The Complexity of Dynamic Least-Squares Regression

Shunhua Jiang* Binghui Peng* Omri Weinstein®
FOCS 2023

*Columbia University fColumbia University & Hebrew University

Least squares regression

e Problem: min ||Ax — b||2 .
x€R
e Applications in high-dimensional statistical inference, signal .
processing, machine learning, etc. z

Exact solution (Normal equation): x* = (AT A)"1ATh

— Time complexity: O(nd*“~1)
— Still too slow for many modern data-analysis applications.
- i lution: ||Ax — <1 in [J[Ax" —
e c-approximate solution: ||Ax — b2 < (1 +¢) Xr/rgﬁrgd IIAX" — bl|2 nl A

— "“Sketch and solve” paradigm [Wool14]
— Time complexity: O((nnz(A) + d*)log(1/e)) [CW17]

Dynamic least squares regression

e Problem: Dynamically maintain an e-approximate LSR solution

min [|ADx — p()||,, d 1
xERA

[y

under insertion or deletion of rows al) € R? and labels 5() € R.

_— . . A
— Goal: minimize amortized update time.
— In total n iterations, think of n = poly(d).

e Models dynamic data applications, e.g., continual ML.
e Incremental vs Fully dynamic

— Incremental: Only insertions of rows.

— Fully dynamic: Both insertions and deletions of rows.
e Oblivious updates vs Adaptive updates

— Oblivious updates: The sequence of updates are fixed in the beginning.

— Adaptive updates: The next update is generated based on the previous outputs.

Algorithms for dynamic least squares regression

e Exact solution: Update the normal equation x*() = (AT A())=1 AT p()) ysing
Woodbury identity. (Kalman filters [Kal60])
— Works for fully dynamic and adaptive updates.
— Time per update: O(d?).

e Online row sampling [CMP20]: Maintain an e-approximate solution by sampling
Umax(A(n))

Umin(A(O)) ’

— Works for incremental and oblivious updates.

O(d log r/€?) number of rows, where x :=

— Time per update: O(d?) (to compute sampling probability).

e Adaptive online row sampling [BHM "21]: Sample O(d?x log /%) number of
Umax(A(n))

Umin(A(O)) '

— Works for incremental and adaptive updates.

— Time per update: O(d?).

e Question: Can we achieve O(d) time per update / O(nd) total time?

rows, where K :=

Our results: Upper bound

Theorem (Upper bound). There is a dynamic data structure that maintains an
e-approximate LSR solution under oblivious incremental updates, with total time

O(nd + d®poly(e1)). The data structure can be made to work against adaptive
incremental updates with total time O(nd +d° poly(e_l)).

e When n>> d and € is a small constant, the amortized cost per iteration is O(d).

e The nd term is in fact nnz(A(™).

For adaptive incremental updates, we improve the number of sampled rows from
O(d?k log k/€?) [BHMT21] to O(d? log? k/€?) .

Question: Can we improve poly(¢ 1) dependence to log(e™) as the static case?

Question: Algorithms for fully dynamic updates?

Our results: Lower bound

Theorem (Lower bound). Under the OMv conjecture: [HKNS15]

e High vs low accuracy. Any dynamic data structure that maintains an
e = 1/ poly(n)-approximate LSR solution under oblivious incremental updates
requires Q(d?°(1)) amortized cost per iteration.

e Fully vs partially dynamic. If the data structure supports adaptive fully dynamic
updates, then maintaining ¢ = 0.01-approximate LSR solution requires Q(d?~°(1))
amortized cost per iteration.

— Impossible to improve poly(¢~1) dependence to log(e™1).

— Impossible to make the algorithm work for fully dynamic updates.

I. Upper Bound: Incremental
Oblivious Setting

Exact solution for dynamic LSR

e Notations: In the j-th iteration, given a new row al) € RY and L d 1
a new label 3() € R, solve for 2 !

min [|ADx — p0)|,.
x€Rd

e Exact solution (Kalman filters [Kal60]): Compute x*() = (AT A(D)=L AT p(),
~ Inverse (ADT ADY~1 = (AU-DT AU 4 5)0)T)1
—_—

M
— Woodbury identity: (M + a()a()T)=1 = p-1 — M~1a00 M2

(- TH T T

— Time per update: O(d?).

Subspace embedding and approximate LSR

e Subspace embedding (See survey [\Wool4]):
Given a matrix A € R™9 matrix S € RS*" is a d
(1 + €) subspace embedding for A if d

| SAx||2 = (1 £ €)||Ax]|2 for all x.

e Approx LSR: Let S be a (1 £ €) subspace embedding of matrix [A, b].

x':= arg min ||SAx — Sb||>
x€R4

is an O(e)-approximate solution for the original problem:

|Ax" — bll2 < (1 +¢€) I|IAx — b||2.

min
x€ERd

e Subspace embedding technique that is easy to dynamize: leverage score sampling

Leverage score sampling

e Leverage scores: For a fixed matrix A, the

—

leverage score of its i-th row a; is -t
AT A
7i(A) = a] (AT A) 14 al —

[¢5)

Diagonal entries of the projection matrix A(AT A)~tAT.

e Measures how important the row a; is for the row space of A.

— If 7;(A) = 1: removing row i will decrease the rank of A by 1.
— If all rows are the same, they all have 7;(A) = d/n.

e Main properties: (i) 0 < 7;(A) <1. (ii) >, 7i(A) =d.

e Leverage score sampling: Sample the i-th row with probability p; = 7;(A)/€>.
Let Dj; = 1/,/p; if the i-th row is sampled, and 0 otherwise. Then with high
probability D is a (1 & €) subspace embedding for A.

e In expectation sample >.7_; p; = O(d/€?) rows.

Online leverage score sampling |]

e Online leverage scores:

_ f e A=Tn=1l ((f —43 AG=DHT IGSY |:|
7= (aD)T((AT=D) T Al=1))=1,5() (@7 (())

o®

e Overestimates: 7; > 7; since (AU=D)TA(=1) < (A(M)T Aln),
e Online leverage score sampling: When the /-th row arrives, sample it with
probability p; = ?,-/62. Let D;j = 1/./pj if the i-th row is sampled, and 0
otherwise. Then whp D is a (1 + ¢) subspace embedding for A().
e Sum of online leverage scores: > ! ; 7; < dlog(dk), where k := %.
— Fact: logdet(M + aa') > logdet(M) +a' M~1a.
— Apply this fact to the rows:
n
log det((A) TAM) > logdet((A""D)TAD) 47, > ... > logdet((A?)TA®) + > "7,
i=1
e In expectation sample >_7 ; p; = O(d log(k)/€2) rows. 9

Algorithm for oblivious updates

e Algorithm: We maintain a subsampled matrix A = DA In each iteration:

— When a() arrives, compute 7; = a)T . (ATA)"L. a0). @

— Flip a coin with probability p; = 7;/€?:
+ If 1: Add a()/,/p; as a new row to A. Update (AT A)~! and solution. @
% If 0: Ignore al). Output the same solution.

e Update time (2):

One update takes O(d?) time by using Woodbury identity.
The total number of updates is Y7, 7/€2 = O(d log(r)/€2).
Total time is O(d3 log(k)/€?).

Amortized cost is d°(1) when n>> d.

10

Computing leverage scores more efficiently

e Recall: We want to compute 7; = a)T(ATA)~2al) @ in each iteration.
Direct computation takes O(d?) time in [CMP20].
e Johnson-Lindenstrauss lemma: There exists JL matrix J that compresses
dimension from d to O(log n) and guarantees || Jx||3 ~.01 ||x||3 for fixed n vectors.
ea -(ATA)L.a=||AATA)L.a|3. [SS08].
e The algorithm also maintains J - A(AT A)~L.
* We have 7i = |AATA) - aD|3 ~o01 |JA(ATA) - a3

A(ATA)1 |:|

a®

~
~

|| TS H

ol 2

2

e This estimate can be computed in O(d log n) time.
= Total time is O(nd log n). 1

Algorithm for oblivious updates

Theorem (Upper bound in oblivious setting). There is a dynamic data structure
that maintains an e-approximate LSR solution under oblivious incremental updates,
with total time O(nd log n+ d®poly(e™1)).

12

Il. Upper Bound: Incremental
Adaptive Setting

Adaptive updates

e Adaptive updates are inherent in many iterative algorithms.
e To make our algorithm work against adaptive updates:
e Make JL trick work against adaptive updates.

— Make the JL estimate an over-estimate.
— Renew the JL sketch whenever a row is sampled.

e Make online leverage score sampling work against adaptive updates.

13

Proof of oblivious leverage score sampling

e Leverage score sampling: Sample the i-th row with probability p; = 7;(A)/¢2.
Let D;; = 1/\/[7, if the /-th row is sampled, and 0 otherwise. Then whp D is a
(1 + €) subspace embedding for A.

e Matrix Chernoff bound: Given independently random PSD matrices
X, Xp ER*Y st X; < R- 1. Let W =E[>.7_, X;]. Then

n
Pr[)\min(z Xi) < (L =€) Amin(W)] < d- 2_62)""1"(‘/‘/)/"?7

i=1
Pr[)\max ZX 1 + E))\maX(W)] S d . 2—E2>\maX(W)/R.
G wp. p

otherwise
Apply Matrix Chernoff bound to scaled version: X; = W~1/2X;W~1/2, 14

e Proof of leverage score sampling: Define X; :=

o T =

Adaptive online leverage score sampling

e Adaptive Matrix Chernoff bound. Given adaptive random PSD matrices
X, Xg €ERY st X; < R- 1. Let W =" E[Xi|Xq, -, X;_1]. Then we
have that for any

Pr[)‘min(zxi) <(1—¢€)pand Apin(W) >] < d- 2—€u/R
i=1
Pr[/\max(ZX 1 + 6) and)\max(W) <] <d- 2762 /R

W is a random varlable.

Cannot use scaled version X; = W~1/2X;W~1/2 anymore!
e By “guessing” the matrix W, and use a union bound over all “guesses”, we can
prove e-approximation when p; = C - 7;/¢?, where C = O(d?log(x)).

Using scalar concentration bounds, only lose a factor of C = O(d log()).
15

Adaptive online leverage score sampling

Lemma (Adaptive online leverage score sampling)
Let a), ... al" pe a sequence of adaptive updates. Sample the i-th row with

probability p; = C - 7;/e2, where C = O(d log()). Let Djj = 1//pi if the i-th row is
sampled, and O otherwise. Then whp D is a (1 & €) subspace embedding for A.

Proof ideas of [BHM™21]

e Instead of proving DA =, A, prove the scalar case that ||DAv||2 =~ ||Av||2
e Need to prove this for all vector v's in an e-net of size (r/€)9(9).

o Need § < (E/H)a(d) to use union bound.
= Lose a factor of dlog(x) in log .

16

Proof ideas of |] (continued)

e Define x; 1= (D,2, -1)- VTa(i)(a(i))TV-

Goal is to prove | Y7 x| <e-

e Use concentration bound for scalar adaptive sequences:
Freedman’s inequality (simplified for talk). Let x1,--- ,x, € R be an adaptive
sequence such that E[x; | x1,--- ,x;—1] =0, and |x;] < R. Then for any p,

Pr(| Zx,-[>] < e MR,
i=1

e Would like to set =€ - . However, is a random variable!
e [BHM™21]: Use omin < < Omax. = lose a factor of xk = Imax,

17

Better dependence on x

Idea: “Guess’ the value of

Build an e-net of the line segment [0 min, Omax]-

For any s in the e-net (s is a guess of), define a truncated sequence
Xs,1y" "y Xs,n-

x; if <s,
Xs,i =

)

0 otherwise.

Now can prove | Y27 xsi| < €- 52 by setting y1 = € - s°.

Since the size of the e-net is o x, we only lose another additive log(x) factor.

18

Algorithm for adaptive updates

Theorem (Upper bound in adaptive setting). There is a dynamic data structure
that maintains an e-approximate LSR solution under adaptive incremental updates,
with total time O(nd log n+ d° poly(e~!) log).

19

I1l. Lower Bounds

Conditional lower bounds

Theorem (Lower bound). Under the OMv conjecture:

e High vs low accuracy. Any dynamic data structure that maintains an
e = 1/ poly(n)-approximate LSR solution under oblivious incremental updates
requires Q(d?~°(1)) amortized cost per iteration.

e Fully vs partially dynamic. If the data structure supports adaptive fully dynamic
updates, then maintaining 0.01-approximate LSR solution requires Q(dzf"(l))
amortized cost per iteration.

20

OMv conjecture

OMv conjecture. [HKNS15] In the online matrix vector multiplication (OMv)
problem, initially a matrix M € {0,1}9%9 is given, then a sequence of vectors

v (2 . yld) {0, l}d are revealed one by one, and the algorithm needs to
output M - v() in the i-th round. The conjecture states that there is no algorithm for
OMv with poly(d) preprocessing time, and O(d2~€) amortized query time.

d M

d 1)) ()
Offline: d“. Online: d3. v v

Only way to speed up matrix vector multiplication is batching.

A unified approach to prove conditional lower bound for dynamic problems.

Also holds when there are n = poly(d) queries. 21

Theorem (Lower bound). Under the OMv conjecture:
e High vs low accuracy. Any dynamic data structure that maintains an
e = 1/ poly(n)-approximate LSR solution under oblivious incremental updates
requires Q(d?~°(1)) amortized cost per iteration. (D)
e Fully vs partially dynamic. If the data structure supports adaptive fully dynamic
updates, then maintaining 0.01-approximate LSR solution requires Q(d2_°(1))

amortized cost per iteration. Q)

- 1/ poly(n)-
‘ OMv conjecture }—» O(1/poly(d))-approx . / poly(n)-approx
real-valued OMv incremental LSR (D)
O(1/ poly(d))-approx (1/3,1/ poly(d))-approx 0.01-approx fully
online projection online projection dynamic LSR

Hardness amplification 22

1/ poly(n)-approximate incremental LSR

O(1/ poly(d))-approx 1/ poly(n)-approx

‘ OMv conjecture)
real-valued OMv incremental LSR (D)

O(1/ poly(d))-approx OMv:
e Matrix M € R9*9 has constant eigenvalues.

e Query vectors all have unit norm.
e Allow O(1/ poly(d)) additive error in output: ||y() — M- v(D|, < O(1/ poly(d))

Proof:

e Assume we have a 1/(nd1%)-approx incremental LSR oracle.

e Construct LSR instance: Initially set (AT A©))=1 = M. Add row a() = %.

Since ||a?)||5 is small, we always maintain (AT AD)~1 ~ M.
By Woodbury identity, x() = x(=1) 4+ M. a(t) 4 O(m}w).

Output y() = (x() — x(i=1)) . nd® for OMv problem.

23

0.01-approximate fully dynamic LSR

O(1/ poly(d))-approx (1/3,1/ poly(d))-approx 0.01-approx fully
online projection online projection dynamic LSR (2

Hardness amplification

Proof ideas:

e Assume we have a 0.01-approx fully dynamic LSR oracle.
e Fully dynamic LSR oracle is more powerful:
— Again add row a() oc v() in j-th round.
— Delete the row al?) after this round!
e Similar as before, compute output using x() — x(©) = pmy() +0.01.

e Need to reduce from a hardness result with constant error.

24

Hardness amplification

e Online projection problem: Initially a projection matrix UUT € R%? is given,
then a sequence of unit vectors v(1), v(2) ... (d) ¢ RY are revealed one by one.
Let vl(j) = UUT - v(). The algorithm needs to output:

- O(1/ poly(d))-approx solution ||y() —)H2 < O(

| poly(7))
- (1/3,1/ poly(d))-approx solution [|y{) — vU N2 < HVU)Hz + O(poly(7)-
e Hardness amplification: No O(d?~¢) time algorithm for O(1/ poly(d))-approx

online projection problem. == No O(d?¢) time algorithm for
(1/3,1/ poly(d))-approx online projection problem.
e Proof: Given an online projection instance UU' and v oo v We have two
O(1/3,1/ poly(d))-approximate projection oracles:
— Py that outputs y() s.t. [[y() — vU)H2 <L vl + Olosia):
- Py, that outputs w() sit. ||w() — VULHZ <1 ”VU) ||2 + O(poly(d))
— Goal: Use poly log d oracle calls to compute y(): ||y() ||2 < O(

poly(d)) =

Hardness amplification (continued)

UL;\

v—w—w
vV —w

<Y

First attempt:

Call the projection oracle Py, (v) to compute w ~ vy, .

Remove the component in U, : compute v — w.

Repeat for O(log d) times: the component in U, is at most 1/ poly(d).

Problem: Introduce error in the component in U.
26

Hardness amplification (continued)

UJ_ A

Final algorithm:

e We've shown: How to compute y = vy s.t. y has nearly zero component in U] .

Use this algorithm to compute s.t. its component in U is nearly zero.

Again remove the component in U, : compute v — w*.
This time we don’t introduce extra error in U.

Repeat for O(log d) times: reduce 1/3 relative error to 1/ poly(d) additive error.
27

Summary and Open problems

e c-approximate dynamic least squares regression
e Upper bound. O(d) amortized time when (1) € is constant, (2) incremental
updates, (3) either oblivious or adaptive.
e Lower bounds. Under the OMv conjecture:
— High vs low accuracy. If € = 1/ poly(n), need Q(d?°(1)) amortized time.
— Fully vs partially dynamic. If updates are fully dynamic and adaptive, then
even constant approximation needs Q(d?~°()) amortized time.

Open problems:

e Improve the O(d®) term in the total time of adaptive incremental setting?
e Dynamic ¢, regression?
e Lower bound in fully dynamic and oblivious setting?
e Other reductions from “(1/3,1/d%)-approximate online projection” ?
Thank you! ze

References i

[Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep
Silwal, and Samson Zhou, Adversarial robustness of streaming algorithms through

importance sampling, Advances in Neural Information Processing Systems 34
(2021), 3544-3557.

[Michael B Cohen, Cameron Musco, and Jakub Pachocki, Online row sampling,
Theory of Computing 16 (2020), no. 1, 1-25.

[1 Kenneth L. Clarkson and David P. Woodruff, Low-rank approximation and
regression in input sparsity time, J. ACM 63 (2017), no. 6.

29

References ii

[4 Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan, Sampling algorithms
for 12 regression and applications, Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm (USA), SODA '06, Society for
Industrial and Applied Mathematics, 2006, p. 1127-1136.

[Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak, Unifying and strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture, Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, 2015, pp. 21-30.

[4 Rudolph Emil Kalman, A new approach to linear filtering and prediction problems.

30

References iii

[d Daniel A Spielman and Nikhil Srivastava, Graph sparsification by effective
resistances, Proceedings of the fortieth annual ACM symposium on Theory of
computing, 2008, pp. 563-568.

[§ David P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends
Theor. Comput. Sci. 10 (2014), no. 1-2, 1-157.

31

	black I. Upper Bound: Incremental Oblivious Setting
	black II. Upper Bound: Incremental Adaptive Setting
	black III. Lower Bounds

