The Complexity of Dynamic Least-Squares Regression

Shunhua Jiang* Binghui Peng* Omri Weinstein ${ }^{\dagger}$
FOCS 2023
*Columbia University ${ }^{\dagger}$ Columbia University \& Hebrew University

Least squares regression

- Problem:

$$
\min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}
$$

- Applications in high-dimensional statistical inference, signal processing, machine learning, etc.
- Exact solution (Normal equation): $x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} b$
- Time complexity: $O\left(n d^{\omega-1}\right)$
- Still too slow for many modern data-analysis applications.
- ϵ-approximate solution: $\|A x-b\|_{2} \leq(1+\epsilon) \min _{x^{\prime} \in \mathbb{R}^{d}}\left\|A x^{\prime}-b\right\|_{2}$
- "Sketch and solve" paradigm [Woo14]
- Time complexity: $\widetilde{O}\left(\left(n n z(A)+d^{\omega}\right) \log (1 / \epsilon)\right)$ [CW17]

Dynamic least squares regression

- Problem: Dynamically maintain an ϵ-approximate LSR solution

$$
\min _{x \in \mathbb{R}^{d}}\left\|A^{(i)} x-b^{(i)}\right\|_{2}
$$

under insertion or deletion of rows $a^{(i)} \in \mathbb{R}^{d}$ and labels $\beta^{(i)} \in \mathbb{R}$.

- Goal: minimize amortized update time.
- In total n iterations, think of $n=\operatorname{poly}(d)$.

- Models dynamic data applications, e.g., continual ML.
- Incremental vs Fully dynamic
- Incremental: Only insertions of rows.
- Fully dynamic: Both insertions and deletions of rows.
- Oblivious updates vs Adaptive updates
- Oblivious updates: The sequence of updates are fixed in the beginning.
- Adaptive updates: The next update is generated based on the previous outputs.

Algorithms for dynamic least squares regression

- Exact solution: Update the normal equation $x^{*,(i)}=\left(A^{(i) \top} A^{(i)}\right)^{-1} A^{(i) \top} b^{(i)}$ using Woodbury identity. (Kalman filters [Kal60])
- Works for fully dynamic and adaptive updates.
- Time per update: $O\left(d^{2}\right)$.
- Online row sampling [CMP20]: Maintain an ϵ-approximate solution by sampling $O\left(d \log \kappa / \epsilon^{2}\right)$ number of rows, where $\kappa:=\frac{\sigma_{\max }\left(A^{(n)}\right)}{\sigma_{\min }\left(A^{(0)}\right)}$.
- Works for incremental and oblivious updates.
- Time per update: $O\left(d^{2}\right)$ (to compute sampling probability).
- Adaptive online row sampling $\left[\mathrm{BHM}^{+} 21\right]$: Sample $O\left(d^{2} \kappa \log \kappa / \epsilon^{2}\right)$ number of rows, where $\kappa:=\frac{\sigma_{\max }\left(A^{(n)}\right)}{\sigma_{\min }\left(A^{(0)}\right)}$.
- Works for incremental and adaptive updates.
- Time per update: $O\left(d^{2}\right)$.
- Question: Can we achieve $O(d)$ time per update / $O(n d)$ total time?

Our results: Upper bound

Theorem (Upper bound). There is a dynamic data structure that maintains an ϵ-approximate LSR solution under oblivious incremental updates, with total time $\widetilde{O}\left(n d+d^{3} \operatorname{poly}\left(\epsilon^{-1}\right)\right)$. The data structure can be made to work against adaptive incremental updates with total time $\widetilde{O}\left(n d+d^{5} \operatorname{poly}\left(\epsilon^{-1}\right)\right)$.

- When $n \gg d$ and ϵ is a small constant, the amortized cost per iteration is $\widetilde{O}(d)$.
- The nd term is in fact nnz $\left(A^{(n)}\right)$.
- For adaptive incremental updates, we improve the number of sampled rows from $O\left(d^{2} \kappa \log \kappa / \epsilon^{2}\right)\left[\mathrm{BHM}^{+} 21\right]$ to $O\left(d^{2} \log ^{2} \kappa / \epsilon^{2}\right)$.
- Question: Can we improve poly $\left(\epsilon^{-1}\right)$ dependence to $\log \left(\epsilon^{-1}\right)$ as the static case?
- Question: Algorithms for fully dynamic updates?

Our results: Lower bound

Theorem (Lower bound). Under the OMv conjecture: [HKNS15]

- High vs low accuracy. Any dynamic data structure that maintains an $\epsilon=1 /$ poly (n)-approximate LSR solution under oblivious incremental updates requires $\Omega\left(d^{2-o(1)}\right)$ amortized cost per iteration.
- Fully vs partially dynamic. If the data structure supports adaptive fully dynamic updates, then maintaining $\epsilon=0.01$-approximate LSR solution requires $\Omega\left(d^{2-o(1)}\right)$ amortized cost per iteration.
- Impossible to improve poly $\left(\epsilon^{-1}\right)$ dependence to $\log \left(\epsilon^{-1}\right)$.
- Impossible to make the algorithm work for fully dynamic updates.
I. Upper Bound: Incremental

Oblivious Setting

Exact solution for dynamic LSR

- Notations: In the i-th iteration, given a new row $a^{(i)} \in \mathbb{R}^{d}$ and a new label $\beta^{(i)} \in \mathbb{R}$, solve for

$$
\min _{x \in \mathbb{R}^{d}}\left\|A^{(i)} x-b^{(i)}\right\|_{2}
$$

- Exact solution (Kalman filters [Kal60]): Compute $x^{*,(i)}=\left(A^{(i) \top} A^{(i)}\right)^{-1} A^{(i) \top} b^{(i)}$.
- Inverse $\left(A^{(i) \top} A^{(i)}\right)^{-1}=(\underbrace{A^{(i-1) \top} A^{(i-1)}}_{M}+a^{(i)} a^{(i)^{\top}})^{-1}$.
- Woodbury identity: $\left(M+a^{(i)} a^{(i) \top}\right)^{-1}=M^{-1}-\frac{M^{-1} a^{(i)} a^{(i) \top} M^{-1}}{1+a^{(i) \top} a^{(i)}}$.

$$
\left(\left[\begin{array}{ll}
M
\end{array}\right]+\left[\begin{array}{ll}
& \\
&
\end{array}\right]\left[\begin{array}{ll}
a^{\top} &]
\end{array}\right)^{-1}=\left[\begin{array}{l}
M^{-1}
\end{array}\right]-\frac{1}{1+a^{\top} a} \cdot\left[\begin{array}{l}
M^{-1}
\end{array}\right][a]\left[\begin{array}{lll}
& a^{\top} &]
\end{array} \begin{array}{ll}
M^{-1}
\end{array}\right]\right.
$$

- Time per update: $O\left(d^{2}\right)$.

Subspace embedding and approximate LSR

- Subspace embedding (See survey [Woo14]):

Given a matrix $A \in \mathbb{R}^{n \times d}$, matrix $S \in \mathbb{R}^{s \times n}$ is a ($1 \pm \epsilon$) subspace embedding for A if

$$
\|S A x\|_{2}=(1 \pm \epsilon)\|A x\|_{2} \text { for all } x
$$

- Approx LSR: Let S be a $(1 \pm \epsilon)$ subspace embedding of matrix $[A, b]$.

$$
x^{\prime}:=\arg \min _{x \in \mathbb{R}^{d}}\|S A x-S b\|_{2}
$$

is an $O(\epsilon)$-approximate solution for the original problem:

$$
\left\|A x^{\prime}-b\right\|_{2} \leq(1+\epsilon) \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}
$$

- Subspace embedding technique that is easy to dynamize: leverage score sampling

Leverage score sampling

- Leverage scores: For a fixed matrix A, the leverage score of its i-th row a_{i} is

$$
\tau_{i}(A):=a_{i}^{\top}\left(A^{\top} A\right)^{-1} a_{i}
$$

Diagonal entries of the projection matrix $A\left(A^{\top} A\right)^{-1} A^{\top}$.

- Measures how important the row a_{i} is for the row space of A.
- If $\tau_{i}(A)=1$: removing row i will decrease the rank of A by 1 .
- If all rows are the same, they all have $\tau_{i}(A)=d / n$.
- Main properties: (i) $0 \leq \tau_{i}(A) \leq 1$. (ii) $\sum_{i=1}^{n} \tau_{i}(A)=d$.
- Leverage score sampling: Sample the i-th row with probability $p_{i}=\tau_{i}(A) / \epsilon^{2}$. Let $D_{i i}=1 / \sqrt{p_{i}}$ if the i-th row is sampled, and 0 otherwise. Then with high probability D is a $(1 \pm \epsilon)$ subspace embedding for A.
- In expectation sample $\sum_{i=1}^{n} p_{i}=O\left(d / \epsilon^{2}\right)$ rows.

Online leverage score sampling [CMP20]

- Online leverage scores:

$$
\bar{\tau}_{i}:=\left(a^{(i)}\right)^{\top}\left(\left(A^{(i-1)}\right)^{\top} A^{(i-1)}\right)^{-1} a^{(i)}
$$

- Overestimates: $\bar{\tau}_{i} \geq \tau_{i}$ since $\left(A^{(i-1)}\right)^{\top} A^{(i-1)} \preceq\left(A^{(n)}\right)^{\top} A^{(n)}$.
- Online leverage score sampling: When the i-th row arrives, sample it with probability $p_{i}=\bar{\tau}_{i} / \epsilon^{2}$. Let $D_{i i}=1 / \sqrt{p_{i}}$ if the i-th row is sampled, and 0 otherwise. Then whp D is a $(1 \pm \epsilon)$ subspace embedding for $A^{(i)}$.
- Sum of online leverage scores: $\sum_{i=1}^{n} \bar{\tau}_{i} \leq d \log (d \kappa)$, where $\kappa:=\frac{\sigma_{\max }\left(A^{(n)}\right)}{\sigma_{\min }\left(A^{(0)}\right)}$.
- Fact: $\log \operatorname{det}\left(M+a a^{\top}\right) \geq \log \operatorname{det}(M)+a^{\top} M^{-1} a$.
- Apply this fact to the rows:
$\log \operatorname{det}\left(\left(A^{(n)}\right)^{\top} A^{(n)}\right) \geq \log \operatorname{det}\left(\left(A^{(n-1)}\right)^{\top} A^{(n-1)}\right)+\bar{\tau}_{n} \geq \cdots \geq \log \operatorname{det}\left(\left(A^{(0)}\right)^{\top} A^{(0)}\right)+\sum_{i=1}^{n} \bar{\tau}_{i}$
- In expectation sample $\sum_{i=1}^{n} p_{i}=\widetilde{O}\left(d \log (\kappa) / \epsilon^{2}\right)$ rows.

Algorithm for oblivious updates

- Algorithm: We maintain a subsampled matrix $\widetilde{A}=D A^{(i)}$. In each iteration:
- When $a^{(i)}$ arrives, compute $\bar{\tau}_{i}=a^{(i)^{\top}} \cdot\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1} \cdot a^{(i)}$. (1)
- Flip a coin with probability $p_{i}=\bar{\tau}_{i} / \epsilon^{2}$:
* If 1: Add $a^{(i)} / \sqrt{p_{i}}$ as a new row to \widetilde{A}. Update $\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1}$ and solution. (2) * If 0 : Ignore $a^{(i)}$. Output the same solution.
- Update time (2):
- One update takes $O\left(d^{2}\right)$ time by using Woodbury identity.
- The total number of updates is $\sum_{i=1}^{n} \bar{\tau}_{i} / \epsilon^{2}=\widetilde{O}\left(d \log (\kappa) / \epsilon^{2}\right)$.
- Total time is $\widetilde{O}\left(d^{3} \log (\kappa) / \epsilon^{2}\right)$.
- Amortized cost is $d^{o(1)}$ when $n \gg d$.

Computing leverage scores more efficiently

- Recall: We want to compute $\bar{\tau}_{i}=a^{(i) \top}\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1} a^{(i)}(1)$ in each iteration. Direct computation takes $O\left(d^{2}\right)$ time in [CMP20].
- Johnson-Lindenstrauss lemma: There exists JL matrix J that compresses dimension from d to $O(\log n)$ and guarantees $\|J x\|_{2}^{2} \approx_{0.01}\|x\|_{2}^{2}$ for fixed n vectors.
- $a^{\top} \cdot\left(A^{\top} A\right)^{-1} \cdot a=\left\|A\left(A^{\top} A\right)^{-1} \cdot a\right\|_{2}^{2}$. [SS08].
- The algorithm also maintains $J \cdot \widetilde{A}\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1}$.
- We have

$$
\begin{aligned}
& \bar{\tau}_{i}=\left\|\widetilde{A}\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1} \cdot a^{(i)}\right\|_{2}^{2} \approx_{0.01}\left\|J \widetilde{A}\left(\widetilde{A}^{\top} \widetilde{A}\right)^{-1} \cdot a^{(i)}\right\|_{2}^{2}
\end{aligned}
$$

- This estimate can be computed in $O(d \log n)$ time.
\Longrightarrow Total time is $O(n d \log n)$.

Algorithm for oblivious updates

Theorem (Upper bound in oblivious setting). There is a dynamic data structure that maintains an ϵ-approximate LSR solution under oblivious incremental updates, with total time $O\left(n d \log n+d^{3} \operatorname{poly}\left(\epsilon^{-1}\right)\right)$.
II. Upper Bound: Incremental

Adaptive Setting

Adaptive updates

- Adaptive updates are inherent in many iterative algorithms.
- To make our algorithm work against adaptive updates:
- Make JL trick work against adaptive updates.
- Make the JL estimate an over-estimate.
- Renew the JL sketch whenever a row is sampled.
- Make online leverage score sampling work against adaptive updates.

Proof of oblivious leverage score sampling

- Leverage score sampling: Sample the i-th row with probability $p_{i}=\tau_{i}(A) / \epsilon^{2}$. Let $D_{i i}=1 / \sqrt{p_{i}}$ if the i-th row is sampled, and 0 otherwise. Then whp D is a $(1 \pm \epsilon)$ subspace embedding for A.
- Matrix Chernoff bound: Given independently random PSD matrices

$$
X_{1}, \cdots, X_{n} \in \mathbb{R}^{d \times d} \text { s.t. } X_{i} \preceq R \cdot I \text {. Let } W=\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] \text {. Then }
$$

$$
\begin{aligned}
& \operatorname{Pr}\left[\lambda_{\min }\left(\sum_{i=1}^{n} X_{i}\right) \leq(1-\epsilon) \lambda_{\min }(W)\right] \leq d \cdot 2^{-\epsilon^{2} \lambda_{\min }(W) / R} \\
& \operatorname{Pr}\left[\lambda_{\max }\left(\sum_{i=1}^{n} X_{i}\right) \geq(1+\epsilon) \lambda_{\max }(W)\right] \leq d \cdot 2^{-\epsilon^{2} \lambda_{\max }(W) / R}
\end{aligned}
$$

- Proof of leverage score sampling: Define $X_{i}:=\left\{\begin{array}{ll}\frac{1}{p_{i}} \cdot a^{(i)}\left(a^{(i)}\right)^{\top} & \text { w.p. } p_{i} \\ 0 & \text { otherwise }\end{array}\right.$. Apply Matrix Chernoff bound to scaled version: $\bar{X}_{i}=W^{-1 / 2} X_{i} W^{-1 / 2}$.

Adaptive online leverage score sampling

- Adaptive Matrix Chernoff bound. Given adaptive random PSD matrices $X_{1}, \cdots, X_{n} \in \mathbb{R}^{d \times d}$ s.t. $X_{i} \preceq R \cdot I$. Let $W=\sum_{i=1}^{n} \mathbb{E}\left[X_{i} \mid X_{1}, \cdots, X_{i-1}\right]$. Then we have that for any μ :

$$
\begin{aligned}
& \operatorname{Pr}\left[\lambda_{\min }\left(\sum_{i=1}^{n} X_{i}\right) \leq(1-\epsilon) \mu \text { and } \lambda_{\min }(W) \geq \mu\right] \leq d \cdot 2^{-\epsilon^{2} \mu / R} \\
& \operatorname{Pr}\left[\lambda_{\max }\left(\sum_{i=1}^{n} X_{i}\right) \geq(1+\epsilon) \mu \text { and } \lambda_{\max }(W) \leq \mu\right] \leq d \cdot 2^{-\epsilon^{2} \mu / R}
\end{aligned}
$$

- W is a random variable.
- Cannot use scaled version $\bar{X}_{i}=W^{-1 / 2} X_{i} W^{-1 / 2}$ anymore!
- By "guessing" the matrix W, and use a union bound over all "guesses", we can prove ϵ-approximation when $p_{i}=C \cdot \bar{\tau}_{i} / \epsilon^{2}$, where $C=\widetilde{O}\left(d^{2} \log (\kappa)\right)$.
- Using scalar concentration bounds, only lose a factor of $C=\widetilde{O}(d \log (\kappa))$.

Adaptive online leverage score sampling

Lemma (Adaptive online leverage score sampling)

Let $a^{(1)}, \cdots, a^{(n)}$ be a sequence of adaptive updates. Sample the i-th row with probability $p_{i}=C \cdot \bar{\tau}_{i} / \epsilon^{2}$, where $C=\widetilde{O}(d \log (\kappa))$. Let $D_{i i}=1 / \sqrt{p_{i}}$ if the i-th row is sampled, and 0 otherwise. Then whp D is a $(1 \pm \epsilon)$ subspace embedding for A.

Proof ideas of $\left[\mathrm{BHM}^{+} 21\right]$

- Instead of proving $D A \approx_{\epsilon} A$, prove the scalar case that $\|D A v\|_{2} \approx_{\epsilon}\|A v\|_{2}$
- Need to prove this for all vector v 's in an ϵ-net of size $(\kappa / \epsilon)^{\widetilde{O}(d)}$.
- Need $\delta<(\epsilon / \kappa)^{\widetilde{O}(d)}$ to use union bound.
\Longrightarrow Lose a factor of $d \log (\kappa)$ in $\log \frac{1}{\delta}$.

Proof ideas of [BHM $\left.{ }^{+} 21\right]$ (continued)

- Define $x_{i}:=\left(D_{i i}^{2}-1\right) \cdot v^{\top} a^{(i)}\left(a^{(i)}\right)^{\top} v$.
- Goal is to prove $\left|\sum_{i=1}^{n} x_{i}\right| \leq \epsilon \cdot\left\|A^{(n)} v\right\|_{2}^{2}$.
- Use concentration bound for scalar adaptive sequences:

Freedman's inequality (simplified for talk). Let $x_{1}, \cdots, x_{n} \in \mathbb{R}$ be an adaptive sequence such that $\mathbb{E}\left[x_{i} \mid x_{1}, \cdots, x_{i-1}\right]=0$, and $\left|x_{i}\right| \leq R$. Then for any μ,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} x_{i}\right| \geq \mu\right] \leq e^{-\mu / R}
$$

- Would like to set $\mu=\epsilon \cdot\left\|A^{(n)} v\right\|_{2}^{2}$. However, $\left\|A^{(n)} v\right\|_{2}^{2}$ is a random variable!
- $\left[\mathrm{BHM}^{+} 21\right]:$ Use $\sigma_{\text {min }} \leq\left\|A^{(n)} v\right\|_{2} \leq \sigma_{\text {max }} \Longrightarrow$ lose a factor of $\kappa=\frac{\sigma_{\text {max }}}{\sigma_{\text {min }}}$.

Better dependence on κ

- Idea: "Guess" the value of $\left\|A^{(n)} v\right\|_{2}$.
- Build an ϵ-net of the line segment $\left[\sigma_{\min }, \sigma_{\max }\right]$.
- For any s in the ϵ-net (s is a guess of $\left\|A^{(n)} v\right\|_{2}$), define a truncated sequence $x_{s, 1}, \cdots, x_{s, n}$:

$$
x_{s, i}:= \begin{cases}x_{i} & \text { if }\left\|A^{(i)} v\right\|_{2} \leq s \\ 0 & \text { otherwise }\end{cases}
$$

- Now can prove $\left|\sum_{i=1}^{n} x_{s, i}\right| \leq \epsilon \cdot s^{2}$ by setting $\mu=\epsilon \cdot s^{2}$.
- Since the size of the ϵ-net is $\propto \kappa$, we only lose another additive $\log (\kappa)$ factor.

Algorithm for adaptive updates

Theorem (Upper bound in adaptive setting). There is a dynamic data structure that maintains an ϵ-approximate LSR solution under adaptive incremental updates, with total time $O\left(n d \log n+d^{5}\right.$ poly $\left.\left(\epsilon^{-1}\right) \log \kappa\right)$.

III. Lower Bounds

Conditional lower bounds

Theorem (Lower bound). Under the OMv conjecture:

- High vs low accuracy. Any dynamic data structure that maintains an
$\epsilon=1 / \operatorname{poly}(n)$-approximate LSR solution under oblivious incremental updates requires $\Omega\left(d^{2-o(1)}\right)$ amortized cost per iteration.
- Fully vs partially dynamic. If the data structure supports adaptive fully dynamic updates, then maintaining 0.01 -approximate LSR solution requires $\Omega\left(d^{2-o(1)}\right)$ amortized cost per iteration.

OMv conjecture

OMv conjecture. [HKNS15] In the online matrix vector multiplication (OMv) problem, initially a matrix $M \in\{0,1\}^{d \times d}$ is given, then a sequence of vectors $v^{(1)}, v^{(2)}, \cdots, v^{(d)} \in\{0,1\}^{d}$ are revealed one by one, and the algorithm needs to output $M \cdot v^{(i)}$ in the i-th round. The conjecture states that there is no algorithm for OMv with poly (d) preprocessing time, and $\boldsymbol{O}\left(\boldsymbol{d}^{2-\epsilon}\right)$ amortized query time.

- Offline: d^{ω}. Online: d^{3}.

- Only way to speed up matrix vector multiplication is batching.
- A unified approach to prove conditional lower bound for dynamic problems.
- Also holds when there are $n=\operatorname{poly}(d)$ queries.

Roadmap

Theorem (Lower bound). Under the OMv conjecture:

- High vs low accuracy. Any dynamic data structure that maintains an
$\epsilon=1 /$ poly (n)-approximate LSR solution under oblivious incremental updates requires $\Omega\left(d^{2-o(1)}\right)$ amortized cost per iteration. (1)
- Fully vs partially dynamic. If the data structure supports adaptive fully dynamic updates, then maintaining 0.01 -approximate LSR solution requires $\Omega\left(d^{2-o(1)}\right)$ amortized cost per iteration. (2)

1/ poly(n)-approximate incremental LSR

	$O(1 /$ poly $(d))$-approx real-valued OMv	1/poly(n)-approx incremental LSR (1)
OMv conjecture		

$O(1 / \operatorname{poly}(d))$-approx OMv:

- Matrix $M \in \mathbb{R}^{d \times d}$ has constant eigenvalues.
- Query vectors all have unit norm.
- Allow $O(1 / \operatorname{poly}(d))$ additive error in output: $\left\|y^{(i)}-M \cdot v^{(i)}\right\|_{2} \leq O(1 / \operatorname{poly}(d))$

Proof:

- Assume we have a $1 /\left(n d^{10}\right)$-approx incremental LSR oracle.
- Construct LSR instance: Initially set $\left(A^{(0) \top} A^{(0)}\right)^{-1}=M$. Add row $a^{(i)}=\frac{v^{(i)}}{n d^{5}}$.
- Since $\left\|a^{(i)}\right\|_{2}$ is small, we always maintain $\left(A^{(i)^{\top}} A^{(i)}\right)^{-1} \approx M$.
- By Woodbury identity, $x^{(i)}=x^{(i-1)}+M \cdot a^{(t)} \pm O\left(\frac{1}{n d^{10}}\right)$.
- Output $y^{(i)}=\left(x^{(i)}-x^{(i-1)}\right) \cdot n d^{5}$ for OMv problem.

0.01-approximate fully dynamic LSR

Proof ideas:

- Assume we have a 0.01-approx fully dynamic LSR oracle.
- Fully dynamic LSR oracle is more powerful:
- Again add row $a^{(i)} \propto v^{(i)}$ in i-th round.
- Delete the row $a^{(i)}$ after this round!
- Similar as before, compute output using $x^{(i)}-x^{(0)}=M v^{(i)} \pm 0.01$.
- Need to reduce from a hardness result with constant error.

Hardness amplification

- Online projection problem: Initially a projection matrix $U U^{\top} \in \mathbb{R}^{d \times d}$ is given, then a sequence of unit vectors $v^{(1)}, v^{(2)}, \cdots, v^{(d)} \in \mathbb{R}^{d}$ are revealed one by one. Let $v_{U}^{(i)}=U U^{\top} \cdot v^{(i)}$. The algorithm needs to output:
- $O(1 /$ poly $(d))$-approx solution $\left\|y^{(i)}-v_{u}^{(i)}\right\|_{2} \leq O\left(\frac{1}{\text { poly(d) }}\right)$.
- (1/3, 1/ poly (d))-approx solution $\left\|y^{(i)}-v_{u}^{(i)}\right\|_{2} \leq \frac{1}{3} \cdot\left\|v_{u}^{(i)}\right\|_{2}+O\left(\frac{1}{\text { poly(d) }}\right)$.
- Hardness amplification: No $O\left(d^{2-\epsilon}\right)$ time algorithm for $O(1 /$ poly $(d))$-approx online projection problem. \Longrightarrow No $O\left(d^{2-\epsilon}\right)$ time algorithm for ($1 / 3,1 /$ poly (d))-approx online projection problem.
- Proof: Given an online projection instance $U U^{\top}$ and $v^{(1)}, \cdots, v^{(n)}$. We have two $O(1 / 3,1 /$ poly $(d))$-approximate projection oracles:
$-\mathbb{P} U$ that outputs $y^{(i)}$ s.t. $\left\|y^{(i)}-v_{U}^{(i)}\right\|_{2} \leq \frac{1}{3} \cdot\left\|v_{U}^{(i)}\right\|_{2}+O\left(\frac{1}{\text { poly(d) }}\right)$.
$-\mathbb{P}_{U_{\perp}}$ that outputs $w^{(i)}$ s.t. $\left\|w^{(i)}-v_{U_{\perp}}^{(i)}\right\|_{2} \leq \frac{1}{3} \cdot\left\|v_{U_{\perp}}^{(i)}\right\|_{2}+O\left(\frac{1}{\text { poly(d) })}\right.$.
- Goal: Use poly $\log d$ oracle calls to compute $y^{(i)}:\left\|y^{(i)}-v_{u}^{(i)}\right\|_{2} \leq O\left(\frac{1}{\text { poly (d) }}\right)$.

Hardness amplification (continued)

First attempt:

- Call the projection oracle $\mathbb{P}_{U_{\perp}}(v)$ to compute $w \approx v_{U_{\perp}}$.
- Remove the component in U_{\perp} : compute $v-w$.
- Repeat for $O(\log d)$ times: the component in U_{\perp} is at most $1 / \operatorname{poly}(d)$.
- Problem: Introduce error in the component in U.

Hardness amplification (continued)

Final algorithm:

- We've shown: How to compute $y \approx v_{U}$ s.t. y has nearly zero component in U_{\perp}.
- Use this algorithm to compute w^{*} s.t. its component in U is nearly zero.
- Again remove the component in U_{\perp} : compute $v-w^{*}$.
- This time we don't introduce extra error in U.
- Repeat for $O(\log d)$ times: reduce $1 / 3$ relative error to $1 /$ poly (d) additive error.

Summary and Open problems

- ϵ-approximate dynamic least squares regression
- Upper bound. $O(d)$ amortized time when (1) ϵ is constant, (2) incremental updates, (3) either oblivious or adaptive.
- Lower bounds. Under the OMv conjecture:
- High vs low accuracy. If $\epsilon=1 / \operatorname{poly}(n)$, need $\Omega\left(d^{2-o(1)}\right)$ amortized time.
- Fully vs partially dynamic. If updates are fully dynamic and adaptive, then even constant approximation needs $\Omega\left(d^{2-o(1)}\right)$ amortized time.

Open problems:

- Improve the $O\left(d^{5}\right)$ term in the total time of adaptive incremental setting?
- Dynamic ℓ_{p} regression?
- Lower bound in fully dynamic and oblivious setting?
- Other reductions from " $\left(1 / 3,1 / d^{3}\right)$-approximate online projection"?

Thank you!

References i

國 Vladimir Braverman，Avinatan Hassidim，Yossi Matias，Mariano Schain，Sandeep Silwal，and Samson Zhou，Adversarial robustness of streaming algorithms through importance sampling，Advances in Neural Information Processing Systems 34 （2021），3544－3557．
囯 Michael B Cohen，Cameron Musco，and Jakub Pachocki，Online row sampling， Theory of Computing 16 （2020），no．1，1－25．

囦 Kenneth L．Clarkson and David P．Woodruff，Low－rank approximation and regression in input sparsity time，J．ACM 63 （2017），no． 6.

References if

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan, Sampling algorithms for 12 regression and applications, Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (USA), SODA '06, Society for Industrial and Applied Mathematics, 2006, p. 1127-1136.
(Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak, Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture, Proceedings of the forty-seventh annual ACM symposium on Theory of computing, 2015, pp. 21-30.

Rudolph Emil Kalman, A new approach to linear filtering and prediction problems.

References iif

Daniel A Spielman and Nikhil Srivastava, Graph sparsification by effective resistances, Proceedings of the fortieth annual ACM symposium on Theory of computing, 2008, pp. 563-568.
David P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor. Comput. Sci. 10 (2014), no. 1-2, 1-157.

