Efficient Enumeration Algorithms via Circuits

Antoine Amarilli
October 18, 2023

Télécom Paris
General motivation (for database people)

• **Intensional query evaluation**: given a query Q and a database D

Monday: intensional query evaluation for counting and probability computation

Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement
• Efficient enumeration for d-DNNF set circuits
• Applications: Using enumeration on circuits for query evaluation
• **Intensional query evaluation**: given a query Q and a database D
 • Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
 • Other names: *grounding* Q on D, computing the *provenance* of Q on D...
General motivation (for database people)

- **Intensional query evaluation**: given a query Q and a database D
 - Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
 - Other names: *grounding* Q on D, computing the *provenance* of Q on D...
 - **Use** the circuit C to retrieve the answer of Q on D
General motivation (for database people)

- **Intensional query evaluation**: given a query Q and a database D
 - Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
 - Other names: grounding Q on D, computing the provenance of Q on D...
 - Use the circuit C to retrieve the answer of Q on D

- **Monday**: intensional query evaluation for **counting** and **probability computation**
General motivation (for database people)

• **Intensional query evaluation**: given a query Q and a database D
 • Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
 • Other names: grounding Q on D, computing the provenance of Q on D...
 • Use the circuit C to retrieve the answer of Q on D

• **Monday**: intensional query evaluation for counting and probability computation

• **Today**: can we use the intensional approach to enumerate query answers?
General motivation (for database people)

- **Intensional query evaluation**: given a query Q and a database D
 - Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
 - Other names: grounding Q on D, computing the provenance of Q on D...
 - Use the circuit C to retrieve the answer of Q on D

- **Monday**: intensional query evaluation for counting and probability computation

- **Today**: can we use the intensional approach to enumerate query answers?

Structure of the talk:

- Preliminaries and problem statement
General motivation (for database people)

- **Intensional query evaluation**: given a query Q and a database D
 - Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
 - Other names: grounding Q on D, computing the provenance of Q on D...
 - Use the circuit C to retrieve the answer of Q on D

- **Monday**: intensional query evaluation for counting and probability computation
- **Today**: can we use the intensional approach to enumerate query answers?

Structure of the talk:

- Preliminaries and problem statement
- Efficient enumeration for d-DNNF set circuits
General motivation (for database people)

- **Intensional query evaluation**: given a query Q and a database D
 - Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
 - Other names: **grounding** Q on D, computing the **provenance** of Q on D...
 - **Use** the circuit C to retrieve the answer of Q on D

- **Monday**: intensional query evaluation for *counting* and *probability computation*

- **Today**: can we use the intensional approach to *enumerate* query answers?

Structure of the talk:

- Preliminaries and problem statement
- Efficient enumeration for **d-DNNF set circuits**
- Applications: Using enumeration on circuits for **query evaluation**
Dramatis Personae

Antoine Amarilli
Pierre Bourhis
Florent Capelli
Louis Jachiet
Stefan Mengel

Mikaël Monet
Martín Muñoz
Matthias Niewerth
Cristian Riveros
Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S.
A Circuit-Based Approach to Efficient Enumeration. ICALP 2017.

Amarilli, A., Bourhis, P., and Mengel, S.
Enumeration on Trees under Relabelings. ICDT 2018.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. ICDT 2019.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.

Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C.
Efficient Enumeration for Annotated Grammars. PODS 2022.

Amarilli, A., Bourhis, P., Capelli, F., Monet, M.
Ranked Enumeration for MSO on Trees via Knowledge Compilation. Under review.
Preliminaries
Enumeration algorithms (see Nofar’s talks, September workshop)

Step 1: Indexing in $O(|\text{input}|)$

Indexed input

Step 2: Enumeration in $O(|\text{result}|)$

Results

State

5/24
Enumeration algorithms (see Nofar’s talks, September workshop)

Step 1: Indexing in $O(|input|)$

Results

State $\frac{5}{24}$
Enumeration algorithms

(see Nofar’s talks, September workshop)

Step 1:
Indexing
in \(O(|\text{input}|)\)

Indexed input

Input

A B C

a
b

a'
b

b'
c

a'
b'
c

Results

State: 5/24
Enumeration algorithms (see Nofar’s talks, September workshop)

Step 1: Indexing in $O(|\text{input}|)$

Step 2: Enumeration in $O(|\text{result}|)$
Enumeration algorithms (see Nofar’s talks, September workshop)

Step 1: Indexing in $O(|\text{input}|)$

Indexed input

Step 2: Enumeration in $O(|\text{result}|)$

Results

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
Enumeration algorithms (see Nofar’s talks, September workshop)

Step 1: Indexing in $O(|\text{input}|)$

Indexed input

Step 2: Enumeration in $O(|\text{result}|)$

Results

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

State

0011
Enumeration algorithms (see Nofar’s talks, September workshop)

Step 1: Indexing in $O(|\text{input}|)$

Step 2: Enumeration in $O(|\text{result}|)$

Input

Indexed input

A B C

a b c

0011

State

Results
Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing in \(O(|\text{input}|)\)

Indexed input

Step 2:
Enumeration in \(O(|\text{result}|)\)

A B C

a' b c

Results

State

010001
Enumeration algorithms (see Nofar's talks, September workshop)

Input

Step 1: Indexing in $O(|\text{input}|)$

Indexed input

Step 2: Enumeration in $O(|\text{result}|)$

Results

State

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b'</td>
<td>c</td>
</tr>
</tbody>
</table>

01100111
Enumeration algorithms
(see Nofar's talks, September workshop)

Input

Step 1: Indexing in $O(|\text{input}|)$

Indexed input

Step 2: Enumeration in $O(|\text{result}|)$

Results

State
WITH knowledge compilation:

\[
\begin{array}{ccc}
\cup & \times & \top \\
\times & \cup & \top \\
\top & \cup & \top \\
\end{array}
\]
WITHOUT knowledge compilation:

Input → Enumeration → Results

Input → Enumeration → Results

WITH knowledge compilation:

Input → Compilation → Circuit → Enumeration → Results

\[
\begin{align*}
\text{Input} & \quad \text{Compilation} \quad \cup \quad \times \quad x \quad \top \quad \times \quad z \\
\text{Circuit} & \quad \cup \quad \times \quad x \quad \top \quad \times \quad z \\
\text{Input} & \quad \text{Compilation} \quad \cup \quad \times \quad x \quad \top \quad \times \quad z
\end{align*}
\]
Knowledge compilation
(see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input → Enumeration → Results

Input → Enumeration → Results

Input → Enumeration → Results

WITH knowledge compilation:

Input → Compilation → Circuit → Enumeration → Results

\[
\begin{array}{ccc}
A & B & C \\
a & b & c \\
a & b' & c \\
\end{array}
\]

\[
\begin{array}{ccc}
A & B & C \\
a & b & c \\
a & b' & c \\
\end{array}
\]

\[
\begin{array}{ccc}
A & B & C \\
a & b & c \\
a & b' & c \\
\end{array}
\]

\[
\begin{array}{ccc}
A & B & C \\
a & b & c \\
a & b' & c \\
\end{array}
\]
Knowledge compilation

WITHOUT knowledge compilation:

Input

Enumeration

\[
\begin{array}{ccc}
A & B & C \\
\hline
a & b & c \\
a & b' & c \\
\end{array}
\]

Results

WITH knowledge compilation:

Input

Compilation

\[
\begin{array}{ccc}
\cup & \times & x \\
\top & \times & z \\
\end{array}
\]

Circuit

\[
\begin{array}{ccc}
A & B & C \\
\hline
a & b & c \\
a & b' & c \\
\end{array}
\]

Results
Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

```
Input Enumeration

A B C
a b c a' b' c

Results
```

WITH knowledge compilation:

```
Input Compilation Circuit

\[ a \cup b \times x \top \times z \]

Input Compilation Circuit

\[ a \cup b \times x \top \times z \]

Results
```

\[\frac{6}{24} \]
Knowledge compilation

WITHOUT knowledge compilation:

Input ➔ Enumeration ➔ Results

Input ➔ Enumeration ➔ Results

Input ➔ Enumeration ➔ Results

WITH knowledge compilation:

Input ➔ Compilation ➔ Circuit

Input ➔ Compilation ➔ Circuit

Input ➔ Compilation ➔ Circuit

(see Guy and YooJung’s talks, Boot camp)
WITHOUT knowledge compilation:

<table>
<thead>
<tr>
<th>Input</th>
<th>Enumeration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td>a b c</td>
<td>a b' c</td>
</tr>
</tbody>
</table>

WITH knowledge compilation:

<table>
<thead>
<tr>
<th>Input</th>
<th>Compilation</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C</td>
<td>a b c</td>
<td>a b' c</td>
</tr>
</tbody>
</table>

(see Guy and YooJung’s talks, Boot camp)
Directed acyclic graph of gates
Set circuits

- Directed acyclic graph of gates
- Output gate:

Factorized database fans may find these eerily familiar
Set circuits

- Directed acyclic graph of **gates**
- **Output** gate:
- **Variable** gates:

Factorized database fans may find these eerily familiar.
Set circuits

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Constant gates:

Internal gates may find these eerily familiar.
- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Constant gates:
- Internal gates:
Set circuits

- Directed acyclic graph of gates
- Output gate: \bigcirc
- Variable gates: x
- Constant gates: \top, \bot
- Internal gates: \times, \cup

Factorized database fans may find these eerily familiar
Every gate g captures a set $S(g)$ of sets (called assignments)
Every gate g captures a set $S(g)$ of sets (called assignments).

- **Variable** gate with label x: $S(g) := \{\{x\}\}$
Every gate g captures a set $S(g)$ of sets (called assignments).

- **Variable** gate with label x: $S(g) := \{\{x\}\}$
- \top-gates: $S(g) = \{\{\}\}$
- \times-gate with children g_1, g_2: $S(g) := \{s_1 \cup s_2 | s_1 \in S(g_1), s_2 \in S(g_2)\}$
- \cup-gate with children g_1, g_2: $S(g) := S(g_1) \cup S(g_2)$

Arithmetic circuit aficionados may see a connection.
Semiring supporters may have recognized $\{\}$.
Every gate \(g \) captures a set \(S(g) \) of sets (called assignments):

- **Variable** gate with label \(x \): \(S(g) := \{\{x\}\} \)
- \(\top \)-gates: \(S(g) = \{\}\)
- \(\bot \)-gates: \(S(g) = \emptyset \)
Every gate g captures a set $S(g)$ of sets (called assignments)

- **Variable** gate with label x: $S(g) := \{\{x\}\}$
- \top-gates: $S(g) = \{\{\}\}$
- \bot-gates: $S(g) = \emptyset$
- \times-gate with children g_1, g_2: $S(g) := \{s_1 \cup s_2 \mid s_1 \in S(g_1), s_2 \in S(g_2)\}$
Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- **Variable** gate with label x: $S(g) := \{\{x\}\}$
- \top-gates: $S(g) = \{\{\}\}$
- \bot-gates: $S(g) = \emptyset$
- \times-gate with children g_1, g_2:

 $S(g) := \{s_1 \cup s_2 \mid s_1 \in S(g_1), s_2 \in S(g_2)\}$

- \cup-gate with children g_1, g_2:

 $S(g) := S(g_1) \cup S(g_2)$
Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments):

- **Variable** gate with label x: $S(g) := \{\{x\}\}$
- \top-gates: $S(g) = \{\{}\}$
- \perp-gates: $S(g) = \emptyset$
- \times-gate with children g_1, g_2:
 $S(g) := \{s_1 \cup s_2 \mid s_1 \in S(g_1), s_2 \in S(g_2)\}$
- \cup-gate with children g_1, g_2:
 $S(g) := S(g_1) \cup S(g_2)$

Arithmetic circuit aficionados may see a connection.
Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments):

- **Variable** gate with label x: $S(g) := \{\{x\}\}$
- \top-gates: $S(g) = \{\{\}\}$
- \bot-gates: $S(g) = \emptyset$
- \times-gate with children g_1, g_2:
 $S(g) := \{s_1 \cup s_2 \mid s_1 \in S(g_1), s_2 \in S(g_2)\}$
- \cup-gate with children g_1, g_2:
 $S(g) := S(g_1) \cup S(g_2)$

Arithmetic circuit aficionados may see a connection. Semiring supporters may have recognized Why[X]
Every gate g captures a set $S(g)$ of sets (called assignments)

- **Variable** gate with label x: $S(g) := \{\{x\}\}$
- \top-gates: $S(g) = \{\{\}\}$
- \bot-gates: $S(g) = \emptyset$
- \times-gate with children g_1, g_2: $S(g) := \{s_1 \cup s_2 \mid s_1 \in S(g_1), s_2 \in S(g_2)\}$
- \cup-gate with children g_1, g_2: $S(g) := S(g_1) \cup S(g_2)$

Arithmetic circuit aficionados may see a connection

Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Circuit restrictions

d-DNNF set circuit:

- are all **deterministic:** The inputs are **disjoint** (= no assignment is captured by two inputs)
d-DNNF set circuit:

- \cup are all **deterministic**:
 - The inputs are **disjoint**
 (= no assignment is captured by two inputs)

- \times are all **decomposable**:
 - The inputs are **independent**
 (= no variable x has a path to two different inputs)
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment.
Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment.

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay.
Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing \(\text{linear in } |C| \) and delay \(\text{linear in each assignment} \)

Also: restrict to assignments of constant size \(k \in \mathbb{N} \)

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size \(\leq k \) with preprocessing \(\text{linear in } |C| \) and \(\text{constant delay} \)

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:
 • From a d-DNNF, in quadratic time (smoothing)
 • From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)
Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment.

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay.

But where do set circuits come from?

- Directly when doing intensional query evaluation (see later)
Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing *linear in* $|C|$ and delay *linear in each assignment*

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing *linear in* $|C|$ and *constant delay*

But where do set circuits come from?

- **Directly** when doing intensional query evaluation (see later)
- **From Boolean circuits:** you can obtain a d-DNNF set circuit:
Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing \textit{linear in} $|C|$ and delay \textit{linear in each assignment}

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing \textit{linear in} $|C|$ and \textit{constant delay}

But where do set circuits come from?

- Directly when doing intensional query evaluation (see later)
- From Boolean circuits: you can obtain a d-DNNF set circuit:
 - From a d-DNNF, in \textit{quadratic time} (smoothing)
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

But where do set circuits come from?

- **Directly** when doing intensional query evaluation (see later)
- **From Boolean circuits:** you can obtain a d-DNNF set circuit:
 - From a d-DNNF, in quadratic time (smoothing)
 - From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)
Proof techniques
Proof overview

Preprocessing phase:

\[x \quad \cup \quad \times \quad x \quad z \quad d\text{-DNNF} \quad \text{set circuit} \]

Normalization (linear-time)

\[x \quad \times \quad x \quad z \quad \text{Normalized circuit} \]

Indexing (linear-time)

\[x \quad \times \quad x \quad z \quad \text{Indexed normalized circuit} \]

Enumeration phase:

\[\text{Indexed normalized circuit} \quad \text{Enumeration (linear delay in each result)} \]

Results

\[A \quad B \quad C \quad a \quad b \quad c \quad a \quad b' \quad c \]

\[11/24 \]
Proof overview

Preprocessing phase:

- d-DNNF set circuit
- \rightarrow Normalization (linear-time)
- \rightarrow Normalized circuit

Enumeration phase:

- Indexed normalized circuit
- Enumeration (linear delay in each result)
Proof overview

Preprocessing phase:

- d-DNNF set circuit
- Normalization (linear-time)
- Normalized circuit
- Indexing (linear-time)
- Indexed normalized circuit

Results: 11/24
Proof overview

Preprocessing phase:
- d-DNNF set circuit
- Normalization (linear-time) → Normalized circuit
- Indexing (linear-time) → Indexed normalized circuit

Enumeration phase:
- Indexed normalized circuit
Proof overview

Preprocessing phase:
- d-DNNF set circuit
- Normalization (linear-time)
- Normalized circuit
- Indexing (linear-time)
- Indexed normalized circuit

Enumeration phase:
- Indexed normalized circuit
- Enumeration (linear delay in each result)
- Results

\begin{align*}
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C}
\end{array} & \begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array} & \begin{array}{c}
\text{a' b' c}
\end{array}
\end{align*}
Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Base case: variable x:
Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{{x}, {x, y}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Base case: variable x: enumerate $\{x\}$ and stop
Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S(g')$
Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Base case: variable x: enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S(g')$

Determinism: no duplicates
Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Base case: variable x: enumerate $\{x\}$ and stop

- **∪-gate**
 - Concatenation: enumerate $S(g)$ and then enumerate $S(g')$

- **×-gate**
 - Lexicographic product: enumerate $S(g)$ and for each result t enumerate $S(g')$ and concatenate t with each result

Determinism: no duplicates
Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g

→ E.g., for $S(g) = \{\{x\}, \{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Base case: variable x: enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S(g')$

Determinism: no duplicates

Lexicographic product: enumerate $S(g)$ and for each result t enumerate $S(g')$ and concatenate t with each result

Decomposability: no duplicates
Normalization: handling \emptyset

- Problem: if $S(g) = \emptyset$ we waste time
- Solution: in preprocessing compute bottom-up if $S(g) = \emptyset$ then get rid of the gate
Normalization: handling \emptyset

Problem: if $S(g) = \emptyset$ we waste time

Solution: in preprocessing
- compute bottom-up
- if $S(g) = \emptyset$ then get rid of the gate
Problem: if \(S(g) = \emptyset \) we waste time

Solution: in preprocessing

- compute bottom-up
- if \(S(g) = \emptyset \) then get rid of the gate
Normalization: handling \emptyset

Problem: if $S(g) = \emptyset$ we waste time

Solution: in preprocessing
- compute bottom-up
- if $S(g) = \emptyset$ then get rid of the gate
Normalization: handling \emptyset

- **Problem:** if $S(g) = \emptyset$ we waste time
• **Problem:** if $S(g) = \emptyset$ we waste time

• **Solution:** in preprocessing
 - compute **bottom-up** if $S(g) = \emptyset$
Normalization: handling \emptyset

- **Problem:** if $S(g) = \emptyset$ we waste time
- **Solution:** in preprocessing
 - compute **bottom-up** if $S(g) = \emptyset$
 - then get rid of the gate
Normalization: handling empty assignments

Problem: if $S(g)$ contains {} we waste time in chains of \times-gates

Solution:
- split g between $S(g) \cap \{\}\setminus\{\}$ and $S(g) \setminus \{\}$ (homogenization)
- remove inputs with $S(g) = \{}$ for \times-gates
- collapse \times-chains with fan-in 1

Now, when traversing a \times-gate we make progress: non-trivial split of each set
Normalization: handling empty assignments

- **Problem:**
 - If $S(g)$ contains \emptyset, we waste time in chains of \times-gates.

- **Solution:**
 - Split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization).
 - Remove inputs with $S(g) = \emptyset$ for \times-gates.
 - Collapse \times-chains with fan-in 1.

- Now, when traversing a \times-gate, we make progress with a non-trivial split of each set.
Normalization: handling empty assignments

Problem:
if $S(g)$ contains \emptyset we waste time in chains of \times-gates

Solution:
• split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
• remove inputs with $S(g) = \emptyset$ for \times-gates
• collapse \times-chains with fan-in 1

Now, when traversing a \times-gate we make progress: non-trivial split of each set
Normalization: handling empty assignments

Problem:
If $S(g)$ contains \emptyset we waste time in chains of \times-gates

Solution:
• Split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
• Remove inputs with $S(g) = \emptyset$ for \times-gates
• Collapse \times-chains with fan-in 1

Now, when traversing a \times-gate we make progress: non-trivial split of each set.
Normalization: handling empty assignments

Problem: if $S(g)$ contains \emptyset we waste time in chains of \times-gates

Solution:

• split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
• remove inputs with $S(g) = \emptyset$ for \times-gates
• collapse \times-chains with fan-in 1

→ Now, when traversing a \times-gate we make progress: non-trivial split of each set
Normalization: handling empty assignments

- **Problem:** if $S(g)$ contains \emptyset we waste time in chains of \times-gates

- **Solution:**
 - split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
 - remove inputs with $S(g) = \emptyset$ for \times-gates
 - collapse \times-chains with fan-in 1

Now, when traversing a \times-gate we make progress: non-trivial split of each set
Normalization: handling empty assignments

- **Problem:** if $S(g)$ contains {} we waste time in chains of \times-gates

- **Solution:**
• **Problem:** if $S(g)$ contains \emptyset we waste time in chains of \times-gates

• **Solution:**
 - split g between $S(g) \cap \{\emptyset\}$ and $S(g) \setminus \{\emptyset\}$ (homogenization)
Normalization: handling empty assignments

- **Problem:** If $S(g)$ contains \emptyset we waste time in chains of \times-gates

- **Solution:**
 - split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
 - remove inputs with $S(g) = \emptyset$ for \times-gates
Normalization: handling empty assignments

- **Problem:** if $S(g)$ contains \emptyset we waste time in chains of \times-gates

- **Solution:**
 - split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
 - remove inputs with $S(g) = \emptyset$ for \times-gates

$$\begin{array}{c}
\{\{x\}\} \\
\times \\
\{\{x\}\} \\
\times \\
\{\{x\}\} \\
x
\end{array}$$
Normalization: handling empty assignments

- **Problem:** if $S(g)$ contains $\{\}$ we waste time in chains of \times-gates

- **Solution:**

 - split g between $S(g) \cap \{\}$ and $S(g) \setminus \{\}$ (homogenization)
 - remove inputs with $S(g) = \{\}$ for \times-gates
 - collapse \times-chains with fan-in 1
Normalization: handling empty assignments

- **Problem:** if $S(g)$ contains \emptyset we waste time in chains of \times-gates

- **Solution:**
 - split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
 - remove inputs with $S(g) = \emptyset$ for \times-gates
 - collapse \times-chains with fan-in 1
Normalization: handling empty assignments

• **Problem:** if $S(g)$ contains \emptyset we waste time in chains of \times-gates

• **Solution:**
 - split g between $S(g) \cap \emptyset$ and $S(g) \setminus \emptyset$ (homogenization)
 - remove inputs with $S(g) = \emptyset$ for \times-gates
 - collapse \times-chains with fan-in 1

→ Now, when traversing a \times-gate we make progress: non-trivial split of each set
Indexing: handling \cup-hierarchies

- **Problem:** we waste time in \cup-hierarchies to find a **reachable exit** (non-\cup gate)

- **Solution:** compute reachability index

- **Problem:** must be done in linear time

- **Solution:** Determinism ensures we have a multitree (we cannot have the pattern at the right)
Indexing: handling \bigcup-hierarchies

- **Problem:** we waste time in \bigcup-hierarchies to find a **reachable exit** (non-\bigcup gate)
- **Solution:** compute **reachability index**
Indexing: handling \cup-hierarchies

- **Problem:** we waste time in \cup-hierarchies to find a **reachable exit** (non-\cup gate)
- **Solution:** compute **reachability index**
• **Problem:** we waste time in \cup-hierarchies to find a **reachable exit** (non-\cup gate)

• **Solution:** compute **reachability index**

• **Problem:** must be done in **linear time**
Indexing: handling \cup-hierarchies

- **Problem:** we waste time in \cup-hierarchies to find a **reachable exit** (non-\cup gate)
- **Solution:** compute **reachability index**
- **Problem:** must be done in **linear time**

- **Solution:** Determinism ensures we have a **multitree** (we cannot have the pattern at the right)
Indexing: handling \cup-hierarchies

- **Problem:** we waste time in \cup-hierarchies to find a **reachable exit** (non-\cup gate)
- **Solution:** compute **reachability index**
- **Problem:** must be done in **linear time**

- **Solution:** Determinism ensures we have a **multitree** (we cannot have the pattern at the right)
- **Custom** constant-delay reachability index for multitrees
Applications
Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet

$\begin{align*}
\text{Data: a tree } T \text{ where nodes have a color from an alphabet} & \\
\quad & \\
\end{align*}$

Query Q in monadic second-order logic (MSO)

- $P(x)$ means "x is blue"
- $x \rightarrow y$ means "x is the parent of y"

"Find the pairs of a pink node and a blue node?"

$Q(x, y) := P(x) \land P(y)$

Result:

Enumerate all pairs (a, b) of nodes of T such that $Q(a, b)$ holds

Results:

- $(2, 7)$
- $(3, 7)$

Data complexity:

Measure efficiency as a function of T (the query Q is fixed)
Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet

Query Q in monadic second-order logic (MSO)

- $P_\circ(x)$ means "x is blue"
- $x \rightarrow y$ means "x is the parent of y"

"Find the pairs of a pink node and a blue node?"

$Q(x, y) := P_\circ(x) \land P_\circ(y)$
Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet 🌈

Query Q in monadic second-order logic (MSO)

- $P_\circ(x)$ means “x is blue”
- $x \rightarrow y$ means “x is the parent of y”

Result: Enumerate all pairs (a, b) of nodes of T such that $Q(a, b)$ holds

“Find the pairs of a pink node and a blue node?”

$Q(x, y) : = P_\circ(x) \land P_\circ(y)$

results: $(2, 7), (3, 7)$
Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet

Query Q in monadic second-order logic (MSO)
- $P(x)$ means “x is blue”
- $x \rightarrow y$ means “x is the parent of y”

Result: Enumerate all pairs (a, b) of nodes of T such that $Q(a, b)$ holds

Querry:

```
“Find the pairs of a pink node and a blue node?”
```

$Q(x, y) := P(x) \land P(y)$

Results:

$(2, 7), (3, 7)$

Data complexity: Measure efficiency as a function of T (the query Q is fixed)
Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.
Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with **linear-time preprocessing** and **constant delay**.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a **d-DNNF set circuit** capturing the results of A on T in $O(|A| \times |T|)$
Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times |T|)$

- Can be extended to support relabeling updates to the tree in $O(\log n)$ time (A., Bourhis, Mengel, ICDT’18)
Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times |T|)$

• Can be extended to support relabeling updates to the tree in $O(\log n)$ time (A., Bourhis, Mengel, ICDT’18)
• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19) up to fixing a buggy result [Niewerth, 2018]
Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli
Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Query: a pattern P given as a regular expression

Output: the list of substrings of T that match P:

$[186, 200) \cup [483, 500) \cup \ldots$

Goal:
• be very efficient in T (constant-delay)
• be reasonably efficient in P (polynomial-time)
Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Query: a pattern P given as a regular expression

$$P := \square [a-z0-9.]* \odot [a-z0-9.]* \square$$
Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Query: a pattern P given as a regular expression

$$P := \sqcup [a-z0-9.]* \circ [a-z0-9.]* \sqcup$$

Output: the list of substrings of T that match P:

$$[186, 200\rangle, \ [483, 500\rangle, \ ...$$
Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli
Description
Name: Antoine Amarilli
Handle: a3nm
Identity
Born 1990-02-07
French national
Appearance as of 2017
Auth
OpenPGP
OpenId
Bitcoin
Contact
Email and XMPP a3nm@a3nm.net
Affiliation
Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France
Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016
Former student of the École normale supérieure

test@example.com
More Résumé
Location
Other sites
Blogging: a3nm.net/blog
Git: a3nm.net/git ...

Query: a pattern P given as a regular expression

$$P := \cup [a-z0-9.]^* @ [a-z0-9.]^* \cup$$

Output: the list of substrings of T that match P:

$[186, 200], \ [483, 500], \ ...$

Goal:

- be very efficient in T (constant-delay)
- be reasonably efficient in P (polynomial-time)
Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)

We can enumerate all matches of an input non-deterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]
Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)

We can enumerate all matches of an input non-deterministic automaton with captures on an input text with

- Preprocessing \textit{linear} in the text and \textit{polynomial} in the automaton
- Delay \textit{constant} in the text and \textit{polynomial} in the automaton

→ Generalizes earlier result on \textit{deterministic automata} [Florenzano et al., 2018]
- Does not really use \textit{d-DNNFs}, but \textit{bounded-width nOBDDs}
Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]
- Does not really use d-DNNFs, but bounded-width nOBDDs
→ Generalizes to trees with polynomial dependency in the tree automaton
Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```c
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
    fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
    exit(1);
}
```
Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```c
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
    fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
    exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$P := \text{“find all quoted strings in the program”}$
Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```c
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
    fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
    exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$P := \text{“find all quoted strings in the program”}$

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)

Given an unambiguous annotation grammar G and input text w, we can enumerate the matches with preprocessing $O(|G| \times |w|^3)$ and delay linear in each assignment
Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```c
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
    fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
    exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$P := \text{"find all quoted strings in the program"}$

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)

Given an unambiguous annotation grammar G and input text w, we can enumerate the matches with preprocessing $O(|G| \times |w|^3)$ and delay linear in each assignment.

- Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```c
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
    fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
    exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$P := \text{“find all quoted strings in the program”}$

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)

Given an unambiguous annotation grammar G and input text w, we can enumerate the matches with preprocessing $O(|G| \times |w|^3)$ and delay linear in each assignment

- Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
- Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic pushdown annotators)
Other applications

- Using **enumerable compact sets**, a fully-persistent version of enumerable d-DNNFs:
 - For **visibly pushdown transducers** on **nested documents** in a streaming setting [Muñoz and Riveros, 2022]
 - For **annotated automata** on **SLP-compressed documents**, with updates [Muñoz and Riveros, 2023]

- Query evaluation beyond MSO and variants on words and trees:
 - For **first-order queries** on **bounded expansion databases** [Toruńczyk, 2020]
 - For **ranked direct access** for some **CQs** with negation, see Florent’s talk this afternoon

- Can also be used to enumerate **homomorphisms between structures** [Berkholz and Vinall-Smeeth, 2023]
Other applications

• Using **enumerable compact sets**, a fully-persistent version of enumerable d-DNNFs:
 • For **visibly pushdown transducers** on **nested documents** in a streaming setting [Muñoz and Riveros, 2022]
 • For **annotated automata** on **SLP-compressed documents**, with updates [Muñoz and Riveros, 2023]

• Query evaluation beyond MSO and variants on words and trees:
 • For **first-order queries** on **bounded expansion** databases [Toruńczyk, 2020]
 • For **ranked direct access** for some **CQs with negation**, see Florent’s talk this afternoon
Other applications

- Using **enumerable compact sets**, a fully-persistent version of enumerable d-DNNFs:
 - For **visibly pushdown transducers** on **nested documents** in a streaming setting [Muñoz and Riveros, 2022]
 - For **annotated automata** on **SLP-compressed documents**, with updates [Muñoz and Riveros, 2023]

- Query evaluation beyond MSO and variants on words and trees:
 - For **first-order queries** on **bounded expansion** databases [Toruńczyk, 2020]
 - For **ranked direct access** for some **CQs with negation**, see Florent’s talk this afternoon

- Can also be used to enumerate **homomorphisms between structures** [Berkholz and Vinall-Smeeth, 2023]
What about ranked enumeration?

Enumeration algorithms typically give results in an *arbitrary (non-controllable) order*!
What about ranked enumeration?

Enumeration algorithms typically give results in an **arbitrary (non-controllable) order**!

- For **MSO queries**, ranked enumeration is **possible** with **logarithmic** delay:
 - First shown for queries on **words** [Bourhis et al., 2021]
 - Recent preprint (A., Bourhis, Capelli, Monet) for queries on **trees** under subset-monotone ranking functions
 - (Very) high-level idea: use one **priority queue** for each gate
What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

- For MSO queries, ranked enumeration is possible with logarithmic delay:
 - First shown for queries on words [Bourhis et al., 2021]
 - Recent preprint (A., Bourhis, Capelli, Monet) for queries on trees under subset-monotone ranking functions
 - (Very) high-level idea: use one priority queue for each gate

- For CQs, results for ranked access: [Tziavelis et al., 2022], [Deep et al., 2022], [Carmeli et al., 2023]
 - Also: see Florent’s talk
Conclusion
Summary and conclusion

- We can **enumerate** the captured assignments of d-DNNF set circuits
 - with preprocessing **linear** in the d-DNNF
 - in delay **linear** in each assignment
 - in **constant** delay for constant Hamming weight

- Applies to **MSO enumeration** on **words** and **trees**

- Applies to enumerate of the matches of **annotated context-free grammars** (with more expensive preprocessing)

- Can be used for **other applications**

- In particular: **incremental maintenance** under updates, **ranked enumeration**, etc.
Questions for future work

• What about negation gates?
• What can we do without determinism? (enumeration for DNNF?)
• Connect results on updates to finer bounds on incremental maintenance (A., Jachiet, Paperman, ICALP’21)
• Enumerate satisfying assignments via edits on previous results (A., Monet, STACS’23) to achieve constant delay even on linear-sized assignments
• For MSO queries: understand better the connection between automata classes and circuit classes (e.g., alternating automata, two-way automata...)
• More broadly, following the intensional approach for enumeration: classify enumeration tasks depending on the circuit class to which they can be compiled?
Questions for future work

- What about negation gates?
- What can we do without determinism? (enumeration for DNNF?)
- Connect results on updates to finer bounds on incremental maintenance (A., Jachiet, Paperman, ICALP’21)
- Enumerate satisfying assignments via edits on previous results (A., Monet, STACS’23) to achieve constant delay even on linear-sized assignments
- For MSO queries: understand better the connection between automata classes and circuit classes (e.g., alternating automata, two-way automata...)
- More broadly, following the intensional approach for enumeration: classify enumeration tasks depending on the circuit class to which they can be compiled?

Thanks for your attention!

Toruńczyk, S. (2020). *Aggregate queries on sparse databases.* In *PODS.*

• Set circuits can be seen as **factorized representations**
 → Not necessarily **well-typed**, height and/or assignment size may be **non-constant**
• **Determinism**: unions are disjoint
• **Decomposability**: no duplicate attribute names in products
• **Structuredness**: always the same decomposition of the attributes
Tree automata

Tree alphabet:

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: \{\bot, B, P, \top\}
- Final states: \{\top\}
- Initial function: \{\bot\}
- Transitions (examples):
 - P \rightarrow \bot
 - P \rightarrow \top
 - B \rightarrow P
 - \bot \rightarrow \bot
 - \bot \rightarrow \bot
Tree automata

Tree alphabet: 🌸 🌸 🌺

- Bottom-up deterministic tree automaton
- “Is there both a pink and a blue node?”
Tree automata

Tree alphabet:

- Bottom-up deterministic tree automaton
- “Is there both a pink and a blue node?”
- States: \{⊥, B, P, ⊤\}
Tree automata

Tree alphabet: [Diagram of tree with nodes labeled with different colors]

- Bottom-up deterministic tree automaton
- “Is there both a pink and a blue node?”
- States: \(\{ \bot, B, P, \top \} \)
- Final states: \(\{ \top \} \)
Tree automata

Tree alphabet: ○ ○ ○ ●

- Bottom-up deterministic tree automaton
- “Is there both a pink and a blue node?”
- States: \{⊥, B, P, ⊤\}
- Final states: \{⊤\}
- Initial function: ○ ⊥ ○ P ○ B
Tree automata

Tree alphabet:

- Bottom-up deterministic tree automaton
- “Is there both a pink and a blue node?”
- States: \(\{ \bot, B, P, \top \} \)
- Final states: \(\{ \top \} \)
- Initial function: \(\bot \)
Tree automata

Tree alphabet: $\emptyset \, \, B \, \, P \, \, \top$

- Bottom-up deterministic **tree automaton**
- “Is there both a pink and a blue node?”
- **States:** $\{\bot, B, P, \top\}$
- **Final states:** $\{\top\}$
- **Initial function:** $\bot \, P \, B$
- **Transitions** (examples):

```
\begin{array}{c}
P \quad \bot \\
\top \quad P \quad B \\
\bot \quad \bot
\end{array}
```
Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”

States: \{⊥, B, P, ⊤\}

Final states: \{⊤\}

Initial function:

Transitions (examples):
• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: \{⊥, B, P, ⊤\}
• Final states: \{⊤\}
• Initial function: \(\begin{array}{c}
∅ \quad ⊥ \\
P \\
\end{array} \quad \begin{array}{c}
P \\
B \\
\end{array} \quad ⊤ \)
• Transitions (examples):

```
  P  ⊥  P  B  ⊥  ⊥
  P  ⊥  P  B  ⊥  ⊥
  P  ⊥  P  B  ⊥  ⊥
  P  ⊥  P  B  ⊥  ⊥
  P  ⊥  P  B  ⊥  ⊥
```

Tree alphabet:
Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels.

Valuation: \{2, 3, 7\}

\[7 \rightarrow 1, \ast 7 \rightarrow 0\]

A: “Is there both a pink and a blue node?”
Now: Boolean query on a tree where the color of nodes is **uncertain**

A **valuation** of a tree decides whether to **keep** (1) or **discard** (0) node labels.
Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: \{2, 3, 7 \mapsto 1, \ast \mapsto 0\}
Uncertain trees

Now: Boolean query on a tree where the color of nodes is **uncertain**

A **valuation** of a tree decides whether to **keep** (1) or **discard** (0) node labels

Valuation: \{2 \mapsto 1, \ *, \mapsto 0\}
Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: \(\{2, 7 \mapsto 1, \ast \mapsto 0\}\)
Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: \{2, 7 \mapsto 1, \ast \mapsto 0\}

A: “Is there both a pink and a blue node?”
Now: Boolean query on a tree where the color of nodes is **uncertain**

A **valuation** of a tree decides whether to keep (1) or discard (0) node labels

Valuation: \(\{2, 3, 7 \mapsto 1, \, \ast \mapsto 0\} \)

A: “Is there both a pink and a blue node?”

The tree automaton A **accepts**
Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: \{2 \mapsto 1, \ast \mapsto 0\}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects
Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: \{2, 7 \mapsto 1, \ast \mapsto 0\}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts
Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- **Variable gates** of C: nodes of T

Query: Is there both a pink and a blue node?
Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C: nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S(g_0)$ of the output gate g_0 contains
 $$\{g \in C \mid \nu(g) = 1\}.$$
Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- **Variable gates** of C: nodes of T
- **Condition**: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S(g_o)$ of the output gate g_o contains $\{g \in C \mid \nu(g) = 1\}$.

Query: Is there both a pink and a blue node?
Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- **Variable gates** of C: nodes of T
- **Condition**: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S(g_o)$ of the output gate g_o contains $\{g \in C \mid \nu(g) = 1\}$.

Query: Is there both a pink and a blue node?
Set circuit:
- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C: nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S(g_0)$ of the output gate g_0 contains $\{g \in C \mid \nu(g) = 1\}$.

Query: Is there both a pink and a blue node?
Building provenance circuits on trees

Theorem

For any bottom-up deterministic **tree automaton** A and input **tree** T, we can build a **d-DNNF set circuit** of A on T in $O(|A| \times |T|)$.
Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times |T|)$

- **Alphabet:**
 - States:
 - Final: $\{ \top \}$
 - States:
 - Final: $\{ \top \}$

- **Automaton:** “Is there both a pink and a blue node?”

- **Transitions:**
Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times |T|)$.

- **Alphabet:** $\bigcirc \bigcirc \textcolor{red}{\bigcirc} \bigcirc$
- **Automaton:** “Is there both a pink and a blue node?”

- **States:** $\{\bot, B, P, \top\}$
- **Final:** $\{\top\}$

- **Transitions:**

\[n \]\[P \downarrow \]
\[P \downarrow \]

\[n \]\[P \downarrow \]
\[P \downarrow \]
Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times |T|)$.

- **Alphabet:**
 - \bigcirc, \bigcirc, \bigcirc

- **Automaton:** “Is there both a pink and a blue node?”

- **States:**
 - $\{\bot, B, P, \top\}$

- **Final:**
 - $\{\top\}$

- **Transitions:**
 - $\top \bot P$
Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times |T|)$

- **Alphabet:** [Diagram showing symbols: ⊥, B, P, ⊤]
- **Automaton:** “Is there both a pink and a blue node?”
- **States:** $\{\bot, B, P, \top\}$
- **Final:** $\{\top\}$
- **Transitions:** [Diagram of tree automaton]
Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times |T|)$.

- **Alphabet:** \bigcup
- **Automaton:** “Is there both a pink and a blue node?”
- **States:** $\{\bot, B, P, \top\}$
- **Final:** $\{\top\}$
- **Transitions:**

```
\begin{array}{c}
\top & \bot & P & \top \\
\bot & B & P & \top \\
\top & B & P & \top \\
\end{array}
```
Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton \(A \) and input tree \(T \), we can build a \(d \)-DNNF set circuit of \(A \) on \(T \) in \(O(|A| \times |T|) \)

- Alphabet: \(\) \(\) \(\) \(\)
- Automaton: “Is there both a pink and a blue node?”
- States: \(\{ \bot, B, P, \top \} \)
- Final: \(\{ \top \} \)
- Transitions:

\[
\begin{array}{c}
\text{States:} \\
\{ \bot, B, P, \top \} \\
\text{Final:} \{ \top \}
\end{array}
\]
Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times |T|)$

- Alphabet: 〇 〇 〇 〇
- Automaton: “Is there both a pink and a blue node?”
- States: $\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

  ```
  ⊤  ⊥  P
  P  ⊥  P
  ⊥  B  P  ⊤
  ⊤  B  P  ⊤
  ⊤  B  P  ⊤
  ```
The set circuit of Q is now a \textbf{factorized representation} which describes all the tuples that make Q true.
Circuits as factorized representations of query results

→ The set circuit of \(Q \) is now a factorized representation which describes all the tuples that make \(Q \) true

Example query:

\[Q(X_1, X_2) : P_\circ(x) \land P_\circ(y) \]
The set circuit of Q is now a factorized representation which describes all the tuples that make Q true.

Example query:

$Q(X_1, X_2) : P_\circ(x) \land P_\circ(y)$

Data:

```
1
2
3
```
The set circuit of Q is now a factorized representation which describes all the tuples that make Q true.

Example query:
$Q(X_1, X_2) : P(x) \land P(y)$

Data:

Results:

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q(X_1, X_2) : P_0(x) \land P_0(y)$

Data:

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Results:

```
<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
```

Provenance circuit:
Circuits as factorized representations of query results

→ The set circuit of Q is now a **factorized representation**
 which describes all the tuples that make Q true

Example query:

$$Q(X_1, X_2) : P_0(x) \land P_0(y)$$

<table>
<thead>
<tr>
<th>Data:</th>
<th>Results:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X_1</td>
</tr>
<tr>
<td>2</td>
<td>X_2</td>
</tr>
<tr>
<td>3</td>
<td>1 2 3</td>
</tr>
</tbody>
</table>

Provenance circuit:

$$\times_{X_1(1)} \cup \{X_2(2), X_2(3)\}$$
Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:

$Q(X_1, X_2) : P_\circ(x) \land P_\circ(y)$

Data:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Results:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provenance circuit:

$\{ (X_1(1), X_2(2)), (X_1(1), X_2(3)) \}$

$\{ X_2(2), X_2(3) \}$

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?
The set circuit of Q is now a factorized representation which describes all the tuples that make Q true.

Example query:

$$Q(X_1, X_2) : P_\circ(x) \land P_\circ(y)$$

Data:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Results:

$$\{ (X_1(1), X_2(2)), (X_1(1), X_2(3)) \}$$

Provenance circuit:

$$\{ X_2(2), X_2(3) \}$$

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.
Circuits as factorized representations of query results

The set circuit of Q is now a factorized representation which describes all the tuples that make Q true.

Example query:

$$Q(X_1, X_2) : P(x) \land P(y)$$

Data:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Results:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>X_2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Provenance circuit:

$$\{ (X_1(1), X_2(2)), (X_1(1), X_2(3)) \}$$

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?