Lower Bounds for Tractable Arithmetic Circuits

Alexis de Colnet

Roadmap

The talk is not intended to be an exhaustive list of all lower bounds techniques for ACs. I will mostly cover results from [dC and Mengel, 2021].

- Tractable arithmetic circuits (AC)
- Reduction to tractable Boolean circuits (the boring trick)
- Lower bounds via the rank technique
- Separating classes of tractable ACs

Arithmetic Circuits

An arithmetic circuit (AC) is a computational directed acyclic graph s.t.

- it has a single sink (the output gate)
- its sources correspond to Boolean 0/1 literals (the input gates)
- its internal nodes correspond to \times or + operations (\times-gates and + -gates)
- the input connectors of its +-gates are weighted by rational numbers

These circuits have been given different names: $(+, \times)$-programs [Valiant, 1980], AC [Nisan and Wigderson, 1997; Darwiche 2002], sum-product networks [Poon and Domingos, 2011; Dennis 2016], etc.

Arithmetic Circuits

In this talk, all ACs represent non-negative functions. Though we allow negative weights on the edges.

An AC is called monotone if it only uses non-negative weights.

It is known that allowing negative weights (\simeq allowing subtraction) can result in a more-than-polynomial decrease in the size of the AC [Valiant, 1980]. So we aim for lower bounds on the size of AC representing non-negative functions but where negative weights are allowed.

Tractable Arithmetic Circuits

- Decomposability: every \times-gate $C_{1} \times C_{2}$ verifies $\operatorname{var}\left(C_{1}\right) \cap \operatorname{var}\left(C_{2}\right)=\emptyset$ (also called syntactical multilinearity)

Tractable Arithmetic Circuits

- Decomposability: every \times-gate $C_{1} \times C_{2}$ verifies $\operatorname{var}\left(C_{1}\right) \cap \operatorname{var}\left(C_{2}\right)=\emptyset$ (also called syntactical multilinearity)
- Determinism: every + -gate $w_{1} C_{1}+w_{2} C_{2}$ verifies that $\forall \vec{X}, C_{1}(\vec{X}) \cdot C_{2}(\vec{X})=0$ (i.e., C_{1} and C_{2} have disjoint supports)

Tractable Arithmetic Circuits

- Decomposability: every \times-gate $C_{1} \times C_{2}$ verifies $\operatorname{var}\left(C_{1}\right) \cap \operatorname{var}\left(C_{2}\right)=\emptyset$ (also called syntactical multilinearity)
- Determinism: every + -gate $w_{1} C_{1}+w_{2} C_{2}$ verifies that $\forall \vec{X}, C_{1}(\vec{X}) \cdot C_{2}(\vec{X})=0$ (i.e., C_{1} and C_{2} have disjoint supports)
- Smoothness: every + -gate $C_{1}+C_{2}$ verifies $\operatorname{var}\left(C_{1}\right)=\operatorname{var}\left(C_{2}\right)$

Tractable Arithmetic Circuits

- Structured-decomposability: there is a vtree (variable tree) T such that for every \times-gate $C_{1} \times C_{2}$, there is a node $t \in T$ that separates $\operatorname{var}\left(C_{1}\right)$ from $\operatorname{var}\left(C_{2}\right)$. l.e., t 's children t_{1}, t_{2} are such that $\operatorname{var}\left(C_{1}\right) \subseteq \operatorname{var}\left(t_{1}\right)$ and $\operatorname{var}\left(C_{2}\right) \subseteq$ $\operatorname{var}\left(t_{2}\right)$

Tractable Arithmetic Circuits

- Structured-decomposability: there is a vtree (variable tree) T such that for every \times-gate $C_{1} \times C_{2}$, there is a node $t \in T$ that separates $\operatorname{var}\left(C_{1}\right)$ from $\operatorname{var}\left(C_{2}\right)$. l.e., t 's children t_{1}, t_{2} are such that $\operatorname{var}\left(C_{1}\right) \subseteq \operatorname{var}\left(t_{1}\right)$ and $\operatorname{var}\left(C_{2}\right) \subseteq$ $\operatorname{var}\left(t_{2}\right)$

Tractable Arithmetic Circuits

- Structured-decomposability: there is a vtree (variable tree) T such that for every \times-gate $C_{1} \times C_{2}$, there is a node $t \in T$ that separates $\operatorname{var}\left(C_{1}\right)$ from $\operatorname{var}\left(C_{2}\right)$. l.e., t 's children t_{1}, t_{2} are such that $\operatorname{var}\left(C_{1}\right) \subseteq \operatorname{var}\left(t_{1}\right)$ and $\operatorname{var}\left(C_{2}\right) \subseteq$ $\operatorname{var}\left(t_{2}\right)$

Tractable Arithmetic Circuits

- Structured-decomposability: there is a vtree (variable tree) T such that for every \times-gate $C_{1} \times C_{2}$, there is a node $t \in T$ that separates $\operatorname{var}\left(C_{1}\right)$ from $\operatorname{var}\left(C_{2}\right)$. l.e., t 's children t_{1}, t_{2} are such that $\operatorname{var}\left(C_{1}\right) \subseteq \operatorname{var}\left(t_{1}\right)$ and $\operatorname{var}\left(C_{2}\right) \subseteq$ $\operatorname{var}\left(t_{2}\right)$

Tractable Arithmetic Circuits

This AC is decomposable but not structured-decomposable.

Tractable Arithmetic Circuits

This AC is decomposable but not structured-decomposable. If it was structured by a vtree T :

- there would be a node in T that separates $\left\{X_{1}\right\}$ from $\left\{X_{3}, X_{4}\right\}$,
- and there would be a node in T that separates $\left\{X_{1}, X_{4}\right\}$ from $\left\{X_{3}\right\}$, this is not possible.

Roadmap

- Tractable arithmetic circuits (AC)
- Reduction to tractable Boolean circuits (the boring trick)
- Lower bounds via the rank technique
- Separating classes of tractable ACs

Reduction to Tractable Boolean Circuits - the Boring Trick

There is a trivial poly-time transformation from a tractable AC that uses only positive weights to a tractable Boolean circuit.

Thus, if the support of a function f coincides with the true points of a Boolean function that admits only exponential size DNNF circuits, then f admits only exponential size decomposable AC that use only positive weights.

Reduction to Tractable Boolean Circuits - the Boring Trick

There is a trivial poly-time transformation from a tractable AC that uses only positive weights to a tractable Boolean circuit.

Tractable Boolean circuits. We know many hard functions. [Beame,
Li, Roy and Suciu, 2013; Bova, Capelli, Mengel and Slivovsky, 2014 and 2016; Amarilli, Capelli, Monet and Senellar, 2020; ...]

$$
\text { and senenar, } 20<0, \ldots .
$$

Thus, if the support of a function f coincides with the true points of a Boolean function that admits only exponential size DNNF circuits, then f admits only exponential size decomposable AC that use only positive weights.

Reduction to Tractable Boolean Circuits - the Boring Trick

This works only for AC with positive weights.
Note that when the $A C$ is deterministic, the weights can always be taken positive with no impact on the size of the AC.

Also, for deterministic decomposable AC with integer weights, there is a poly-time transformation to a d-DNNF circuit computing $\mathbb{1}[C(X) \geq k]$ for any constant k (not just 0) while this is generally intractable for decomposable AC.

Roadmap

- Tractable arithmetic circuits (AC)
- Reduction to tractable Boolean circuits (the boring trick)
- Lower bounds via the rank technique
- Separating classes of tractable ACs

Lower Bounds via the Rank Technique

The rank technique allows one to prove lower bounds on the size of structured-decomposable AC (possibly using negative weights) for a function F.

We use the notion of value matrix for a function F.

Definition (Value Matrix)

Let $F(\boldsymbol{X})$ be a function and $\Pi=(\boldsymbol{A}, \boldsymbol{B})$ be a partition of \boldsymbol{X}. A value matrix $M_{\Pi}(F)$ is a $2^{|B|} \times 2^{|A|}$ matrix whose columns are indexed by the complete assignments to \boldsymbol{A}, whose rows are indexed by the complete assignments to \boldsymbol{B} and such that the entry at column $\vec{X}_{\boldsymbol{A}}$ and row \vec{X}_{B} is $F\left(\vec{X}_{\boldsymbol{A}}, \vec{X}_{B}\right)$.

Lower Bounds via the Rank Technique

Example: $F\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=\frac{1}{2}\left(X_{1}+X_{5}\right)\left(X_{2}+3 X_{4}\right)+X_{2} X_{3}$ and $\Pi=\left(X_{1} X_{2} X_{3}, X_{4} X_{5}\right)$. A value matrix $M_{\Pi}(F)$ is

	$\begin{aligned} & X_{1} \\ & X_{2} \\ & X_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$	1 1 0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
$X_{4} X_{5}$									
00		0				$\frac{3}{2}$	0	$\frac{3}{2}$	$\frac{1}{2}$
10		0				3	$\frac{3}{2}$	3	2
01		0				2	0	2	1
11	i	$\frac{3}{2}$	3			5	3	5	$4)$

The order of the rows and the order of the columns is not important for us.

Lower Bounds via the Rank Technique

Example: $F\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=\frac{1}{2}\left(X_{1}+X_{5}\right)\left(X_{2}+3 X_{4}\right)+X_{2} X_{3}$ and $\Pi=\left(X_{1} X_{2} X_{3}, X_{4} X_{5}\right)$. A value matrix $M_{\Pi}(F)$ is

The order of the rows and the order of the columns is not important for us.

Lower Bounds via the Rank Technique

Theorem

Let T be a vtree and let $\Pi=(A, B)$ of \boldsymbol{X} be a partition induced by T. Every structured-decomposable $A C$ respecting T and representing $F(\boldsymbol{X})$ contains at least $\operatorname{rank}\left(M_{\Pi}(F)\right)$ gates.

Corollary

Every structured-decomposable $A C$ representing $F(\boldsymbol{X})$ contains at least

$$
\min _{\Pi} \operatorname{rank}\left(M_{\Pi}(F)\right)
$$

gates where Π ranges over all balanced partitions (i.e., $\frac{|\boldsymbol{X}|}{3} \leq|A|,|B| \leq \frac{2|\boldsymbol{X}|}{3}$).

Lower Bounds via the Rank Technique

Example of "hard" functions: consider a simple graphs G and let

$$
F_{G}(\boldsymbol{X})=\prod_{(i, j) \in E(G)}\left(1+\max \left(X_{i}, X_{j}\right)\right)
$$

Note that F_{G} never takes value 0 .

Theorem

If G is a (c, d)-expander graph with $d=O(1)$, then for all balanced partitions Π of \boldsymbol{X},

$$
\operatorname{rank}\left(M_{\Pi}\left(F_{G}(\boldsymbol{X})\right)\right) \geq 2^{\Omega(n)}
$$

where $n=|\boldsymbol{X}|$.

Corollary

There exists an infinite class of (c,3)-expander graphs for some constant c, so there exists an infinite class of functions $F_{G}(\boldsymbol{X})$ computed only by structured-decomposable $A C$ of size $2^{\Omega(n)}$, where $n=|\boldsymbol{X}|$.

Lower Bounds via the Rank Technique

The proof of the rank theorem uses a decomposition of the AC as sum of "arithmetic rectangles" (for lack of better term)

This is similar to the lower bound techniques for DNNF circuits using combinatorial rectangles.

Roadmap

- Tractable arithmetic circuits (AC)
- Reduction to tractable Boolean circuits (the boring trick)
- Lower bounds via the rank technique
- Separating classes of tractable ACs

Separating Classes of Tractable ACs

Showing a separation between two classes of tractable AC = finding an infinite class of functions that admit polynomial-size representations in one class but only super-polynomial-size representations in the other.

Building on the previous result, we can show the separation between the class of decomposable ACs and that of structured-decomposable ACs.

Theorem (dec. AC exponentially separated from str-dec. ACs)

There is an infinite class of functions that have small decomposable ACs but only exponential-size structured-decomposable ACs.

Separating Classes of Tractable ACs

We just need the following results...
Lemma (Conditioning str-dec. ACs)
Conditioning is done in linear-time on str-dec. AC and preserve structured-decomposability.

$$
C(\boldsymbol{X}) \xrightarrow[\text { linear-time }]{ } C^{\prime}(\boldsymbol{X} \backslash \operatorname{var}(\alpha)) \equiv C(\boldsymbol{X}) \mid \alpha
$$

where α is a partial assignment to \boldsymbol{X}.

Lemma (Conjunction of str-dec. ACs)

Taking the product of two str-dec. AC while preserving structured-decomposability is tractable when they respect the same vtree.

$$
C_{1}(\boldsymbol{X}), C_{2}(\boldsymbol{X}) \xrightarrow[\text { quadratic-time }]{ } C(\boldsymbol{X}) \equiv C_{1}(\boldsymbol{X}) \cdot C_{2}(\boldsymbol{X})
$$

[Vergari, Choi, Liu, Teso and Van den Broeck, 2021]

Separating Classes of Tractable ACs

...and some knowledge about expander graphs.

$$
G_{1}=\text { fixed path }
$$

$G_{2}=$ random path

$$
G_{1} \oplus G_{2}
$$

Lemma

When G_{2} is chosen uniformly at random, $G_{1} \oplus G_{2}$ is an expander graph with high probability.

Separating Classes of Tractable ACs

1. With high probability $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs

Separating Classes of Tractable ACs

1. With high probability $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs
2. But $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})=F_{G_{1}^{\prime}}(\boldsymbol{X}) \cdot F_{G_{2}}(\boldsymbol{X})$ (for G_{1}^{\prime} a subgraph of G_{1})

Separating Classes of Tractable ACs

1. With high probability $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs
2. But $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})=F_{G_{1}^{\prime}}(\boldsymbol{X}) \cdot F_{G_{2}}(\boldsymbol{X})$ (for G_{1}^{\prime} a subgraph of G_{1})
3. So for every vtree $T, F_{G_{1}^{\prime}}(\boldsymbol{X})$ or $F_{G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs respecting T.

Separating Classes of Tractable ACs

1. With high probability $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs
2. But $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})=F_{G_{1}^{\prime}}(\boldsymbol{X}) \cdot F_{G_{2}}(\boldsymbol{X})$ (for G_{1}^{\prime} a subgraph of G_{1})
3. So for every vtree $T, F_{G_{1}^{\prime}}(\boldsymbol{X})$ or $F_{G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs respecting T.
4. Both $F_{G_{1}^{\prime}}(\boldsymbol{X})$ and $F_{G_{2}}(\boldsymbol{X})$ has small structured-decomposable AC for different vtrees (because G_{1} and G_{2} are paths)

Separating Classes of Tractable ACs

1. With high probability $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs
2. But $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})=F_{G_{1}^{\prime}}(\boldsymbol{X}) \cdot F_{G_{2}}(\boldsymbol{X})$ (for G_{1}^{\prime} a subgraph of G_{1})
3. So for every vtree $T, F_{G_{1}^{\prime}}(\boldsymbol{X})$ or $F_{G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs respecting T.
4. Both $F_{G_{1}^{\prime}}(\boldsymbol{X})$ and $F_{G_{2}}(\boldsymbol{X})$ has small structured-decomposable AC for different vtrees (because G_{1} and G_{2} are paths)
5. Let y be a fresh variable, then $F(\boldsymbol{X}, y):=\left(y \cdot F_{G_{1}^{\prime}}(\boldsymbol{X})\right)+\left(\neg y \cdot F_{G_{2}}(\boldsymbol{X})\right)$ has small decomposable AC.

Separating Classes of Tractable ACs

1. With high probability $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs
2. But $F_{G_{1} \oplus G_{2}}(\boldsymbol{X})=F_{G_{1}^{\prime}}(\boldsymbol{X}) \cdot F_{G_{2}}(\boldsymbol{X})$ (for G_{1}^{\prime} a subgraph of G_{1})
3. So for every vtree $T, F_{G_{1}^{\prime}}(\boldsymbol{X})$ or $F_{G_{2}}(\boldsymbol{X})$ admits only exponential-size structured-decomposable ACs respecting T.
4. Both $F_{G_{1}^{\prime}}(\boldsymbol{X})$ and $F_{G_{2}}(\boldsymbol{X})$ has small structured-decomposable AC for different vtrees (because G_{1} and G_{2} are paths)
5. Let y be a fresh variable, then $F(\boldsymbol{X}, y):=\left(y \cdot F_{G_{1}^{\prime}}(\boldsymbol{X})\right)+\left(\neg y \cdot F_{G_{2}}(\boldsymbol{X})\right)$ has small decomposable AC.
6. If F had a small structured-decomposable $A C$ respecting some T then $F \mid(y=1)$ and $F \mid(y=0)$ would both have small structured-decomposable AC respecting T, which is not possible due to 3 .

Separating Classes of Tractable ACs

So this proves the separation of structured-decomposable ACs and decomposable ACs.

Theorem (dec. AC exponentially separated from str-dec. ACs)
There is an infinite class of functions that have small decomposable ACs but only exponential-size structured-decomposable ACs.

Again, we have made no assumption on the sign of the weights used in our ACs.

Roadmap

- Fractable arithmetic circuits (AC)
- Reduction to tractable Boolean circuits (the boring trick)
- Lower bounds via the rank technique
- Separating classes of tractable ACs

Thank you

