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Least squares regression

• Problem: min
x∈Rd

‖Ax − b‖2
• Applications in high-dimensional statistical inference, signal

processing, machine learning, etc.

• Exact solution (Normal equation): x∗ = (A>A)−1A>b

– Time complexity: O(ndω−1)

– Still too slow for many modern data-analysis applications.

• ε-approximate solution: ‖Ax − b‖2 ≤ (1 + ε) min
x ′∈Rd

‖Ax ′ − b‖2
– “Sketch and solve” paradigm [Woo14]

– Time complexity: Õ
(
(nnz(A) + dω) log(1/ε)

)
[CW17]
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Dynamic least squares regression

• Problem: Dynamically maintain an ε-approximate LSR solution

min
x∈Rd

‖A(i)x − b(i)‖2,

under insertion or deletion of rows a(i) ∈ Rd and labels β(i) ∈ R.

– Goal: minimize amortized update time.

– In total n iterations, think of n = poly(d).

• Models dynamic data applications, e.g., continual ML.
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• Incremental vs Fully dynamic

– Incremental: Only insertions of rows.

– Fully dynamic: Both insertions and deletions of rows.

• Oblivious updates vs Adaptive updates

– Oblivious updates: The sequence of updates are fixed in the beginning.

– Adaptive updates: The next update is generated based on the previous outputs. 2



Algorithms for dynamic least squares regression

• Exact solution: Update the normal equation x∗,(i) = (A(i)>A(i))−1A(i)>b(i) using

Woodbury identity. (Kalman filters [Kal60])

– Works for fully dynamic and adaptive updates.

– Time per update: O(d2).

• Online row sampling [CMP20]: Maintain an ε-approximate solution by sampling

O(d log κ/ε2) number of rows, where κ := σmax(A(n))

σmin(A(0))
.

– Works for incremental and oblivious updates.

– Time per update: O(d2) (to compute sampling probability).

• Adaptive online row sampling [BHM+21]: Sample O(d2κ log κ/ε2) number of

rows, where κ := σmax(A(n))

σmin(A(0))
.

– Works for incremental and adaptive updates.

– Time per update: O(d2).

• Question: Can we achieve O(d) time per update / O(nd) total time?
3



Our results: Upper bound

Theorem (Upper bound). There is a dynamic data structure that maintains an

ε-approximate LSR solution under oblivious incremental updates, with total time

Õ
(
nd + d3 poly(ε−1)

)
. The data structure can be made to work against adaptive

incremental updates with total time Õ
(
nd + d5 poly(ε−1)

)
.

• When n� d and ε is a small constant, the amortized cost per iteration is Õ(d).

• The nd term is in fact nnz(A(n)).

• For adaptive incremental updates, we improve the number of sampled rows from

O(d2κ log κ/ε2) [BHM+21] to O(d2 log2 κ/ε2) .

• Question: Can we improve poly(ε−1) dependence to log(ε−1) as the static case?

• Question: Algorithms for fully dynamic updates?
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Our results: Lower bound

Theorem (Lower bound). Under the OMv conjecture: [HKNS15]

• High vs low accuracy. Any dynamic data structure that maintains an

ε = 1/ poly(n)-approximate LSR solution under oblivious incremental updates

requires Ω(d2−o(1)) amortized cost per iteration.

• Fully vs partially dynamic. If the data structure supports adaptive fully dynamic

updates, then maintaining ε = 0.01-approximate LSR solution requires Ω(d2−o(1))

amortized cost per iteration.

– Impossible to improve poly(ε−1) dependence to log(ε−1).

– Impossible to make the algorithm work for fully dynamic updates.
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I. Upper Bound: Incremental

Oblivious Setting



Exact solution for dynamic LSR

• Notations: In the i-th iteration, given a new row a(i) ∈ Rd and

a new label β(i) ∈ R, solve for

min
x∈Rd

‖A(i)x − b(i)‖2.
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• Exact solution (Kalman filters [Kal60]): Compute x∗,(i) = (A(i)>A(i))−1A(i)>b(i).

– Inverse (A(i)>A(i))−1 = (A(i−1)>A(i−1)
︸ ︷︷ ︸

M

+a(i)a(i)>)−1.

– Woodbury identity: (M + a(i)a(i)>)−1 = M−1 − M−1a(i)a(i)>M−1

1+a(i)>a(i)
.

 M

+

a
 [ a>

]
−1

=

 M−1

− 1

1 + a>a
·

 M−1


a
 [ a>

]  M−1


– Time per update: O(d2).
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Subspace embedding and approximate LSR

• Subspace embedding (See survey [Woo14]):

Given a matrix A ∈ Rn×d , matrix S ∈ Rs×n is a

(1± ε) subspace embedding for A if

‖SAx‖2 = (1± ε)‖Ax‖2 for all x .

d
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• Approx LSR: Let S be a (1± ε) subspace embedding of matrix [A, b].

x ′ := arg min
x∈Rd

‖SAx − Sb‖2

is an O(ε)-approximate solution for the original problem:

‖Ax ′ − b‖2 ≤ (1 + ε) min
x∈Rd

‖Ax − b‖2.

• Subspace embedding technique that is easy to dynamize: leverage score sampling
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Leverage score sampling

• Leverage scores: For a fixed matrix A, the

leverage score of its i-th row ai is

τi (A) := a>i (A>A)−1ai a>i

A>

n

d

A

ai

( )−1

Diagonal entries of the projection matrix A(A>A)−1A>.

• Measures how important the row ai is for the row space of A.

– If τi (A) = 1: removing row i will decrease the rank of A by 1.

– If all rows are the same, they all have τi (A) = d/n.

• Main properties: (i) 0 ≤ τi (A) ≤ 1. (ii)
∑n

i=1 τi (A) = d .

• Leverage score sampling: Sample the i-th row with probability pi = τi (A)/ε2.

Let Dii = 1/
√
pi if the i-th row is sampled, and 0 otherwise. Then with high

probability D is a (1± ε) subspace embedding for A.

• In expectation sample
∑n

i=1 pi = O(d/ε2) rows.
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Online leverage score sampling [CMP20]

• Online leverage scores:

τ i := (a(i))>((A(i−1))>A(i−1))−1a(i)
(a(i))>

(A(i−1))> A(i−1)

a(i)

( )−1

• Overestimates: τ i ≥ τi since (A(i−1))>A(i−1) � (A(n))>A(n).

• Online leverage score sampling: When the i-th row arrives, sample it with

probability pi = τ i/ε
2. Let Dii = 1/

√
pi if the i-th row is sampled, and 0

otherwise. Then whp D is a (1± ε) subspace embedding for A(i).

• Sum of online leverage scores:
∑n

i=1 τ i ≤ d log(dκ), where κ := σmax(A(n))

σmin(A(0))
.

– Fact: log det(M + aa>) ≥ log det(M) + a>M−1a.

– Apply this fact to the rows:

log det((A(n))>A(n)) ≥ log det((A(n−1))>A(n−1)) + τn ≥ · · · ≥ log det((A(0))>A(0)) +
n∑

i=1

τ i

• In expectation sample
∑n

i=1 pi = Õ(d log(κ)/ε2) rows. 9



Algorithm for oblivious updates

• Algorithm: We maintain a subsampled matrix Ã = DA(i). In each iteration:

– When a(i) arrives, compute τ i = a(i)> · (Ã>Ã)−1 · a(i). 1©
– Flip a coin with probability pi = τ i/ε

2:

∗ If 1: Add a(i)/
√
pi as a new row to Ã. Update (Ã>Ã)−1 and solution. 2©

∗ If 0: Ignore a(i). Output the same solution.

• Update time 2©:

– One update takes O(d2) time by using Woodbury identity.

– The total number of updates is
∑n

i=1 τ i/ε
2 = Õ(d log(κ)/ε2).

– Total time is Õ(d3 log(κ)/ε2).

– Amortized cost is do(1) when n� d .
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Computing leverage scores more efficiently

• Recall: We want to compute τ i = a(i)>(Ã>Ã)−1a(i) 1© in each iteration.

Direct computation takes O(d2) time in [CMP20].

• Johnson-Lindenstrauss lemma: There exists JL matrix J that compresses

dimension from d to O(log n) and guarantees ‖Jx‖22 ≈0.01 ‖x‖22 for fixed n vectors.

• a> · (A>A)−1 · a = ‖A(A>A)−1 · a‖22. [SS08].

• The algorithm also maintains J · Ã(Ã>Ã)−1.

• We have τ i = ‖Ã(Ã>Ã)−1 · a(i)‖22 ≈0.01 ‖JÃ(Ã>Ã)−1 · a(i)‖22
∥∥∥∥∥

∥∥∥∥∥
2

∥∥∥∥∥

∥∥∥∥∥
2

≈J Ã(Ã>Ã)−1

a(i)

Ã(Ã>Ã)−1

a(i)

• This estimate can be computed in O(d log n) time.

=⇒ Total time is O(nd log n).
11



Algorithm for oblivious updates

Theorem (Upper bound in oblivious setting). There is a dynamic data structure

that maintains an ε-approximate LSR solution under oblivious incremental updates,

with total time O
(
nd log n + d3 poly(ε−1)

)
.
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II. Upper Bound: Incremental

Adaptive Setting



Adaptive updates

• Adaptive updates are inherent in many iterative algorithms.

• To make our algorithm work against adaptive updates:

• Make JL trick work against adaptive updates.

– Make the JL estimate an over-estimate.

– Renew the JL sketch whenever a row is sampled.

• Make online leverage score sampling work against adaptive updates.

13



Proof of oblivious leverage score sampling

• Leverage score sampling: Sample the i-th row with probability pi = τi (A)/ε2.

Let Dii = 1/
√
pi if the i-th row is sampled, and 0 otherwise. Then whp D is a

(1± ε) subspace embedding for A.

• Matrix Chernoff bound: Given independently random PSD matrices

X1, · · · ,Xn ∈ Rd×d s.t. Xi � R · I . Let W = E[
∑n

i=1 Xi ]. Then

Pr[λmin(
n∑

i=1

Xi ) ≤ (1− ε)λmin(W )] ≤ d · 2−ε2λmin(W )/R ,

Pr[λmax(
n∑

i=1

Xi ) ≥ (1 + ε)λmax(W )] ≤ d · 2−ε2λmax(W )/R .

• Proof of leverage score sampling: Define Xi :=





1
pi
· a(i)(a(i))> w.p. pi

0 otherwise
.

Apply Matrix Chernoff bound to scaled version: X i = W−1/2XiW
−1/2. 14



Adaptive online leverage score sampling

• Adaptive Matrix Chernoff bound. Given adaptive random PSD matrices

X1, · · · ,Xn ∈ Rd×d s.t. Xi � R · I . Let W =
∑n

i=1 E[Xi |X1, · · · ,Xi−1]. Then we

have that for any µ:

Pr[λmin(
n∑

i=1

Xi ) ≤ (1− ε)µ and λmin(W ) ≥ µ] ≤ d · 2−ε2µ/R ,

Pr[λmax(
n∑

i=1

Xi ) ≥ (1 + ε)µ and λmax(W ) ≤ µ] ≤ d · 2−ε2µ/R .

• W is a random variable.

• Cannot use scaled version X i = W−1/2XiW
−1/2 anymore!

• By “guessing” the matrix W , and use a union bound over all “guesses”, we can

prove ε-approximation when pi = C · τ i/ε2, where C = Õ(d2 log(κ)).

• Using scalar concentration bounds, only lose a factor of C = Õ(d log(κ)).
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Adaptive online leverage score sampling

Lemma (Adaptive online leverage score sampling)
Let a(1), · · · , a(n) be a sequence of adaptive updates. Sample the i-th row with

probability pi = C · τ i/ε2, where C = Õ(d log(κ)). Let Dii = 1/
√
pi if the i-th row is

sampled, and 0 otherwise. Then whp D is a (1± ε) subspace embedding for A.

Proof ideas of [BHM+21]

• Instead of proving DA ≈ε A, prove the scalar case that ‖DAv‖2 ≈ε ‖Av‖2
• Need to prove this for all vector v ’s in an ε-net of size (κ/ε)Õ(d).

• Need δ < (ε/κ)Õ(d) to use union bound.

=⇒ Lose a factor of d log(κ) in log 1
δ .
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Proof ideas of [BHM+21] (continued)

• Define xi := (D2
ii − 1) · v>a(i)(a(i))>v .

• Goal is to prove |∑n
i=1 xi | ≤ ε · ‖A(n)v‖22.

• Use concentration bound for scalar adaptive sequences:

Freedman’s inequality (simplified for talk). Let x1, · · · , xn ∈ R be an adaptive

sequence such that E[xi | x1, · · · , xi−1] = 0, and |xi | ≤ R. Then for any µ,

Pr[|
n∑

i=1

xi | ≥ µ] ≤ e−µ/R .

• Would like to set µ = ε · ‖A(n)v‖22. However, ‖A(n)v‖22 is a random variable!

• [BHM+21]: Use σmin ≤ ‖A(n)v‖2 ≤ σmax. =⇒ lose a factor of κ = σmax
σmin

.
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Better dependence on κ

• Idea: “Guess” the value of ‖A(n)v‖2.

• Build an ε-net of the line segment [σmin, σmax].

• For any s in the ε-net (s is a guess of ‖A(n)v‖2), define a truncated sequence

xs,1, · · · , xs,n:

xs,i :=




xi if ‖A(i)v‖2 ≤ s,

0 otherwise.

• Now can prove |∑n
i=1 xs,i | ≤ ε · s2 by setting µ = ε · s2.

• Since the size of the ε-net is ∝ κ, we only lose another additive log(κ) factor.

18



Algorithm for adaptive updates

Theorem (Upper bound in adaptive setting). There is a dynamic data structure

that maintains an ε-approximate LSR solution under adaptive incremental updates,

with total time O
(
nd log n + d5 poly(ε−1) log κ

)
.
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III. Lower Bounds



Conditional lower bounds

Theorem (Lower bound). Under the OMv conjecture:

• High vs low accuracy. Any dynamic data structure that maintains an

ε = 1/ poly(n)-approximate LSR solution under oblivious incremental updates

requires Ω(d2−o(1)) amortized cost per iteration.

• Fully vs partially dynamic. If the data structure supports adaptive fully dynamic

updates, then maintaining 0.01-approximate LSR solution requires Ω(d2−o(1))

amortized cost per iteration.
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OMv conjecture

OMv conjecture. [HKNS15] In the online matrix vector multiplication (OMv)

problem, initially a matrix M ∈ {0, 1}d×d is given, then a sequence of vectors

v (1), v (2), · · · , v (d) ∈ {0, 1}d are revealed one by one, and the algorithm needs to

output M · v (i) in the i-th round. The conjecture states that there is no algorithm for

OMv with poly(d) preprocessing time, and O(d 2−ε) amortized query time.

d

d M

v (1) v (2)

· · ·

v (d)• Offline: dω. Online: d3.

• Only way to speed up matrix vector multiplication is batching.

• A unified approach to prove conditional lower bound for dynamic problems.

• Also holds when there are n = poly(d) queries. 21



Roadmap

Theorem (Lower bound). Under the OMv conjecture:

• High vs low accuracy. Any dynamic data structure that maintains an

ε = 1/ poly(n)-approximate LSR solution under oblivious incremental updates

requires Ω(d2−o(1)) amortized cost per iteration. 1©
• Fully vs partially dynamic. If the data structure supports adaptive fully dynamic

updates, then maintaining 0.01-approximate LSR solution requires Ω(d2−o(1))

amortized cost per iteration. 2©

OMv conjecture
O(1/ poly(d))-approx

real-valued OMv

O(1/ poly(d))-approx

online projection

(1/3, 1/ poly(d))-approx

online projection

0.01-approx fully

dynamic LSR 2©

1/ poly(n)-approx

incremental LSR 1©

Hardness amplification 22



1/ poly(n)-approximate incremental LSR

OMv conjecture
O(1/ poly(d))-approx

real-valued OMv

1/ poly(n)-approx

incremental LSR 1©

O(1/ poly(d))-approx OMv:

• Matrix M ∈ Rd×d has constant eigenvalues.

• Query vectors all have unit norm.

• Allow O(1/ poly(d)) additive error in output: ‖y (i) −M · v (i)‖2 ≤ O(1/ poly(d))

Proof:

• Assume we have a 1/(nd10)-approx incremental LSR oracle.

• Construct LSR instance: Initially set (A(0)>A(0))−1 = M. Add row a(i) = v (i)

nd5 .

• Since ‖a(i)‖2 is small, we always maintain (A(i)>A(i))−1 ≈ M.

• By Woodbury identity, x (i) = x (i−1) + M · a(t) ± O( 1
nd10 ).

• Output y (i) = (x (i) − x (i−1)) · nd5 for OMv problem.
23



0.01-approximate fully dynamic LSR

O(1/ poly(d))-approx

online projection

(1/3, 1/ poly(d))-approx

online projection

0.01-approx fully

dynamic LSR 2©
Hardness amplification

Proof ideas:

• Assume we have a 0.01-approx fully dynamic LSR oracle.

• Fully dynamic LSR oracle is more powerful:

– Again add row a(i) ∝ v (i) in i-th round.

– Delete the row a(i) after this round!

• Similar as before, compute output using x (i) − x (0) = Mv (i) ± 0.01.

• Need to reduce from a hardness result with constant error.
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Hardness amplification

• Online projection problem: Initially a projection matrix UU> ∈ Rd×d is given,

then a sequence of unit vectors v (1), v (2), · · · , v (d) ∈ Rd are revealed one by one.

Let v
(i)
U = UU> · v (i). The algorithm needs to output:

– O(1/ poly(d))-approx solution ‖y (i) − v
(i)
U ‖2 ≤ O( 1

poly(d)).

– (1/3, 1/ poly(d))-approx solution ‖y (i) − v
(i)
U ‖2 ≤ 1

3 · ‖v
(i)
U ‖2 + O( 1

poly(d)).

• Hardness amplification: No O(d2−ε) time algorithm for O(1/ poly(d))-approx

online projection problem. =⇒ No O(d2−ε) time algorithm for

(1/3, 1/ poly(d))-approx online projection problem.

• Proof: Given an online projection instance UU> and v (1), · · · , v (n). We have two

O(1/3, 1/ poly(d))-approximate projection oracles:

– PU that outputs y (i) s.t. ‖y (i) − v
(i)
U ‖2 ≤ 1

3 · ‖v
(i)
U ‖2 + O( 1

poly(d)).

– PU⊥ that outputs w (i) s.t. ‖w (i) − v
(i)
U⊥
‖2 ≤ 1

3 · ‖v
(i)
U⊥
‖2 + O( 1

poly(d)).

– Goal: Use poly log d oracle calls to compute y (i): ‖y (i) − v
(i)
U ‖2 ≤ O( 1

poly(d)). 25



Hardness amplification (continued)

U⊥

U

vvU⊥
vU

w

v − ww ′
v − w − w ′

First attempt:

• Call the projection oracle PU⊥(v) to compute w ≈ vU⊥ .

• Remove the component in U⊥: compute v − w .

• Repeat for O(log d) times: the component in U⊥ is at most 1/ poly(d).

• Problem: Introduce error in the component in U.

26



Hardness amplification (continued)

U⊥

U

vvU⊥
vU

ww∗

v − w∗

Final algorithm:

• We’ve shown: How to compute y ≈ vU s.t. y has nearly zero component in U⊥ .

• Use this algorithm to compute w∗ s.t. its component in U is nearly zero.

• Again remove the component in U⊥: compute v − w∗.

• This time we don’t introduce extra error in U.

• Repeat for O(log d) times: reduce 1/3 relative error to 1/ poly(d) additive error.
27



Summary and Open problems

• ε-approximate dynamic least squares regression

• Upper bound. O(d) amortized time when (1) ε is constant, (2) incremental

updates, (3) either oblivious or adaptive.

• Lower bounds. Under the OMv conjecture:

– High vs low accuracy. If ε = 1/ poly(n), need Ω(d2−o(1)) amortized time.

– Fully vs partially dynamic. If updates are fully dynamic and adaptive, then

even constant approximation needs Ω(d2−o(1)) amortized time.

Open problems:

• Improve the O(d5) term in the total time of adaptive incremental setting?

• Dynamic `p regression?

• Lower bound in fully dynamic and oblivious setting?

• Other reductions from “(1/3, 1/d3)-approximate online projection”?

Thank you! 28
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