
Short-Flat Decompositions and
Faster Algorithms for Linear Inverse Problems

Kevin Tian (UT Austin)

Simons Institute Optimization and Algorithm Design Workshop

Based on joint work with:

Jonathan Kelner (MIT), Jerry Li (MSR), Allen Liu (MIT), Aaron Sidford (Stanford)

• Overview
• Sparse recovery: SOTA and what’s new
• Matrix completion: SOTA and what’s new

• Sparse recovery
• Short-flat decompositions
• Projected gradient descent

• Matrix completion

Roadmap

Sparse recovery

Underconstrained regime: 𝑛 ≪ 𝑑
Clearly impossible in the worst case. Need to assume more!

Sparse recovery

Standard
assumption:

Sparse recovery

Polynomial time algorithms
(convex programming)

Assume:

Algo:

(no sparse vectors in
kernel)

Sparse recovery

Polynomial time algorithms
(convex programming)

Assume:

Algo:

(no sparse vectors in
kernel)

Upshot: very flexible + general!

• Extends to noisy settings

• Essentially minimal assumptions

…potentially expensive in high-dim.

Sparse recovery

Polynomial time algorithms
(convex programming)

Assume:

Algo:

Nearly-linear time algorithms

(A is near-isometry
on sparse vectors)

Sparse recovery

Polynomial time algorithms
(convex programming)

Assume:

Algo:

Nearly-linear time algorithms

(A is near-isometry
on sparse vectors)

Greedy: Pursuit, OMP

Non-convex: IHT, CoSaMP

Convex: Projected GD

Sparse recovery

Polynomial time algorithms
(convex programming)

Assume:

Algo:

Nearly-linear time algorithms

Greedy: Pursuit, OMP

Non-convex: IHT, CoSaMP

Convex: Projected GD

• Theory: both work under standard generative models
• Practice: fast methods much more brittle [Davenport, Needell, Wakin ’13], [Jain, Tewari,

Kar ‘14], [Polania, Carrillo, Blanco-Velasco, Barner ‘14], [Zhang, Wei, Wei, Li, Liu, Liu ‘16], …
.

What’s going on?

Sparse recovery

Polynomial time algorithms
(convex programming)

Assume:

Algo:

Nearly-linear time algorithms

Greedy: Pursuit, OMP

Non-convex: IHT, CoSaMP

Convex: Projected GD

Not broken by semi-random adversary! Easily broken by semi-random adversary!

🤔

.Theory vs. practice: what’s going on?

Semi-random models
“Fully random”

“Worst-case”

Easy! Polynomial-
time (very fast?)

Hard! (NP-hard,
info-impossible?)

Semi-random models
“Fully random”

“Worst-case”

Easy! Polynomial-
time (very fast?)

Hard! (NP-hard,
info-impossible?)

W
hat happens here?

Philosophy
• “Beyond best-case analysis”
• Main q: design algorithms which are

robust to input assumption violations?

If everything works when life is easy, choose the
algorithm that is most robust to assumptions.

Semi-random sparse recovery

Nearly-linear time algos:
assume restricted

isometry property (RIP)=

Semi-random sparse recovery

RIP:

=

(Planted
RIP)

Basic semi-random adversary:
1. Take RIP matrix G
2. Augment with additional

“consistent” measurements
3. Shuffle matrix, present A

Semi-random sparse recovery
(polynomial time)

=

(Planted
RIP)

Basic semi-random adversary:
1. Take RIP matrix G
2. Augment with additional

“consistent” measurements
3. Shuffle matrix, present A

RIP:

Semi-random sparse recovery

=

(Planted
RIP)

(polynomial time)

Basic semi-random adversary:
1. Take RIP matrix G
2. Augment with additional

“consistent” measurements
3. Shuffle matrix, present A

RIP:
Fast algorithms?

1. Many greedy/non-convex iterative methods
immediately fail (explicit counterexamples)

2. Convex iterative methods’ analyses depend
on restricted conditioning, easy to break

Our basic result

=

(Planted
RIP)

pRIP adversary:
1. Take RIP matrix G
2. Augment with additional

“consistent” measurements
3. Shuffle matrix, present A

Theorem [Kelner, Li, Liu, Sidford, Tian ‘23]:
Can solve linear systems in

entrywise-bounded* pRIP A in time

*satisfied by standard RIP constructions, e.g.
Gaussian, subsampled Fourier/Hadamard matrices

Our general result

≈

wRIP (>pRIP) adversary:
1. Exists diagonal reweighting

W such that ATWA is RIP
and A is entrywise bounded

2. We define 𝑚 ≔ ∥"∥!
∥"∥"

(Weighted RIP)

Theorem [Kelner, Li, Liu, Sidford, Tian ‘23]:
Can solve noisy linear systems in entrywise-

bounded wRIP A optimally in time In pRIP model:

• When all of A is RIP and 𝑛 = 𝑚 ≫ 𝑠, sublinear

• When A contains minimum 𝑚 ≈ 𝑠, linear

Matrix “sparse recovery”

Matrix “sparse recovery”

Standard
assumption:

Matrix “sparse recovery”

Standard
assumption:

Ask Xing and Yu @ NeurIPS ‘23!

Matrix completion

Standard
assumption:

2

3

10

-7

2

Matrix completion

Standard
assumption:

2

3

10

-7

2
“RIP”-type assumption impossible:

dodge observations with single spike

Matrix completion

Standard
assumptions:

Matrix completion

Standard
assumptions:

“Incoherence”

Matrix completion

Standard
assumptions:

Polynomial time:

[Recht ‘11]

Matrix completion

Standard
assumptions:

PGD + clipping
Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

Matrix completion

PGD + clipping

Open questions:
1. Improved “fast” rates?
2. Beyond incoherence?

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping

Open questions:
1. Improved “fast” rates?
2. Beyond incoherence?
3. Noise-robustness?

…SOTA even for polynomial time!
[Candes-Plan ‘10]

Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping

Theorem, Part 1 [Kelner, Li, Liu, Sidford, Tian ‘23]:

From rank-𝑟 𝐌⋆ ∈ ℝ$×$ + (∥N∥F ≤ ∆),
can give 𝐌 ∈ ℝ$×$, 𝑆 ⊆ 𝑑 with:

Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping

Theorem, Part 1 [Kelner, Li, Liu, Sidford, Tian ‘23]:

From rank-𝑟 𝐌⋆ ∈ ℝ$×$ + (∥N∥F ≤ ∆),
can give 𝐌 ∈ ℝ$×$, 𝑆 ⊆ 𝑑 with:

…using

Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping

Theorem, Part 1IA [Kelner, Li, Liu, Sidford, Tian ‘23]:

From rank-𝑟, “regular” 𝐌⋆ ∈ ℝ$×$ +
(∥N∥F ≤ ∆), can give 𝐌 ∈ ℝ$×$ with:

…using

Matrix completion

Near-linear time:

[Jain-Netrapalli ‘15]

Polynomial time:

[Recht ‘11]

PGD + clipping

Theorem, Part 1IB [Kelner, Li, Liu, Sidford, Tian ‘23]:

From rank-𝑟, “incoherent” 𝐌⋆ ∈ ℝ$×$ +
(∥N∥F ≤ ∆), can give 𝐌 ∈ ℝ$×$ with:

…using

• Overview
• Sparse recovery: SOTA and what’s new
• Matrix completion: SOTA and what’s new

• Sparse recovery
• Short-flat decompositions
• Projected gradient descent

• Matrix completion

Roadmap

Optimization for sparse recovery?

RIP: “Restricted well-conditioning”:
Well-conditioned restricted to some set

Optimization for sparse recovery?

RIP+:

v is numerically sparse (NS) if

(folklore, proof
via shelling)

RIP:

Optimization for sparse recovery?

RIP+:

v is numerically sparse (NS) if

A first attempt
• Maintain 𝑥 − 𝑥⋆ is NS
• ??????
• Profit

Optimization for sparse recovery?

RIP+:

v is numerically sparse (NS) if

A first attempt
• Maintain 𝑥 − 𝑥⋆ is NS
• ??????
• Profit

Can maintain (?)
via ℓ! projection

Question:
How to reason about effect of projection?

Key geometric insight

Lemma (informal): If you hit a unit v
with a random Gaussian matrix, it is
“flat” in all directions except v

Key geometric insight

Random Gaussian matrix

Lemma (informal): If you hit a unit v
with a random Gaussian matrix, it is
“flat” in all directions except v

Key geometric insight

Write

Lemma (informal): If you hit a unit v
with a random Gaussian matrix, it is
“flat” in all directions except v

Key geometric insight

Write

Lemma (informal): If you hit a unit v
with a random Gaussian matrix, it is
“flat” in all directions except v

Key geometric insight

Lemma (informal): If you hit a unit v
with a random Gaussian matrix, it is
“flat” in all directions except v

Write

Key geometric insight

Lemma (informal): If you hit a unit v
with a random Gaussian matrix, it is
“flat” in all directions except v

Write

(essentially random)

“flat” := ℓ! bounded

Short-flat decompositions

Lemma (formal): let A be RIP with parameter s. For all NS unit v,

Why does PGD work?

Lemma: If you hit an NS unit v with
ATA where A is RIP, the result has a
short-flat decomposition.

x*

Let v := x – x*

Suppose:

• ∥ 𝑣 ∥!≤ 1
• ∥ 𝑣 ∥"≤ 𝑠

x

Why does PGD work?

x*

Let v := x – x*

Suppose:

• ∥ 𝑣 ∥!≤ 1
• ∥ 𝑣 ∥"≤ 𝑠

x

Case 1: ∥ 𝑣 ∥!≤
"
!

Halve our radius J

Case 2: ∥ 𝑣 ∥!≥
"
!

Use 𝐀# 𝐀𝑥 − 𝑏 = 𝐀#𝐀𝑣 as
descent direction

Lemma: If you hit an NS unit v with
ATA where A is RIP, the result has a
short-flat decomposition.

Why does PGD work?

x*

Let v := x – x*

Suppose:

• ∥ 𝑣 ∥!≤ 1
• ∥ 𝑣 ∥"≤ 𝑠

Case 1: ∥ 𝑣 ∥!≤
"
!

Halve our radius J

Case 2: ∥ 𝑣 ∥!≥
"
!

Use 𝐀# 𝐀𝑥 − 𝑏 = 𝐀#𝐀𝑣 as
descent directionx

Case 2 is good idea by Lemma:

“flat” := ℓ! bounded

Filtered by PGD against ℓ"
ball + Hölder’s inequality

Lemma: If you hit an NS unit v with
ATA where A is RIP, the result has a
short-flat decomposition.

Algorithm sketch
v is numerically sparse (NS) if

Restricted W-C: for all NS v,

Short-flat: for all NS unit v,

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• This set contains x* by Cauchy-Schwarz

Algorithm sketch
v is numerically sparse (NS) if

Restricted W-C: for all NS v,

Short-flat: for all NS unit v,

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• 𝑥 ← 𝑥%&
• For 10 iterations:

• If v is not numerically sparse, we’re done
• If it is numerically sparse, we can PGD

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• 𝑥 ← 𝑥%&
• For 10 iterations:

• ∆= 𝐀𝑥 − 𝑏 = 𝐀𝑣 for 𝑣 = 𝑥 − 𝑥∗

• If "
,
∑"-.-,∆.! ≥ Ω(1) and "

,
𝐀#∆ has a short-

flat decomposition:
• 𝑥 ← argmin/0∈𝒳 ∥ 𝑥0 − (𝑥 − 𝜂𝐀#∆) ∥!
• Constant progress in distance to x*

Algorithm sketch
v is numerically sparse (NS) if

Restricted W-C: for all NS v,

Short-flat: for all NS unit v,

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• 𝑥 ← 𝑥%&
• For 10 iterations:

• ∆= 𝐀𝑥 − 𝑏 = 𝐀𝑣 for 𝑣 = 𝑥 − 𝑥∗

• If "
,
∑"-.-,∆.! ≥ Ω(1) and "

,
𝐀#∆ has a short-

flat decomposition:
• 𝑥 ← argmin/0∈𝒳 ∥ 𝑥0 − (𝑥 − 𝜂𝐀#∆) ∥!
• Constant progress in distance to x*

• Else:
• Break
• Not numerically sparse, radius loose

Algorithm sketch
v is numerically sparse (NS) if

Restricted W-C: for all NS v,

Short-flat: for all NS unit v,

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• 𝑥 ← 𝑥%&
• For 10 iterations:

• ∆= 𝐀𝑥 − 𝑏 = 𝐀𝑣 for 𝑣 = 𝑥 − 𝑥∗

• If "
,
∑"-.-,∆.! ≥ Ω(1) and "

,
𝐀#∆ has a short-

flat decomposition:
• 𝑥 ← argmin/0∈𝒳 ∥ 𝑥0 − (𝑥 − 𝜂𝐀#∆) ∥!
• Constant progress in distance to x*

• Else:
• Break

• Return x truncated to s largest coordinates

Algorithm sketch
v is numerically sparse (NS) if

Restricted W-C: for all NS v,

Short-flat: for all NS unit v,

Input: s-sparse xin, ∥ 𝑥%&−𝑥∗∥!≤ 𝑅

Output: s-sparse xout, ∥ 𝑥()*−𝑥∗∥!≤
+
!

• 𝒳 ≔ {𝑥| ∥ 𝑥%& − 𝑥 ∥"= 𝑂 𝑠 𝑅}
• 𝑥 ← 𝑥%&
• For 10 iterations:

• ∆= 𝐀𝑥 − 𝑏 = 𝐀𝑣 for 𝑣 = 𝑥 − 𝑥∗

• If "
,
∑"-.-,∆.! ≥ Ω(1) and "

,
𝐀#∆ has a short-

flat decomposition:
• 𝑥 ← argmin/0∈𝒳 ∥ 𝑥0 − (𝑥 − 𝜂𝐀#∆) ∥!
• Constant progress in distance to x*

• Else:
• Break

• Return x truncated to s largest coordinates

Algorithm sketch

Makes sense even in semi-random case!

We find planted solution in near-linear time.

Analysis sketch

Analysis sketch

Analysis sketch

big (restricted W-C) small (flatness + Hölder)

small (shortness + Young)

• Overview
• Sparse recovery: SOTA and what’s new
• Matrix completion: SOTA and what’s new

• Sparse recovery
• Short-flat decompositions
• Projected gradient descent

• Matrix completion

Roadmap

Matrix short-flat decomposition?

“gradient” (i.e. scaled
residuals)

Matrix short-flat decomposition?

…hopefully flat
(opnorm bounded)?

Matrix short-flat decomposition?

Matrix Bernstein controls opnorm via…
• “Prob. 1 bound”: entrywise small
• “Variance bound”: row-column norms small

Matrix short-flat decomposition?

Matrix Bernstein controls opnorm via…
• “Prob. 1 bound”: entrywise small
• “Variance bound”: row-column norms small

Not true in general, but OK if we drop 1% of rows/cols.

Matrix short-flat decomposition?

Matrix Bernstein controls opnorm via…
• “Prob. 1 bound”: entrywise small
• “Variance bound”: row-column norms small

Not true in general, but OK if we drop 1% of rows/cols.
…recovering dropped rows/cols is most of the work…

…also need to maintain iterates are low-rank…

What else?

1. General framework for semi-random inverse problems?
• Similar “fast algo/robust algo” gaps for other problems
• Fine-grained guarantees?

2. Harder adversaries?
• How far can we push definition of “bad” observations?
• Weaker types of hidden structure?

Thank you!

Semi-Random Sparse Recovery in
Nearly-Linear Time

Matrix Completion in
Almost-Verification Time

Contact
kjtian.github.io

kjtian@cs.utexas.edu

