligned}
c^{2}(\mathbf{X}) & =\left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2} \\
& =\sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})
\end{aligned}
$$

squaring shallow MMs

$$
\begin{aligned}
c^{2}(\mathbf{X}) & =\left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2} \\
& =\sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})
\end{aligned}
$$

still a smooth and (str) decomposable PC with $\mathcal{O}\left(K^{2}\right)$ components! \Rightarrow but still $\mathcal{O}(K)$ parameters

squaring shallow MMs

e.g., a squared GMM with negative parameters w_{i}
but we do not require non-negative inputs!
to renormalize we need to compute
$\int c^{2}(\mathbf{x}) \mathrm{d} \mathbf{x}=\sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} \int c_{i}(\mathbf{x}) c_{j}(\mathbf{x}) \mathrm{d} \mathbf{x}$

squaring shallow MMs

e.g., a squared GMM with negative parameters w_{i}
but we do not require non-negative inputs!

$$
\Rightarrow \text { e.g. use splines }
$$

to renormalize we need to compute

squaring shallow MMs

e.g., a squared GMM with negative parameters w_{i}
but we do not require non-negative inputs!

$$
\Rightarrow \text { e.g. use splines }
$$

to renormalize we need to compute

$$
\int c^{2}(\mathbf{x}) \mathrm{d} \mathbf{x}=\sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} \int c_{i}(\mathbf{x}) c_{j}(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

why subtractions in mixture models
how to represent them as deep squared circuits?

Circuits

A grammar for tractable computational graphs

how to efficiently square (and renormalize) a deep PC?

Tractable square

smooth
structured decomposable

Tractable square

smooth
structured decomposable

smooth
structured decomposable

Tractable square

exactly compute $\int \boldsymbol{c}(\mathbf{x}) \boldsymbol{c}(\mathbf{x}) d \mathbf{X}$ in time $O\left(|\boldsymbol{c}|^{2}\right)$

Tractable square

```
Algorithm 3 MULTIPLY(p,q, cache)
    1: Input: two circuits p(Z) and q(\mathbf{Y})\mathrm{ that are compatible over }\mathbf{X}=\mathbf{Z}\cap\mathbf{Y}\mathrm{ and a cache for}
    2. Output: their product circuit m(\mathbf{Z}\cup\mathbf{Y})=p(\mathbf{Z})q(\mathbf{Y})
    3: if (p,q)\in cache then return cache(p.q)
    4: if }\phi(p)\cap\phi(q)=0\mathrm{ then 
    5: m\leftarrowPRODUCT ({p,q}); ;
    else if p,q\mathrm{ are input units then}
```



```
    s&[{\operatorname{supp}(p(\mathbf{X}))\cap\operatorname{supp}(q(\mathbf{X}))\not=\emptyset
    9: else if p is an input unit then 
    n\leftarrow{};s\leftarrow\leftarrowalse//q(Y)= \
            n}\mp@subsup{n}{}{\prime},\mp@subsup{s}{}{\prime}\leftarrow\mathrm{ MULTIPLY (p, q},\mp@code{, cache)
```



```
    5: else if q is an input unit then 
    6: }n\leftarrow{};s\leftarrow\mathrm{ False//p(z)
    for i=1 to in (p)|do
        M,
if s}\mathrm{ then m}\leftarrow\operatorname{Sum}(n,{\mp@subsup{0}{i}{\prime}\mp@subsup{}}{i=1}{\operatorname{ln}(p)})\mathrm{ else }m\leftarrownul
21: else if p,q are product units then
2.}n\leftarrow{}:s\leftarrow\leftarrowTru
{\mp@subsup{p}{i}{\prime},\mp@subsup{q}{i}{}}}
for i=1 to k do
n
```



```
27: if s then m\leftarrowPRODUCT( }
29. else if p,q\mathrm{ are sum units then}
29: n\leftarrow{};w\leftarrow{}; s\leftarrow False
for i=1 to in (p)|,j=1 to |in (q)| do
1: }\mp@subsup{n}{0}{\prime},\mp@subsup{s}{}{\prime}\leftarrow\mathrm{ MULTIPLY (p
32: }n\leftarrown\cup\mp@subsup{n}{}{\prime};w\leftarroww\cup{\mp@subsup{0}{i}{\prime}\mp@subsup{0}{j}{\prime}};s\leftarrows\vee
4. cache (p,q)\leftarrow(m,s)
35: return m,s
```


on tensorized PCs

```
```

Algorithm 1 squareTensorizedCircuit (ℓ, \mathcal{R})

```
```

Algorithm 1 squareTensorizedCircuit (ℓ, \mathcal{R})
Input: A tensorized circuit having output layer ℓ and defined on a tree RG rooted by \mathcal{R}
Input: A tensorized circuit having output layer ℓ and defined on a tree RG rooted by \mathcal{R}
Output: The tensorized squared circuit defined on the same tree RG having $\boldsymbol{\ell}^{2}$ as output layer computing $\boldsymbol{\ell} \otimes \boldsymbol{\ell}$.
Output: The tensorized squared circuit defined on the same tree RG having $\boldsymbol{\ell}^{2}$ as output layer computing $\boldsymbol{\ell} \otimes \boldsymbol{\ell}$.
if ℓ is an input layer then
if ℓ is an input layer then
ℓ computes K functions $f_{i}(\mathcal{R})$
ℓ computes K functions $f_{i}(\mathcal{R})$
return An input layer ℓ^{2} computing all K^{2}
return An input layer ℓ^{2} computing all K^{2}
product combinations $f_{i}(\mathcal{R}) f_{j}(\mathcal{R})$
product combinations $f_{i}(\mathcal{R}) f_{j}(\mathcal{R})$
5: else if ℓ is a product layer then
5: else if ℓ is a product layer then
$\left\{\left(\boldsymbol{\ell}_{\mathrm{i}}, \mathcal{R}_{\mathrm{i}}\right),\left(\boldsymbol{\ell}_{\mathrm{ii}}, \mathcal{R}_{\mathrm{ii}}\right)\right\} \leftarrow \operatorname{getlnputs}(\boldsymbol{\ell}, \mathcal{R})$
$\left\{\left(\boldsymbol{\ell}_{\mathrm{i}}, \mathcal{R}_{\mathrm{i}}\right),\left(\boldsymbol{\ell}_{\mathrm{ii}}, \mathcal{R}_{\mathrm{ii}}\right)\right\} \leftarrow \operatorname{getlnputs}(\boldsymbol{\ell}, \mathcal{R})$
7: $\quad \ell_{\mathrm{i}}^{2} \leftarrow$ squareTensorizedCircuit $\left(\ell_{\mathrm{i}}, \mathcal{R}_{\mathrm{i}}\right)$
7: $\quad \ell_{\mathrm{i}}^{2} \leftarrow$ squareTensorizedCircuit $\left(\ell_{\mathrm{i}}, \mathcal{R}_{\mathrm{i}}\right)$
$\ell_{\mathrm{ii}}^{2} \leftarrow$ squareTensorizedCircuit $\left(\boldsymbol{\ell}_{\mathrm{ii}}, \mathcal{R}_{\mathrm{ii}}\right)$

```
        \(\ell_{\mathrm{ii}}^{2} \leftarrow\) squareTensorizedCircuit \(\left(\boldsymbol{\ell}_{\mathrm{ii}}, \mathcal{R}_{\mathrm{ii}}\right)\)
```

```
        urn \(\ell_{i}^{2} \odot \boldsymbol{\ell}\)
```

 urn \(\ell_{i}^{2} \odot \boldsymbol{\ell}\)
 10: else \(\quad \triangleright \boldsymbol{\ell}\) is a sum layer
 10: else \(\quad \triangleright \boldsymbol{\ell}\) is a sum layer
 11: $\quad\left\{\left(\boldsymbol{\ell}_{\mathrm{i}}, \mathcal{R}\right)\right\} \leftarrow$ getlnputs $(\boldsymbol{\ell}, \mathcal{R})$
11: $\quad\left\{\left(\boldsymbol{\ell}_{\mathrm{i}}, \mathcal{R}\right)\right\} \leftarrow$ getlnputs $(\boldsymbol{\ell}, \mathcal{R})$
12: $\quad \ell_{i}^{2} \leftarrow$ squareTensorizedCircuit $\left(\ell_{i}, \mathcal{R}\right)$
12: $\quad \ell_{i}^{2} \leftarrow$ squareTensorizedCircuit $\left(\ell_{i}, \mathcal{R}\right)$
13: $\quad \mathbf{W} \in \mathbb{R}^{S \times K} \leftarrow$ getParameters $(\boldsymbol{\ell})$
13: $\quad \mathbf{W} \in \mathbb{R}^{S \times K} \leftarrow$ getParameters $(\boldsymbol{\ell})$
14: $\quad \mathbf{W}^{\prime} \in \mathbb{R}^{S^{2} \times K^{2}} \leftarrow \mathbf{W} \otimes \mathbf{W}$
14: $\quad \mathbf{W}^{\prime} \in \mathbb{R}^{S^{2} \times K^{2}} \leftarrow \mathbf{W} \otimes \mathbf{W}$
15: \quad return $W^{\prime} \ell_{i}^{2}$

```
15: \(\quad\) return \(W^{\prime} \ell_{i}^{2}\)
```


Tensorizing str-dec PCs

abstract computations into layers
group units with the same scope
parameterize connections by matrix/vector operations

Tensorizing str-dec PCs

Tensorizing str-dec PCs

region graph / vtree / pseudotree

squaring deep PCs

the tensorized way

squaring reduces to square layers

Tractable squares

exactly compute $\int \boldsymbol{c}(\mathrm{x}) \boldsymbol{c}(\mathrm{x}) d \mathbf{X}$ in time $O\left(|\boldsymbol{c}|^{2}\right)$

Tractable squares

exactly compute $\int c(\mathbf{x}) c(\mathbf{x}) d \mathbf{X}$ in time $O\left((\boldsymbol{L} \boldsymbol{K})^{2}\right)$

Tractable squares

exactly compute $\int \boldsymbol{c}(\mathbf{x}) \boldsymbol{c}(\mathbf{x}) d \mathbf{X}$ in time $O\left(\boldsymbol{L} \boldsymbol{K}^{2}\right)$
why subtractions in mixture models
how to represent them as deep squared circuits?
what inference and model classes they support?

the alphabet soup of tractable models

PSD kernels

Given a kernel κ and a set of d data points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(d)}$ with $\boldsymbol{\kappa}(\mathbf{x})=\left[\kappa\left(\mathbf{x}, \mathbf{x}^{(1)}\right), \ldots, \kappa\left(\mathbf{x}, \mathbf{x}^{(d)}\right)\right]^{\top} \in \mathbb{R}^{d}$, define the non-negative function

$$
f(\mathbf{x} ; \mathbf{A}, \boldsymbol{\kappa})=\boldsymbol{\kappa}(\mathbf{x})^{\top} \mathbf{A} \boldsymbol{\kappa}(\mathbf{x})
$$

where \mathbf{A} is a real $d \times d$ positive semi-definite matrix.

PSD kernels

Given a kernel κ and a set of d data points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(d)}$ with $\boldsymbol{\kappa}(\mathbf{x})=\left[\kappa\left(\mathbf{x}, \mathbf{x}^{(1)}\right), \ldots, \kappa\left(\mathbf{x}, \mathbf{x}^{(d)}\right)\right]^{\top} \in \mathbb{R}^{d}$, define the non-negative function

$$
f(\mathbf{x} ; \mathbf{A}, \boldsymbol{\kappa})=\boldsymbol{\kappa}(\mathbf{x})^{\top} \mathbf{A} \boldsymbol{\kappa}(\mathbf{x})
$$

where \mathbf{A} is a real $d \times d$ positive semi-definite matrix. Just a mixture of squared PCs

$$
f(\mathbf{x} ; \mathbf{A}, \boldsymbol{\kappa})=\boldsymbol{\kappa}(\mathbf{x})^{\top}\left(\sum_{i=1}^{r} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}\right) \boldsymbol{\kappa}(\mathbf{x})=\sum_{i=1}^{r} \lambda_{i}\left(\mathbf{u}_{i}^{\top} \boldsymbol{\kappa}(\mathbf{x})\right)^{2}
$$

tensor networks

matrix-product state, tensor trains, Born machines,...

A maxtrix-product state or tensor-train factorizes a D-dimensional tensor \mathcal{T} as

$$
\mathcal{T}\left[x_{1}, \ldots, x_{D}\right]=\sum_{i_{1}=1}^{r} \sum_{i_{2}=1}^{r} \cdots \sum_{i_{D-1}=1}^{r} \mathbf{A}_{1}\left[x_{1}, i_{1}\right] \mathbf{A}_{2}\left[x_{2}, i_{1}, i_{2}\right] \cdots \mathbf{A}_{D}\left[x_{D}, i_{D-1}\right]
$$

and a Born machine squares it

$$
\mathcal{B}\left[x_{1}, \ldots, x_{D}\right]=\left(\sum_{i_{1}=1}^{r} \sum_{i_{2}=1}^{r} \cdots \sum_{i_{D-1}=1}^{r} \mathbf{A}_{1}\left[x_{1}, i_{1}\right] \mathbf{A}_{2}\left[x_{2}, i_{1}, i_{2}\right] \cdots \mathbf{A}_{D}\left[x_{D}, i_{D-1}\right]\right)^{2}
$$

tensor networks

matrix-product state, tensor trains, Born machines,...

A maxtrix-product state or tensor train factorizes a D-dimensional tensor \mathcal{T} as

$$
\mathcal{T}\left[x_{1}, \ldots, x_{D}\right]=\sum_{i_{1}=1}^{r} \sum_{i_{2}=1}^{r} \cdots \sum_{i_{D-1}=1}^{r} \mathbf{A}_{1}\left[x_{1}, i_{1}\right] \mathbf{A}_{2}\left[x_{2}, i_{1}, i_{2}\right] \cdots \mathbf{A}_{D}\left[x_{D}, i_{D-1}\right]
$$

and a Born machine squares it

$$
\mathcal{B}\left[x_{1}, \ldots, x_{D}\right]=\left(\sum_{i_{1}=1}^{r} \sum_{i_{2}=1}^{r} \cdots \sum_{i_{D-1}=1}^{r} \mathbf{A}_{1}\left[x_{1}, i_{1}\right] \mathbf{A}_{2}\left[x_{2}, i_{1}, i_{2}\right] \cdots \mathbf{A}_{D}\left[x_{D}, i_{D-1}\right]\right)^{2}
$$

tensor networks

matrix-product state, tensor trains, Born machines,...

Marginals

and conditionals

Marginals

and conditionals

Sampling

Sampling

by autoregressive sampling

Sampling

non-monotonic

MAP

monotonic

$\mathcal{O}(|c|)$

MAP

monotonic

$\mathcal{O}(|c|)$
non-monotonic

if deterministic
38
why subtractions in mixture models
how to represent them as deep squared circuits?
what inference and model classes they support?
when are they more expressive

more expressive?

squared probabilistic (o)BDDs, SDDs, str-d-DNNF?

smooth, deterministic
structured decomposable

more expressive?

squared probabilistic (o)BDDs, SDDs, str-d-DNNF?

no increase in size
no increase in expressiveness
no negative weights

smooth, deterministic
structured decomposable

more expressive?

squared probabilistic (o)BDDs, SDDs, str-d-DNNF?

no increase in size
no increase in expressiveness
no negative weights

smooth, deterministic
structured decomposable

more expressive?

squared probabilistic (o)BDDs, SDDs, str-d-DNNF?

no increase in size

no increase in expressiveness
no negative weights

smooth, deterministic structured decomposable

more expressive?

squared probabilistic (o)BDDs, SDDs, str-d-DNNF?

no increase in size
no increase in expres siveness
no negative weights

smooth, deterministic
structured decomposable

more expressive?

exponential separation
Theorem: there is a class of non-negative functions \mathcal{F} over variables \mathbf{X} that can be represented by compact a squared non-monotonic str-dec PC but for which the smallest monotonic str-dec PC computing $F \in \mathcal{F}$ has size $2^{\Omega(|\mathbf{X}|)}$ smallest monotonic str-dec PC computing $F \in \mathcal{F}$ has exponential size $2^{\Omega(|\mathrm{X}|)}$.

more expressive?

exponential separation
Theorem: there is a class of non-negative functions \mathcal{F} over variables \mathbf{X} that can be represented by compact a squared non-monotonic str-dec PC but for which the smallest monotonic str-dec PC computing $F \in \mathcal{F}$ has exponential size $2^{\Omega(|\mathrm{X}|)}$.

more expressive?

exponential separation
Theorem: there is a class of non-negative functions \mathcal{F} over variables \mathbf{X} that can be represented by compact a squared non-monotonic str-dec PC but for which the smallest monotonic str-dec PC computing $F \in \mathcal{F}$ has size $2^{\Omega(|\mathbf{X}|)}$ smallest monotonic str-dec PC computing $F \in \mathcal{F}$ has exponential size $2^{\Omega(|\mathrm{X}|)}$.

more expressive?

more expressive?

more expressive?

GT

how more expressive?

for the ML crowd

why subtractions in mixture models
how to represent them as deep squared circuits?
what inference and model classes they support?
when are they more expressive
open problems

I how to retrieve a latent variable semantics?
I how to perform structure learning?
III more expressive than other circuit classes?
7 use logic-as-circuits for physics
how to retrieve a latent variable semantics?
II how to perform structure learning?
If more expressive than other circuit classes?
IV use logic-as-circuits for physics

I how to retrieve a latent variable semantics?
II how to perform structure learning?
III more expressive than other circuit classes?

1 use logic-as-circuits for physics

I how to retrieve a latent variable semantics?

T1 how to perform structure learning?
II more expressive than other circuit classes?

IV use logic-as-circuits for physics

TCS crowd

ML crowd

a circuit lowerbound to play with connections with mixtures/PGMs/learning

ML crowd

TCS crowd

(some) new tractable model(s) to play with
a tensorized way to represent circuits

$$
\int p(\mathbf{x}) \times \log (p(\mathbf{x}) / q(\mathbf{x})) d \mathbf{X}
$$

,$+ \times$, pow, log, exp, /

property A, property B property C

automating probabilistic reasoning

The TCS perspective

	Query	Tract. Conditions
CROSS ENTROPY	$-\int p(\boldsymbol{x}) \log q(\boldsymbol{x}) \mathrm{d} \mathbf{X}$	Cmp, q Det
SHANNON ENTROPY	$-\sum p(\boldsymbol{x}) \log p(\boldsymbol{x})$	Sm, Dec, Det
RÉNYI ENTROPY	$(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$	SD
MUTUAL INFORMATION	$(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{R}+$	Sm, Dec, Det
KULLBACK-LEIBLER DIV.	$\int p(\boldsymbol{x}, \boldsymbol{y}) \log (p(\boldsymbol{x}, \boldsymbol{y}) /(p(\boldsymbol{x}) p(\boldsymbol{y})))$	Sm, SD, Det
RÉNYI'S ALPHA DIV.	$\int p(x) \log (p(\boldsymbol{x}) / q(\boldsymbol{x})) d \mathbf{X}$	Cmp, Det
ITAKURA-SAITO DIV.	$(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) q^{1-\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$	Cmp, q Det
CAUCHY-SCHWARZ DIV.	$\int[p(\boldsymbol{x}) / q(\boldsymbol{x})-\log (p(\boldsymbol{x}) / q(\boldsymbol{x}))-1] d \mathbf{X}$	Cmp, Det
SQUARED LOSS	$-\log \frac{\int p(\boldsymbol{x}) q(\boldsymbol{x}) d \mathbf{X}}{\sqrt{\int p^{2}(\boldsymbol{x}) d \mathbf{X} \int q^{2}(\boldsymbol{x}) d \mathbf{X}}}$	Cmp

The TCS perspective

	Query	Tract. Conditions	Hardness
Cross Entropy	$-\int p(\boldsymbol{x}) \log q(\boldsymbol{x}) \mathrm{d} \mathbf{X}$	Cmp, q Det	\#P-hard w/o Det
Shannon Entropy	$-\sum p(x) \log p(\boldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
RÉnyi Entropy	$(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$	SD	\#P-hard w/o SD
	$(1-\alpha)^{-1} \log \int p^{\alpha}(x) d \mathbf{X}, \alpha \in \mathbb{R}_{+}$	Sm, Dec, Det	\#P-hard w/o Det
Mutual Information	$\int p(\boldsymbol{x}, \boldsymbol{y}) \log (p(\boldsymbol{x}, \boldsymbol{y}) /(p(\boldsymbol{x}) p(\boldsymbol{y}))$)	Sm, SD, Det*	coNP-hard w/o SD
Kullback-Leibler Div.	$\int p(\boldsymbol{x}) \log (p(\boldsymbol{x}) / q(\boldsymbol{x})) d \mathbf{X}$	Cmp, Det	\#P-hard w/o Det
RÉNYI'S ALPHA DIV.	$(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) q^{1-\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$	Cmp, q Det	\#P-hard w/o Det
RENYI S ALPHA DIV.	$(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) q^{1-\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{R}$	Cmp, Det	\#P-hard w/o Det
ITAKURA-SAITO DIV.	$\int[p(\boldsymbol{x}) / q(\boldsymbol{x})-\log (p(\boldsymbol{x}) / q(\boldsymbol{x}))-1] d \mathbf{X}$	Cmp, Det	\#P-hard w/o Det
CaUchy-Schwarz Div.	$-\log \frac{\int p(\boldsymbol{x}) q(\boldsymbol{x}) d \mathbf{X}}{\sqrt{\int n^{2}(\boldsymbol{r}) d \mathbf{X}\left(a^{2}(\boldsymbol{r}) d \mathbf{X}\right.}}$	Cmp	\#P-hard w/o Cmp
SQUARED Loss	$\int(p(\boldsymbol{x})-q(\boldsymbol{x}))^{2} d \mathbf{X}$	Cmp	\#P-hard w/o Cmp

UNREAL

ML. models	Queries	Data
Distill	Compile	Learn
Computational abstractions		
Reliable reasoning primitives		
Hardware	Software	

realizing a full "virtual machine" for reasoning

questions?

