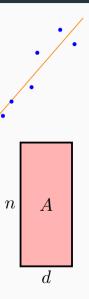
The Complexity of Dynamic Least-Squares Regression

Shunhua Jiang^{*} Binghui Peng^{*} Omri Weinstein[†] FOCS 2023

*Columbia University [†]Columbia University & Hebrew University

Least squares regression

- **Problem**: $\min_{x \in \mathbb{R}^d} \|Ax b\|_2$
- **Applications** in high-dimensional statistical inference, signal processing, machine learning, etc.
- Exact solution (Normal equation): $x^* = (A^{\top}A)^{-1}A^{\top}b$
 - Time complexity: $O(nd^{\omega-1})$
 - Still too slow for many modern data-analysis applications.
- ϵ -approximate solution: $||Ax b||_2 \le (1 + \epsilon) \min_{x' \in \mathbb{R}^d} ||Ax' b||_2$
 - "Sketch and solve" paradigm [Woo14]
 - Time complexity: $\widetilde{O}((\operatorname{nnz}(A) + d^{\omega})\log(1/\epsilon))$ [CW17]



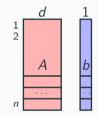
Dynamic least squares regression

• Problem: Dynamically maintain an *e*-approximate LSR solution

$$\min_{x\in\mathbb{R}^d}\|A^{(i)}x-b^{(i)}\|_2,$$

under insertion or deletion of rows $a^{(i)} \in \mathbb{R}^d$ and labels $\beta^{(i)} \in \mathbb{R}$.

- Goal: minimize amortized update time.
- In total *n* iterations, think of n = poly(d).
- Models dynamic data applications, e.g., continual ML.
- Incremental vs Fully dynamic
 - Incremental: Only insertions of rows.
 - Fully dynamic: Both insertions and deletions of rows.
- Oblivious updates vs Adaptive updates
 - Oblivious updates: The sequence of updates are fixed in the beginning.
 - Adaptive updates: The next update is generated based on the previous outputs.



Algorithms for dynamic least squares regression

- Exact solution: Update the normal equation x^{*,(i)} = (A^{(i)⊤}A⁽ⁱ⁾)⁻¹A^{(i)⊤}b⁽ⁱ⁾ using Woodbury identity. (Kalman filters [Kal60])
 - Works for fully dynamic and adaptive updates.
 - Time per update: $O(d^2)$.
- Online row sampling [CMP20]: Maintain an ϵ -approximate solution by sampling $O(d \log \kappa / \epsilon^2)$ number of rows, where $\kappa := \frac{\sigma_{\max}(A^{(n)})}{\sigma_{\min}(A^{(0)})}$.
 - Works for incremental and oblivious updates.
 - Time per update: $O(d^2)$ (to compute sampling probability).
- Adaptive online row sampling [BHM+21]: Sample $O(d^2 \kappa \log \kappa / \epsilon^2)$ number of rows, where $\kappa := \frac{\sigma_{\max}(A^{(n)})}{\sigma_{\min}(A^{(0)})}$.
 - Works for incremental and adaptive updates.
 - Time per update: $O(d^2)$.
- Question: Can we achieve O(d) time per update / O(nd) total time?

Theorem (Upper bound). There is a dynamic data structure that maintains an ϵ -approximate LSR solution under *oblivious incremental* updates, with total time $\widetilde{O}(nd + d^3 \operatorname{poly}(\epsilon^{-1}))$. The data structure can be made to work against *adaptive incremental* updates with total time $\widetilde{O}(nd + d^5 \operatorname{poly}(\epsilon^{-1}))$.

- When $n \gg d$ and ϵ is a small constant, the amortized cost per iteration is O(d).
- The *nd* term is in fact $nnz(A^{(n)})$.
- For *adaptive* incremental updates, we improve the number of sampled rows from $O(d^2 \kappa \log \kappa / \epsilon^2)$ [BHM⁺21] to $O(d^2 \log^2 \kappa / \epsilon^2)$.
- Question: Can we improve $poly(\epsilon^{-1})$ dependence to $log(\epsilon^{-1})$ as the static case?
- Question: Algorithms for fully dynamic updates?

Theorem (Lower bound). Under the OMv conjecture: [HKNS15]

- High vs low accuracy. Any dynamic data structure that maintains an $\epsilon = 1/\operatorname{poly}(n)$ -approximate LSR solution under *oblivious incremental* updates requires $\Omega(d^{2-o(1)})$ amortized cost per iteration.
- Fully vs partially dynamic. If the data structure supports adaptive fully dynamic updates, then maintaining $\epsilon = 0.01$ -approximate LSR solution requires $\Omega(d^{2-o(1)})$ amortized cost per iteration.
- Impossible to improve $poly(\epsilon^{-1})$ dependence to $log(\epsilon^{-1})$.
- Impossible to make the algorithm work for fully dynamic updates.

I. Upper Bound: Incremental Oblivious Setting

Exact solution for dynamic LSR

• Notations: In the *i*-th iteration, given a new row $a^{(i)} \in \mathbb{R}^d$ and a new label $\beta^{(i)} \in \mathbb{R}$, solve for

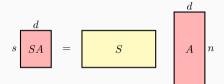
$$\min_{x\in\mathbb{R}^d}\|A^{(i)}x-b^{(i)}\|_2.$$

- Exact solution (Kalman filters [Kal60]): Compute $x^{*,(i)} = (A^{(i)\top}A^{(i)})^{-1}A^{(i)\top}b^{(i)}$. - Inverse $(A^{(i)\top}A^{(i)})^{-1} = (A^{(i-1)\top}A^{(i-1)} + a^{(i)}a^{(i)\top})^{-1}$. - Woodbury identity: $(M + a^{(i)}a^{(i)\top})^{-1} = M^{-1} - \frac{M^{-1}a^{(i)}a^{(i)\top}M^{-1}}{1+a^{(i)\top}a^{(i)}}$. $\left(\begin{bmatrix} M \end{bmatrix} + \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} a^{\top} \end{bmatrix} \right)^{-1} = \begin{bmatrix} M^{-1} \end{bmatrix} - \frac{1}{1+a^{\top}a} \cdot \begin{bmatrix} M^{-1} \end{bmatrix} \begin{bmatrix} a \end{bmatrix} \begin{bmatrix} a^{\top} \end{bmatrix} \begin{bmatrix} M^{-1} \end{bmatrix}$
 - Time per update: $O(d^2)$.

Subspace embedding and approximate LSR

 Subspace embedding (See survey [Woo14]): Given a matrix A ∈ ℝ^{n×d}, matrix S ∈ ℝ^{s×n} is a (1 ± ε) subspace embedding for A if

 $||SAx||_2 = (1 \pm \epsilon)||Ax||_2$ for all x.



• Approx LSR: Let S be a $(1 \pm \epsilon)$ subspace embedding of matrix [A, b].

$$x' := \arg\min_{x \in \mathbb{R}^d} \|SAx - Sb\|_2$$

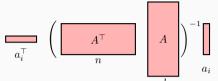
is an $O(\epsilon)$ -approximate solution for the original problem:

$$\|Ax' - b\|_2 \le (1 + \epsilon) \min_{x \in \mathbb{R}^d} \|Ax - b\|_2$$

• Subspace embedding technique that is easy to dynamize: leverage score sampling

Leverage score sampling

Leverage scores: For a fixed matrix A, the leverage score of its *i*-th row a_i is
 τ_i(A) := a_i^T(A^TA)⁻¹a_i



Diagonal entries of the projection matrix $A(A^{\top}A)^{-1}A^{\top}$.

- Measures how important the row a_i is for the row space of A.
 - If $\tau_i(A) = 1$: removing row *i* will decrease the rank of A by 1.

– If all rows are the same, they all have $\tau_i(A) = d/n$.

- Main properties: (i) $0 \le \tau_i(A) \le 1$. (ii) $\sum_{i=1}^n \tau_i(A) = d$.
- Leverage score sampling: Sample the *i*-th row with probability p_i = τ_i(A)/ε². Let D_{ii} = 1/√p_i if the *i*-th row is sampled, and 0 otherwise. Then with high probability D is a (1 ± ε) subspace embedding for A.
- In expectation sample $\sum_{i=1}^{n} p_i = O(d/\epsilon^2)$ rows.

Online leverage score sampling [CMP20]

• Online leverage scores:

$$\overline{\tau}_{i} := (a^{(i)})^{\top} ((A^{(i-1)})^{\top} A^{(i-1)})^{-1} a^{(i)} \qquad \qquad \boxed{(a^{(i)})^{\top}} \left((A^{(i-1)})^{\top} A^{(i-1)} \right) \left(a^{(i)} \right)^{\top} a^{(i)}$$

- Overestimates: $\overline{\tau}_i \geq \tau_i$ since $(A^{(i-1)})^\top A^{(i-1)} \preceq (A^{(n)})^\top A^{(n)}$.
- Online leverage score sampling: When the *i*-th row arrives, sample it with probability $p_i = \overline{\tau}_i / \epsilon^2$. Let $D_{ii} = 1/\sqrt{p_i}$ if the *i*-th row is sampled, and 0 otherwise. Then whp D is a $(1 \pm \epsilon)$ subspace embedding for $A^{(i)}$.
- Sum of online leverage scores: $\sum_{i=1}^{n} \overline{\tau}_i \leq d \log(d\kappa)$, where $\kappa := \frac{\sigma_{\max}(A^{(n)})}{\sigma_{\min}(A^{(0)})}$.
 - Fact: $\log \det(M + aa^{\top}) \ge \log \det(M) + a^{\top}M^{-1}a$.
 - Apply this fact to the rows:

 $\log \det((A^{(n)})^\top A^{(n)}) \geq \log \det((A^{(n-1)})^\top A^{(n-1)}) + \overline{\tau}_n \geq \cdots \geq \log \det((A^{(0)})^\top A^{(0)}) + \sum_{i=1}^n \overline{\tau}_i$

9

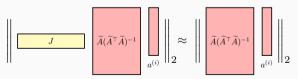
• In expectation sample $\sum_{i=1}^{n} p_i = \widetilde{O}(d \log(\kappa)/\epsilon^2)$ rows.

Algorithm for oblivious updates

- Algorithm: We maintain a subsampled matrix $\widetilde{A} = DA^{(i)}$. In each iteration:
 - When $a^{(i)}$ arrives, compute $\overline{\tau}_i = a^{(i)\top} \cdot (\widetilde{A}^{\top}\widetilde{A})^{-1} \cdot a^{(i)}$. (1)
 - Flip a coin with probability $p_i = \overline{\tau}_i / \epsilon^2$: * If 1: Add $a^{(i)} / \sqrt{p_i}$ as a new row to \widetilde{A} . Update $(\widetilde{A}^\top \widetilde{A})^{-1}$ and solution. (2) * If 0: Ignore $a^{(i)}$. Output the same solution.
- Update time (2):
 - One update takes $O(d^2)$ time by using Woodbury identity.
 - The total number of updates is $\sum_{i=1}^{n} \overline{\tau}_i / \epsilon^2 = \widetilde{O}(d \log(\kappa) / \epsilon^2)$.
 - Total time is $\widetilde{O}(d^3 \log(\kappa)/\epsilon^2)$.
 - Amortized cost is $d^{o(1)}$ when $n \gg d$.

Computing leverage scores more efficiently

- Recall: We want to compute \$\overline{\tau_i}\$ = \$a^{(i)\tau}\$ (\$\overline{A}^\tau\$\$ \$\overline{A}\$\$)^{-1}\$a^{(i)} (1) in each iteration. Direct computation takes \$O(\$d^2\$\$) time in [CMP20].
- Johnson-Lindenstrauss lemma: There exists JL matrix J that compresses dimension from d to O(log n) and guarantees ||Jx||₂² ≈_{0.01} ||x||₂² for fixed n vectors.
- $a^{\top} \cdot (A^{\top}A)^{-1} \cdot a = ||A(A^{\top}A)^{-1} \cdot a||_2^2$. [SS08].
- The algorithm also maintains $\mathbf{J} \cdot \widetilde{A}(\widetilde{A}^{\top}\widetilde{A})^{-1}$.
- We have $\overline{\tau}_i = \|\widetilde{A}(\widetilde{A}^\top \widetilde{A})^{-1} \cdot a^{(i)}\|_2^2 \approx_{0.01} \|\mathbf{J}\widetilde{A}(\widetilde{A}^\top \widetilde{A})^{-1} \cdot a^{(i)}\|_2^2$



- This estimate can be computed in $O(d \log n)$ time.
 - \implies Total time is $O(nd \log n)$.

Theorem (Upper bound in oblivious setting). There is a dynamic data structure that maintains an ϵ -approximate LSR solution under *oblivious incremental* updates, with total time $O(nd \log n + d^3 \operatorname{poly}(\epsilon^{-1}))$.

II. Upper Bound: Incremental Adaptive Setting

- Adaptive updates are inherent in many iterative algorithms.
- To make our algorithm work against adaptive updates:
 - Make JL trick work against adaptive updates.
 - Make the JL estimate an over-estimate.
 - Renew the JL sketch whenever a row is sampled.
 - Make online leverage score sampling work against adaptive updates.

Proof of oblivious leverage score sampling

- Leverage score sampling: Sample the *i*-th row with probability $p_i = \tau_i(A)/\epsilon^2$. Let $D_{ii} = 1/\sqrt{p_i}$ if the *i*-th row is sampled, and 0 otherwise. Then whp D is a $(1 \pm \epsilon)$ subspace embedding for A.
- Matrix Chernoff bound: Given independently random PSD matrices $X_1, \dots, X_n \in \mathbb{R}^{d \times d}$ s.t. $X_i \leq R \cdot I$. Let $W = \mathbb{E}[\sum_{i=1}^n X_i]$. Then

$$\Pr[\lambda_{\min}(\sum_{i=1}^{n} X_i) \le (1-\epsilon)\lambda_{\min}(W)] \le d \cdot 2^{-\epsilon^2 \lambda_{\min}(W)/R},$$

 $\Pr[\lambda_{\max}(\sum_{i=1}^{n} X_i) \ge (1+\epsilon)\lambda_{\max}(W)] \le d \cdot 2^{-\epsilon^2 \lambda_{\max}(W)/R}.$

• **Proof of leverage score sampling**: Define $X_i := \begin{cases} \frac{1}{p_i} \cdot a^{(i)} (a^{(i)})^\top & \text{w.p. } p_i \\ 0 & \text{otherwise} \end{cases}$ Apply Matrix Chernoff bound to scaled version: $\overline{X}_i = W^{-1/2} X_i W^{-1/2}$.

Adaptive online leverage score sampling

• Adaptive Matrix Chernoff bound. Given adaptive random PSD matrices $X_1, \dots, X_n \in \mathbb{R}^{d \times d}$ s.t. $X_i \leq R \cdot I$. Let $W = \sum_{i=1}^n \mathbb{E}[X_i | X_1, \dots, X_{i-1}]$. Then we have that for any μ :

$$\Pr[\lambda_{\min}(\sum_{i=1}^{n} X_{i}) \leq (1-\epsilon)\mu \text{ and } \lambda_{\min}(W) \geq \mu] \leq d \cdot 2^{-\epsilon^{2}\mu/R},$$

$$\Pr[\lambda_{\max}(\sum_{i=1}^{n} X_{i}) \geq (1+\epsilon)\mu \text{ and } \lambda_{\max}(W) \leq \mu] \leq d \cdot 2^{-\epsilon^{2}\mu/R}.$$

- W is a random variable.
- Cannot use scaled version $\overline{X}_i = W^{-1/2} X_i W^{-1/2}$ anymore!
- By "guessing" the matrix W, and use a union bound over all "guesses", we can prove ϵ -approximation when $p_i = C \cdot \overline{\tau}_i / \epsilon^2$, where $C = \widetilde{O}(d^2 \log(\kappa))$.
- Using scalar concentration bounds, only lose a factor of $C = \widetilde{O}(d \log(\kappa))$.

Lemma (Adaptive online leverage score sampling)

Let $a^{(1)}, \dots, a^{(n)}$ be a sequence of **adaptive** updates. Sample the *i*-th row with probability $p_i = C \cdot \overline{\tau}_i / \epsilon^2$, where $C = \widetilde{O}(d \log(\kappa))$. Let $D_{ii} = 1/\sqrt{p_i}$ if the *i*-th row is sampled, and 0 otherwise. Then whp D is a $(1 \pm \epsilon)$ subspace embedding for A.

Proof ideas of [BHM⁺21]

- Instead of proving $DA \approx_{\epsilon} A$, prove the scalar case that $\|DAv\|_2 \approx_{\epsilon} \|Av\|_2$
- Need to prove this for all vector v's in an ϵ -net of size $(\kappa/\epsilon)^{\widetilde{O}(d)}$.
- Need $\delta < (\epsilon/\kappa)^{\widetilde{O}(d)}$ to use union bound.

 \implies Lose a factor of $d \log(\kappa)$ in $\log \frac{1}{\delta}$.

Proof ideas of [BHM⁺21] (continued)

• Define
$$x_i := (D_{ii}^2 - 1) \cdot v^\top a^{(i)} (a^{(i)})^\top v$$
.

- Goal is to prove $|\sum_{i=1}^{n} x_i| \le \epsilon \cdot ||A^{(n)}v||_2^2$.
- Use concentration bound for scalar adaptive sequences:
 Freedman's inequality (simplified for talk). Let x₁, · · · , x_n ∈ ℝ be an adaptive sequence such that E[x_i | x₁, · · · , x_{i-1}] = 0, and |x_i| ≤ R. Then for any μ,

$$\Pr[|\sum_{i=1}^n x_i| \ge \mu] \le e^{-\mu/R}.$$

- Would like to set $\mu = \epsilon \cdot \|A^{(n)}v\|_2^2$. However, $\|A^{(n)}v\|_2^2$ is a random variable!
- [BHM⁺21]: Use $\sigma_{\min} \le ||A^{(n)}v||_2 \le \sigma_{\max}$. \implies lose a factor of $\kappa = \frac{\sigma_{\max}}{\sigma_{\min}}$.

- Idea: "Guess" the value of $||A^{(n)}v||_2$.
- Build an ϵ -net of the line segment $[\sigma_{\min},\sigma_{\max}].$
- For any s in the ϵ -net (s is a guess of $||A^{(n)}v||_2$), define a truncated sequence $x_{s,1}, \dots, x_{s,n}$:

$$x_{s,i} := egin{cases} x_i & ext{if } \| \mathcal{A}^{(i)} \mathbf{v} \|_2 \leq s, \ 0 & ext{otherwise.} \end{cases}$$

• Now can prove $|\sum_{i=1}^{n} x_{s,i}| \le \epsilon \cdot s^2$ by setting $\mu = \epsilon \cdot s^2$.

X

• Since the size of the ϵ -net is $\propto \kappa$, we only lose another additive $\log(\kappa)$ factor.

Theorem (Upper bound in adaptive setting). There is a dynamic data structure that maintains an ϵ -approximate LSR solution under *adaptive incremental* updates, with total time $O(nd \log n + d^5 \operatorname{poly}(\epsilon^{-1}) \log \kappa)$.

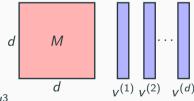
III. Lower Bounds

Theorem (Lower bound). Under the OMv conjecture:

- High vs low accuracy. Any dynamic data structure that maintains an
 ε = 1/ poly(n)-approximate LSR solution under *oblivious incremental* updates
 requires Ω(d^{2-o(1)}) amortized cost per iteration.
- Fully vs partially dynamic. If the data structure supports adaptive fully dynamic updates, then maintaining 0.01-approximate LSR solution requires $\Omega(d^{2-o(1)})$ amortized cost per iteration.

OMv conjecture

OMv conjecture. [HKNS15] In the online matrix vector multiplication (OMv) problem, initially a matrix $M \in \{0,1\}^{d \times d}$ is given, then a sequence of vectors $v^{(1)}, v^{(2)}, \dots, v^{(d)} \in \{0,1\}^d$ are revealed one by one, and the algorithm needs to output $M \cdot v^{(i)}$ in the *i*-th round. The conjecture states that there is no algorithm for OMv with poly(d) preprocessing time, and $O(d^{2-\epsilon})$ amortized query time.

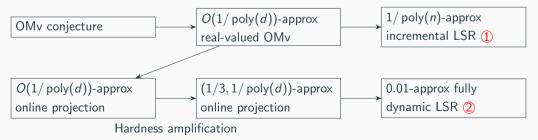


- Offline: d^{ω} . Online: d^3 .
- Only way to speed up matrix vector multiplication is **batching**.
- A unified approach to prove conditional lower bound for dynamic problems.
- Also holds when there are n = poly(d) queries.

Roadmap

Theorem (Lower bound). Under the OMv conjecture:

- High vs low accuracy. Any dynamic data structure that maintains an
 ε = 1/ poly(n)-approximate LSR solution under *oblivious incremental* updates
 requires Ω(d^{2-o(1)}) amortized cost per iteration. ①
- Fully vs partially dynamic. If the data structure supports adaptive fully dynamic updates, then maintaining 0.01-approximate LSR solution requires Ω(d^{2-o(1)}) amortized cost per iteration. (2)



$1/\operatorname{poly}(n)$ -approximate incremental LSR

$O(1/\operatorname{poly}(d))$ -approx OMv:

- Matrix $M \in \mathbb{R}^{d \times d}$ has constant eigenvalues.
- Query vectors all have unit norm.
- Allow $O(1/\operatorname{poly}(d))$ additive error in output: $\|y^{(i)} M \cdot v^{(i)}\|_2 \le O(1/\operatorname{poly}(d))$

Proof:

- Assume we have a $1/(nd^{10})$ -approx incremental LSR oracle.
- Construct LSR instance: Initially set $(A^{(0)\top}A^{(0)})^{-1} = M$. Add row $a^{(i)} = \frac{v^{(i)}}{nd^5}$.
- Since $||a^{(i)}||_2$ is small, we always maintain $(A^{(i)\top}A^{(i)})^{-1} \approx M$.
- By Woodbury identity, $x^{(i)} = x^{(i-1)} + M \cdot a^{(t)} \pm O(\frac{1}{nd^{10}}).$
- Output $y^{(i)} = (x^{(i)} x^{(i-1)}) \cdot nd^5$ for OMv problem.

0.01-approximate fully dynamic LSR



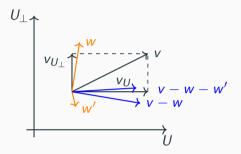
Proof ideas:

- Assume we have a 0.01-approx fully dynamic LSR oracle.
- Fully dynamic LSR oracle is more powerful:
 - Again add row $a^{(i)} \propto v^{(i)}$ in *i*-th round.
 - Delete the row $a^{(i)}$ after this round!
- Similar as before, compute output using $x^{(i)} x^{(0)} = Mv^{(i)} \pm 0.01$.
- Need to reduce from a hardness result with constant error.

Hardness amplification

- Online projection problem: Initially a projection matrix UU^T ∈ ℝ^{d×d} is given, then a sequence of unit vectors v⁽¹⁾, v⁽²⁾, ..., v^(d) ∈ ℝ^d are revealed one by one. Let v⁽ⁱ⁾_U = UU^T · v⁽ⁱ⁾. The algorithm needs to output:
 - $O(1/\operatorname{poly}(d))\operatorname{-approx} \text{ solution } \|y^{(i)} v_U^{(i)}\|_2 \le O(\frac{1}{\operatorname{poly}(d)}).$
 - $(1/3, 1/\operatorname{poly}(d)) \operatorname{-approx} \text{ solution } \|y^{(i)} v_U^{(i)}\|_2 \le \frac{1}{3} \cdot \|v_U^{(i)}\|_2 + O(\frac{1}{\operatorname{poly}(d)}).$
- Hardness amplification: No O(d^{2-ε}) time algorithm for O(1/poly(d))-approx online projection problem. ⇒ No O(d^{2-ε}) time algorithm for (1/3, 1/poly(d))-approx online projection problem.
- Proof: Given an online projection instance UU^T and v⁽¹⁾, ..., v⁽ⁿ⁾. We have two O(1/3, 1/ poly(d))-approximate projection oracles:
 - \mathbb{P}_U that outputs $y^{(i)}$ s.t. $\|y^{(i)} v_U^{(i)}\|_2 \leq \frac{1}{3} \cdot \|v_U^{(i)}\|_2 + O(\frac{1}{\operatorname{poly}(d)}).$
 - $-\mathbb{P}_{U_{\perp}} \text{ that outputs } w^{(i)} \text{ s.t. } \|w^{(i)} v^{(i)}_{U_{\perp}}\|_2 \leq \frac{1}{3} \cdot \|v^{(i)}_{U_{\perp}}\|_2 + O(\frac{1}{\operatorname{poly}(d)}).$
 - Goal: Use poly log d oracle calls to compute $y^{(i)}$: $\|y^{(i)} v_U^{(i)}\|_2 \le O(\frac{1}{\operatorname{poly}(d)})$. ²⁵

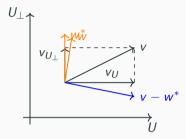
Hardness amplification (continued)



First attempt:

- Call the projection oracle $\mathbb{P}_{U_{\perp}}(v)$ to compute $w \approx v_{U_{\perp}}$.
- Remove the component in U_{\perp} : compute v w.
- Repeat for $O(\log d)$ times: the component in U_{\perp} is at most $1/\operatorname{poly}(d)$.
- **Problem**: Introduce error in the component in *U*.

Hardness amplification (continued)



Final algorithm:

- We've shown: How to compute $y \approx v_U$ s.t. y has nearly zero component in U_{\perp} .
- Use this algorithm to compute w^* s.t. its component in U is nearly zero.
- Again remove the component in U_{\perp} : compute $v w^*$.
- This time we don't introduce extra error in U.
- Repeat for $O(\log d)$ times: reduce 1/3 relative error to $1/\operatorname{poly}(d)$ additive error.

Summary and Open problems

- $\epsilon\text{-approximate dynamic least squares regression}$
- Upper bound. O(d) amortized time when (1) ε is constant, (2) incremental updates, (3) either oblivious or adaptive.
- Lower bounds. Under the OMv conjecture:
 - High vs low accuracy. If $\epsilon = 1/\operatorname{poly}(n)$, need $\Omega(d^{2-o(1)})$ amortized time.
 - Fully vs partially dynamic. If updates are *fully dynamic* and adaptive, then even constant approximation needs $\Omega(d^{2-o(1)})$ amortized time.

Open problems:

- Improve the $O(d^5)$ term in the total time of *adaptive* incremental setting?
- Dynamic ℓ_p regression?
- Lower bound in fully dynamic and *oblivious* setting?
- Other reductions from " $(1/3, 1/d^3)$ -approximate online projection"?

Thank you!

- Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and Samson Zhou, Adversarial robustness of streaming algorithms through importance sampling, Advances in Neural Information Processing Systems 34 (2021), 3544–3557.
- Michael B Cohen, Cameron Musco, and Jakub Pachocki, Online row sampling, Theory of Computing 16 (2020), no. 1, 1–25.
- Kenneth L. Clarkson and David P. Woodruff, *Low-rank approximation and regression in input sparsity time*, J. ACM **63** (2017), no. 6.

References ii

- Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan, Sampling algorithms for l2 regression and applications, Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (USA), SODA '06, Society for Industrial and Applied Mathematics, 2006, p. 1127–1136.
- Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak, *Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture*, Proceedings of the forty-seventh annual ACM symposium on Theory of computing, 2015, pp. 21–30.
- Rudolph Emil Kalman, A new approach to linear filtering and prediction problems.

- Daniel A Spielman and Nikhil Srivastava, Graph sparsification by effective resistances, Proceedings of the fortieth annual ACM symposium on Theory of computing, 2008, pp. 563–568.
- David P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor. Comput. Sci. 10 (2014), no. 1–2, 1–157.