
The Complexity of Dynamic Least-Squares Regression

Shunhua Jiang∗ Binghui Peng∗ Omri Weinstein†

FOCS 2023

∗Columbia University †Columbia University & Hebrew University

Least squares regression

• Problem: min
x∈Rd

‖Ax − b‖2
• Applications in high-dimensional statistical inference, signal

processing, machine learning, etc.

• Exact solution (Normal equation): x∗ = (A>A)−1A>b

– Time complexity: O(ndω−1)

– Still too slow for many modern data-analysis applications.

• ε-approximate solution: ‖Ax − b‖2 ≤ (1 + ε) min
x ′∈Rd

‖Ax ′ − b‖2
– “Sketch and solve” paradigm [Woo14]

– Time complexity: Õ
(
(nnz(A) + dω) log(1/ε)

)
[CW17]

d

n A

1

Dynamic least squares regression

• Problem: Dynamically maintain an ε-approximate LSR solution

min
x∈Rd

‖A(i)x − b(i)‖2,

under insertion or deletion of rows a(i) ∈ Rd and labels β(i) ∈ R.

– Goal: minimize amortized update time.

– In total n iterations, think of n = poly(d).

• Models dynamic data applications, e.g., continual ML.

d
1
2

A b

1

· · · · · ·
n

• Incremental vs Fully dynamic

– Incremental: Only insertions of rows.

– Fully dynamic: Both insertions and deletions of rows.

• Oblivious updates vs Adaptive updates

– Oblivious updates: The sequence of updates are fixed in the beginning.

– Adaptive updates: The next update is generated based on the previous outputs. 2

Algorithms for dynamic least squares regression

• Exact solution: Update the normal equation x∗,(i) = (A(i)>A(i))−1A(i)>b(i) using

Woodbury identity. (Kalman filters [Kal60])

– Works for fully dynamic and adaptive updates.

– Time per update: O(d2).

• Online row sampling [CMP20]: Maintain an ε-approximate solution by sampling

O(d log κ/ε2) number of rows, where κ := σmax(A(n))

σmin(A(0))
.

– Works for incremental and oblivious updates.

– Time per update: O(d2) (to compute sampling probability).

• Adaptive online row sampling [BHM+21]: Sample O(d2κ log κ/ε2) number of

rows, where κ := σmax(A(n))

σmin(A(0))
.

– Works for incremental and adaptive updates.

– Time per update: O(d2).

• Question: Can we achieve O(d) time per update / O(nd) total time?
3

Our results: Upper bound

Theorem (Upper bound). There is a dynamic data structure that maintains an

ε-approximate LSR solution under oblivious incremental updates, with total time

Õ
(
nd + d3 poly(ε−1)

)
. The data structure can be made to work against adaptive

incremental updates with total time Õ
(
nd + d5 poly(ε−1)

)
.

• When n� d and ε is a small constant, the amortized cost per iteration is Õ(d).

• The nd term is in fact nnz(A(n)).

• For adaptive incremental updates, we improve the number of sampled rows from

O(d2κ log κ/ε2) [BHM+21] to O(d2 log2 κ/ε2) .

• Question: Can we improve poly(ε−1) dependence to log(ε−1) as the static case?

• Question: Algorithms for fully dynamic updates?

4

Our results: Lower bound

Theorem (Lower bound). Under the OMv conjecture: [HKNS15]

• High vs low accuracy. Any dynamic data structure that maintains an

ε = 1/ poly(n)-approximate LSR solution under oblivious incremental updates

requires Ω(d2−o(1)) amortized cost per iteration.

• Fully vs partially dynamic. If the data structure supports adaptive fully dynamic

updates, then maintaining ε = 0.01-approximate LSR solution requires Ω(d2−o(1))

amortized cost per iteration.

– Impossible to improve poly(ε−1) dependence to log(ε−1).

– Impossible to make the algorithm work for fully dynamic updates.

5

I. Upper Bound: Incremental

Oblivious Setting

Exact solution for dynamic LSR

• Notations: In the i-th iteration, given a new row a(i) ∈ Rd and

a new label β(i) ∈ R, solve for

min
x∈Rd

‖A(i)x − b(i)‖2.

d
1
2

A b

1

· · · · · ·
n

• Exact solution (Kalman filters [Kal60]): Compute x∗,(i) = (A(i)>A(i))−1A(i)>b(i).

– Inverse (A(i)>A(i))−1 = (A(i−1)>A(i−1)
︸ ︷︷ ︸

M

+a(i)a(i)>)−1.

– Woodbury identity: (M + a(i)a(i)>)−1 = M−1 − M−1a(i)a(i)>M−1

1+a(i)>a(i)
.

 M

+

a
 [a>

]
−1

=

 M−1

− 1

1 + a>a
·

 M−1

a
 [a>

] M−1

– Time per update: O(d2).

6

Subspace embedding and approximate LSR

• Subspace embedding (See survey [Woo14]):

Given a matrix A ∈ Rn×d , matrix S ∈ Rs×n is a

(1± ε) subspace embedding for A if

‖SAx‖2 = (1± ε)‖Ax‖2 for all x .

d

nASA Ss

d

=

• Approx LSR: Let S be a (1± ε) subspace embedding of matrix [A, b].

x ′ := arg min
x∈Rd

‖SAx − Sb‖2

is an O(ε)-approximate solution for the original problem:

‖Ax ′ − b‖2 ≤ (1 + ε) min
x∈Rd

‖Ax − b‖2.

• Subspace embedding technique that is easy to dynamize: leverage score sampling

7

Leverage score sampling

• Leverage scores: For a fixed matrix A, the

leverage score of its i-th row ai is

τi (A) := a>i (A>A)−1ai a>i

A>

n

d

A

ai

()−1

Diagonal entries of the projection matrix A(A>A)−1A>.

• Measures how important the row ai is for the row space of A.

– If τi (A) = 1: removing row i will decrease the rank of A by 1.

– If all rows are the same, they all have τi (A) = d/n.

• Main properties: (i) 0 ≤ τi (A) ≤ 1. (ii)
∑n

i=1 τi (A) = d .

• Leverage score sampling: Sample the i-th row with probability pi = τi (A)/ε2.

Let Dii = 1/
√
pi if the i-th row is sampled, and 0 otherwise. Then with high

probability D is a (1± ε) subspace embedding for A.

• In expectation sample
∑n

i=1 pi = O(d/ε2) rows.
8

Online leverage score sampling [CMP20]

• Online leverage scores:

τ i := (a(i))>((A(i−1))>A(i−1))−1a(i)
(a(i))>

(A(i−1))> A(i−1)

a(i)

()−1

• Overestimates: τ i ≥ τi since (A(i−1))>A(i−1) � (A(n))>A(n).

• Online leverage score sampling: When the i-th row arrives, sample it with

probability pi = τ i/ε
2. Let Dii = 1/

√
pi if the i-th row is sampled, and 0

otherwise. Then whp D is a (1± ε) subspace embedding for A(i).

• Sum of online leverage scores:
∑n

i=1 τ i ≤ d log(dκ), where κ := σmax(A(n))

σmin(A(0))
.

– Fact: log det(M + aa>) ≥ log det(M) + a>M−1a.

– Apply this fact to the rows:

log det((A(n))>A(n)) ≥ log det((A(n−1))>A(n−1)) + τn ≥ · · · ≥ log det((A(0))>A(0)) +
n∑

i=1

τ i

• In expectation sample
∑n

i=1 pi = Õ(d log(κ)/ε2) rows. 9

Algorithm for oblivious updates

• Algorithm: We maintain a subsampled matrix Ã = DA(i). In each iteration:

– When a(i) arrives, compute τ i = a(i)> · (Ã>Ã)−1 · a(i). 1©
– Flip a coin with probability pi = τ i/ε

2:

∗ If 1: Add a(i)/
√
pi as a new row to Ã. Update (Ã>Ã)−1 and solution. 2©

∗ If 0: Ignore a(i). Output the same solution.

• Update time 2©:

– One update takes O(d2) time by using Woodbury identity.

– The total number of updates is
∑n

i=1 τ i/ε
2 = Õ(d log(κ)/ε2).

– Total time is Õ(d3 log(κ)/ε2).

– Amortized cost is do(1) when n� d .

10

Computing leverage scores more efficiently

• Recall: We want to compute τ i = a(i)>(Ã>Ã)−1a(i) 1© in each iteration.

Direct computation takes O(d2) time in [CMP20].

• Johnson-Lindenstrauss lemma: There exists JL matrix J that compresses

dimension from d to O(log n) and guarantees ‖Jx‖22 ≈0.01 ‖x‖22 for fixed n vectors.

• a> · (A>A)−1 · a = ‖A(A>A)−1 · a‖22. [SS08].

• The algorithm also maintains J · Ã(Ã>Ã)−1.

• We have τ i = ‖Ã(Ã>Ã)−1 · a(i)‖22 ≈0.01 ‖JÃ(Ã>Ã)−1 · a(i)‖22
∥∥∥∥∥

∥∥∥∥∥
2

∥∥∥∥∥

∥∥∥∥∥
2

≈J Ã(Ã>Ã)−1

a(i)

Ã(Ã>Ã)−1

a(i)

• This estimate can be computed in O(d log n) time.

=⇒ Total time is O(nd log n).
11

Algorithm for oblivious updates

Theorem (Upper bound in oblivious setting). There is a dynamic data structure

that maintains an ε-approximate LSR solution under oblivious incremental updates,

with total time O
(
nd log n + d3 poly(ε−1)

)
.

12

II. Upper Bound: Incremental

Adaptive Setting

Adaptive updates

• Adaptive updates are inherent in many iterative algorithms.

• To make our algorithm work against adaptive updates:

• Make JL trick work against adaptive updates.

– Make the JL estimate an over-estimate.

– Renew the JL sketch whenever a row is sampled.

• Make online leverage score sampling work against adaptive updates.

13

Proof of oblivious leverage score sampling

• Leverage score sampling: Sample the i-th row with probability pi = τi (A)/ε2.

Let Dii = 1/
√
pi if the i-th row is sampled, and 0 otherwise. Then whp D is a

(1± ε) subspace embedding for A.

• Matrix Chernoff bound: Given independently random PSD matrices

X1, · · · ,Xn ∈ Rd×d s.t. Xi � R · I . Let W = E[
∑n

i=1 Xi]. Then

Pr[λmin(
n∑

i=1

Xi) ≤ (1− ε)λmin(W)] ≤ d · 2−ε2λmin(W)/R ,

Pr[λmax(
n∑

i=1

Xi) ≥ (1 + ε)λmax(W)] ≤ d · 2−ε2λmax(W)/R .

• Proof of leverage score sampling: Define Xi :=

1
pi
· a(i)(a(i))> w.p. pi

0 otherwise
.

Apply Matrix Chernoff bound to scaled version: X i = W−1/2XiW
−1/2. 14

Adaptive online leverage score sampling

• Adaptive Matrix Chernoff bound. Given adaptive random PSD matrices

X1, · · · ,Xn ∈ Rd×d s.t. Xi � R · I . Let W =
∑n

i=1 E[Xi |X1, · · · ,Xi−1]. Then we

have that for any µ:

Pr[λmin(
n∑

i=1

Xi) ≤ (1− ε)µ and λmin(W) ≥ µ] ≤ d · 2−ε2µ/R ,

Pr[λmax(
n∑

i=1

Xi) ≥ (1 + ε)µ and λmax(W) ≤ µ] ≤ d · 2−ε2µ/R .

• W is a random variable.

• Cannot use scaled version X i = W−1/2XiW
−1/2 anymore!

• By “guessing” the matrix W , and use a union bound over all “guesses”, we can

prove ε-approximation when pi = C · τ i/ε2, where C = Õ(d2 log(κ)).

• Using scalar concentration bounds, only lose a factor of C = Õ(d log(κ)).
15

Adaptive online leverage score sampling

Lemma (Adaptive online leverage score sampling)
Let a(1), · · · , a(n) be a sequence of adaptive updates. Sample the i-th row with

probability pi = C · τ i/ε2, where C = Õ(d log(κ)). Let Dii = 1/
√
pi if the i-th row is

sampled, and 0 otherwise. Then whp D is a (1± ε) subspace embedding for A.

Proof ideas of [BHM+21]

• Instead of proving DA ≈ε A, prove the scalar case that ‖DAv‖2 ≈ε ‖Av‖2
• Need to prove this for all vector v ’s in an ε-net of size (κ/ε)Õ(d).

• Need δ < (ε/κ)Õ(d) to use union bound.

=⇒ Lose a factor of d log(κ) in log 1
δ .

16

Proof ideas of [BHM+21] (continued)

• Define xi := (D2
ii − 1) · v>a(i)(a(i))>v .

• Goal is to prove |∑n
i=1 xi | ≤ ε · ‖A(n)v‖22.

• Use concentration bound for scalar adaptive sequences:

Freedman’s inequality (simplified for talk). Let x1, · · · , xn ∈ R be an adaptive

sequence such that E[xi | x1, · · · , xi−1] = 0, and |xi | ≤ R. Then for any µ,

Pr[|
n∑

i=1

xi | ≥ µ] ≤ e−µ/R .

• Would like to set µ = ε · ‖A(n)v‖22. However, ‖A(n)v‖22 is a random variable!

• [BHM+21]: Use σmin ≤ ‖A(n)v‖2 ≤ σmax. =⇒ lose a factor of κ = σmax
σmin

.

17

Better dependence on κ

• Idea: “Guess” the value of ‖A(n)v‖2.

• Build an ε-net of the line segment [σmin, σmax].

• For any s in the ε-net (s is a guess of ‖A(n)v‖2), define a truncated sequence

xs,1, · · · , xs,n:

xs,i :=

xi if ‖A(i)v‖2 ≤ s,

0 otherwise.

• Now can prove |∑n
i=1 xs,i | ≤ ε · s2 by setting µ = ε · s2.

• Since the size of the ε-net is ∝ κ, we only lose another additive log(κ) factor.

18

Algorithm for adaptive updates

Theorem (Upper bound in adaptive setting). There is a dynamic data structure

that maintains an ε-approximate LSR solution under adaptive incremental updates,

with total time O
(
nd log n + d5 poly(ε−1) log κ

)
.

19

III. Lower Bounds

Conditional lower bounds

Theorem (Lower bound). Under the OMv conjecture:

• High vs low accuracy. Any dynamic data structure that maintains an

ε = 1/ poly(n)-approximate LSR solution under oblivious incremental updates

requires Ω(d2−o(1)) amortized cost per iteration.

• Fully vs partially dynamic. If the data structure supports adaptive fully dynamic

updates, then maintaining 0.01-approximate LSR solution requires Ω(d2−o(1))

amortized cost per iteration.

20

OMv conjecture

OMv conjecture. [HKNS15] In the online matrix vector multiplication (OMv)

problem, initially a matrix M ∈ {0, 1}d×d is given, then a sequence of vectors

v (1), v (2), · · · , v (d) ∈ {0, 1}d are revealed one by one, and the algorithm needs to

output M · v (i) in the i-th round. The conjecture states that there is no algorithm for

OMv with poly(d) preprocessing time, and O(d 2−ε) amortized query time.

d

d M

v (1) v (2)

· · ·

v (d)• Offline: dω. Online: d3.

• Only way to speed up matrix vector multiplication is batching.

• A unified approach to prove conditional lower bound for dynamic problems.

• Also holds when there are n = poly(d) queries. 21

Roadmap

Theorem (Lower bound). Under the OMv conjecture:

• High vs low accuracy. Any dynamic data structure that maintains an

ε = 1/ poly(n)-approximate LSR solution under oblivious incremental updates

requires Ω(d2−o(1)) amortized cost per iteration. 1©
• Fully vs partially dynamic. If the data structure supports adaptive fully dynamic

updates, then maintaining 0.01-approximate LSR solution requires Ω(d2−o(1))

amortized cost per iteration. 2©

OMv conjecture
O(1/ poly(d))-approx

real-valued OMv

O(1/ poly(d))-approx

online projection

(1/3, 1/ poly(d))-approx

online projection

0.01-approx fully

dynamic LSR 2©

1/ poly(n)-approx

incremental LSR 1©

Hardness amplification 22

1/ poly(n)-approximate incremental LSR

OMv conjecture
O(1/ poly(d))-approx

real-valued OMv

1/ poly(n)-approx

incremental LSR 1©

O(1/ poly(d))-approx OMv:

• Matrix M ∈ Rd×d has constant eigenvalues.

• Query vectors all have unit norm.

• Allow O(1/ poly(d)) additive error in output: ‖y (i) −M · v (i)‖2 ≤ O(1/ poly(d))

Proof:

• Assume we have a 1/(nd10)-approx incremental LSR oracle.

• Construct LSR instance: Initially set (A(0)>A(0))−1 = M. Add row a(i) = v (i)

nd5 .

• Since ‖a(i)‖2 is small, we always maintain (A(i)>A(i))−1 ≈ M.

• By Woodbury identity, x (i) = x (i−1) + M · a(t) ± O(1
nd10).

• Output y (i) = (x (i) − x (i−1)) · nd5 for OMv problem.
23

0.01-approximate fully dynamic LSR

O(1/ poly(d))-approx

online projection

(1/3, 1/ poly(d))-approx

online projection

0.01-approx fully

dynamic LSR 2©
Hardness amplification

Proof ideas:

• Assume we have a 0.01-approx fully dynamic LSR oracle.

• Fully dynamic LSR oracle is more powerful:

– Again add row a(i) ∝ v (i) in i-th round.

– Delete the row a(i) after this round!

• Similar as before, compute output using x (i) − x (0) = Mv (i) ± 0.01.

• Need to reduce from a hardness result with constant error.

24

Hardness amplification

• Online projection problem: Initially a projection matrix UU> ∈ Rd×d is given,

then a sequence of unit vectors v (1), v (2), · · · , v (d) ∈ Rd are revealed one by one.

Let v
(i)
U = UU> · v (i). The algorithm needs to output:

– O(1/ poly(d))-approx solution ‖y (i) − v
(i)
U ‖2 ≤ O(1

poly(d)).

– (1/3, 1/ poly(d))-approx solution ‖y (i) − v
(i)
U ‖2 ≤ 1

3 · ‖v
(i)
U ‖2 + O(1

poly(d)).

• Hardness amplification: No O(d2−ε) time algorithm for O(1/ poly(d))-approx

online projection problem. =⇒ No O(d2−ε) time algorithm for

(1/3, 1/ poly(d))-approx online projection problem.

• Proof: Given an online projection instance UU> and v (1), · · · , v (n). We have two

O(1/3, 1/ poly(d))-approximate projection oracles:

– PU that outputs y (i) s.t. ‖y (i) − v
(i)
U ‖2 ≤ 1

3 · ‖v
(i)
U ‖2 + O(1

poly(d)).

– PU⊥ that outputs w (i) s.t. ‖w (i) − v
(i)
U⊥
‖2 ≤ 1

3 · ‖v
(i)
U⊥
‖2 + O(1

poly(d)).

– Goal: Use poly log d oracle calls to compute y (i): ‖y (i) − v
(i)
U ‖2 ≤ O(1

poly(d)). 25

Hardness amplification (continued)

U⊥

U

vvU⊥
vU

w

v − ww ′
v − w − w ′

First attempt:

• Call the projection oracle PU⊥(v) to compute w ≈ vU⊥ .

• Remove the component in U⊥: compute v − w .

• Repeat for O(log d) times: the component in U⊥ is at most 1/ poly(d).

• Problem: Introduce error in the component in U.

26

Hardness amplification (continued)

U⊥

U

vvU⊥
vU

ww∗

v − w∗

Final algorithm:

• We’ve shown: How to compute y ≈ vU s.t. y has nearly zero component in U⊥ .

• Use this algorithm to compute w∗ s.t. its component in U is nearly zero.

• Again remove the component in U⊥: compute v − w∗.

• This time we don’t introduce extra error in U.

• Repeat for O(log d) times: reduce 1/3 relative error to 1/ poly(d) additive error.
27

Summary and Open problems

• ε-approximate dynamic least squares regression

• Upper bound. O(d) amortized time when (1) ε is constant, (2) incremental

updates, (3) either oblivious or adaptive.

• Lower bounds. Under the OMv conjecture:

– High vs low accuracy. If ε = 1/ poly(n), need Ω(d2−o(1)) amortized time.

– Fully vs partially dynamic. If updates are fully dynamic and adaptive, then

even constant approximation needs Ω(d2−o(1)) amortized time.

Open problems:

• Improve the O(d5) term in the total time of adaptive incremental setting?

• Dynamic `p regression?

• Lower bound in fully dynamic and oblivious setting?

• Other reductions from “(1/3, 1/d3)-approximate online projection”?

Thank you! 28

References i

Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep

Silwal, and Samson Zhou, Adversarial robustness of streaming algorithms through

importance sampling, Advances in Neural Information Processing Systems 34

(2021), 3544–3557.

Michael B Cohen, Cameron Musco, and Jakub Pachocki, Online row sampling,

Theory of Computing 16 (2020), no. 1, 1–25.

Kenneth L. Clarkson and David P. Woodruff, Low-rank approximation and

regression in input sparsity time, J. ACM 63 (2017), no. 6.

29

References ii

Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan, Sampling algorithms

for l2 regression and applications, Proceedings of the Seventeenth Annual

ACM-SIAM Symposium on Discrete Algorithm (USA), SODA ’06, Society for

Industrial and Applied Mathematics, 2006, p. 1127–1136.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak, Unifying and strengthening hardness for dynamic problems via the

online matrix-vector multiplication conjecture, Proceedings of the forty-seventh

annual ACM symposium on Theory of computing, 2015, pp. 21–30.

Rudolph Emil Kalman, A new approach to linear filtering and prediction problems.

30

References iii

Daniel A Spielman and Nikhil Srivastava, Graph sparsification by effective

resistances, Proceedings of the fortieth annual ACM symposium on Theory of

computing, 2008, pp. 563–568.

David P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends

Theor. Comput. Sci. 10 (2014), no. 1–2, 1–157.

31

	black I. Upper Bound: Incremental Oblivious Setting
	black II. Upper Bound: Incremental Adaptive Setting
	black III. Lower Bounds

