Short-Flat Decompositions and Faster Algorithms for Linear Inverse Problems

Kevin Tian (UT Austin)

Simons Institute Optimization and Algorithm Design Workshop

Based on joint work with:

Jonathan Kelner (MIT), Jerry Li (MSR), Allen Liu (MIT), Aaron Sidford (Stanford)

Roadmap

- Overview
- Sparse recovery: SOTA and what's new
- Matrix completion: SOTA and what's new
- Sparse recovery
- Short-flat decompositions
- Projected gradient descent
- Matrix completion

Sparse recovery

$$
\begin{aligned}
& \mathbf{A} x^{\star}=b \\
& \mathbf{A} \in \mathbb{R}^{n \times d} \\
& \text { (8) }
\end{aligned}
$$

Underconstrained regime: $n \ll d$
Clearly impossible in the worst case. Need to assume more!

Sparse recovery

Sparse recovery

$$
\begin{aligned}
& \mathbf{A} x^{\star}=b \\
& \mathbf{A} \in \mathbb{R}^{n \times d} \\
& x^{\star} \text { is } s \text { sparse }
\end{aligned} \quad\left(\begin{array}{cc}
-a_{1} & - \\
-a_{2} & - \\
\vdots \\
-a_{n} & -
\end{array}\right)\left(\begin{array}{c}
\left.\left[x^{\star}\right]_{1}\right]_{1} \\
{[x]_{2}} \\
\vdots \\
\left.x x^{x}\right]_{d}
\end{array}\right)=\left(\begin{array}{c}
{[b]_{1}} \\
{[\overrightarrow{l|l| l \mid l}} \\
\vdots \\
{\left[b_{n}\right]_{n}}
\end{array}\right)
$$

Assume: A satisfies RNP (no sparse vectors in kernel)

Algo: $\min _{\mathbf{A} x=b}\|x\|_{1}$
Polynomial time algorithms (convex programming)

Sparse recovery

$$
\begin{aligned}
& \mathbf{A} x^{\star}=b \\
& \mathbf{A} \in \mathbb{R}^{n \times d} \\
& x^{\star} \text { is } s \text {-sparse }
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
- & a_{1} & - \\
- & a_{2} & - \\
& \vdots & \\
- & a_{n} & -
\end{array}\right)\left(\begin{array}{c}
{\left[x^{\star}\right]_{1}} \\
{\left[x^{\star}\right]_{2}} \\
\vdots \\
{\left[x^{\star}\right]_{d}}
\end{array}\right)=\left(\begin{array}{c}
{[b]_{1}} \\
{[b]_{2}} \\
\vdots \\
{[b]_{n}}
\end{array}\right)
$$

Assume: A satisfies RNP $\underset{\substack{\text { (no sparse vectors in } \\ \text { kernel) }}}{\substack{\text { n }}}$
Algo: $\min _{\mathbf{A} x=b}\|x\|_{1}$
Upshot: very flexible + general!

- Extends to noisy settings
- Essentially minimal assumptions
...potentially expensive in high-dim.
Polynomial time algorithms (convex programming)

Sparse recovery

$$
\begin{aligned}
& \mathbf{A} x^{\star}=b \\
& \mathbf{A} \in \mathbb{R}^{n \times d} \\
& x^{\star} \text { is } s \text {-sparse }
\end{aligned}
$$

Assume: A satisfies RNP

Algo: $\min _{\mathbf{A} x=b}\|x\|_{1}$
Polynomial time algorithms (convex programming)
(8)
(\mathbf{A} is near-isometry on sparse vectors)

A satisfies RIP

$$
\begin{gathered}
\Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right) \\
\quad \text { for all }\|v\|_{0}=O(s)
\end{gathered}
$$

Nearly-linear time algorithms

Sparse recovery

$$
\begin{aligned}
& \mathbf{A} x^{\star}=b \\
& \mathbf{A} \in \mathbb{R}^{n \times d} \\
& x^{\star} \text { is } s \text {-sparse }
\end{aligned}
$$

Assume: A satisfies RNP

Algo: $\min _{\mathbf{A} x=b}\|x\|_{1}$
Polynomial time algorithms (convex programming)

$$
\left(\begin{array}{ccc}
- & a_{1} & - \\
- & a_{2} & - \\
\vdots & \\
- & a_{n} & -
\end{array}\right)\left(\begin{array}{c}
\left.\left[x^{\star}\right]\right]_{1} \\
{\left[x^{\star}\right]_{2}} \\
\vdots \\
{\left[x^{\star}\right]_{d}}
\end{array}\right)=\left(\begin{array}{c}
{[b]_{1}} \\
{[b]_{2}} \\
\vdots \\
{[b]_{n}}
\end{array}\right)
$$

(\mathbf{A} is near-isometry on sparse vectors)

A satisfies RIP

Greedy: Pursuit, OMP
Non-convex: IHT, CoSaMP
Convex: Projected GD

Nearly-linear time algorithms

Sparse recovery

- Theory: both work under standard generative models
- Practice: fast methods much more brittle [Davenport, Needell,Wakin 'I3], [Jain, Tewari, Kar 'I4], [Polania, Carrillo, Blanco-Velasco, Barner 'I4], [Zhang,Wei,Wei, Li, Liu, Liu‘I6], ...

What's going on?

Assume: A satisfies RNP

Algo: $\min _{\mathbf{A} x=b}\|x\|_{1}$
Polynomial time algorithms (convex programming)

A satisfies RIP
Greedy: Pursuit, OMP
Non-convex: IHT, CoSaMP
Convex: Projected GD

Nearly-linear time algorithms

Sparse recovery

Theory vs. practice: what's going on?

Not broken by semi-random adversary!

Assume: A satisfies RNP

Algo: $\min _{\mathbf{A} x=b}\|x\|_{1}$
Polynomial time algorithms (convex programming)

Easily broken by semi-random adversary!

A satisfies RIP
Greedy: Pursuit, OMP
Non-convex: IHT, CoSaMP
Convex: Projected GD

Nearly-linear time algorithms

Semi-random models

Hard! (NP-hard, info-impossible?)

Semi-random models

Semi-random sparse recovery

$\mathbf{A} x^{\star}=b$ $\mathbf{A} \in \mathbb{R}^{n \times d}$

Nearly-linear time algos:
assume restricted isometry property (RIP)

$$
\Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)
$$

$$
\text { for all }\|v\|_{0}=O(s)
$$

Semi-random sparse recovery

Basic semi-random adversary:
I. Take RIP matrix \mathbf{G}
2. Augment with additional "consistent" measurements
3. Shuffle matrix, present A

$$
\begin{aligned}
& \text { RIP: for all }\|v\|_{0}=O(s) \\
& \Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)
\end{aligned}
$$

Semi-random sparse recovery

$$
\begin{aligned}
& \text { RIP: for all }\|v\|_{0}=O(s) \\
& \Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)
\end{aligned}
$$

Semi-random sparse recovery

Fast algorithms?
I. Many greedy/non-convex iterative methods immediately fail (explicit counterexamples)
2. Convex iterative methods' analyses depend on restricted conditioning, easy to break

$$
\begin{aligned}
& \text { RIP: for all }\|v\|_{0}=O(s) \\
& \Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)
\end{aligned}
$$

Our basic result

	PRIP adversary:
1.	Take RIP matrix \mathbf{G}
2.	Augment with additional
"consistent" measurements	
3.	Shuffle matrix, present A

Theorem [Kelner, Li, Liu, Sidford,Tian '23]:
Can solve linear systems in entrywise-bounded* pRIP A in time

$$
\widetilde{O}(n d)
$$

Our general result
 $$
\left\|x-x^{\star}\right\|_{2}^{2}=O\left(\frac{1}{m}\left\|\xi_{\text {top } m}\right\|_{2}^{2}\right)
$$

$\mathbf{A} x^{\star}+\xi=b$
$\mathbf{A} \in \mathbb{R}^{n \times d}$

wRIP (>pRIP) adversary:
I. Exists diagonal reweighting W such that \mathbf{A}^{\top} WA is RIP and \mathbf{A} is entrywise bounded
2. We define $m:=\frac{\|w\|_{1}}{\|w\|_{\infty}}$

Theorem [Kelner, Li, Liu, Sidford,Tian '23]:

Can solve noisy linear systems in entrywisebounded wRIP A optimally in time

$$
\widetilde{O}\left(d \cdot \frac{n s}{m}\right)
$$

In pRIP model:

- When all of \mathbf{A} is RIP and $n=m \gg s$, sublinear
- When \mathbf{A} contains minimum $m \approx s$, linear

Matrix "sparse recovery"

$\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n]$
$\left\{\mathbf{A}_{i}\right\}_{i \in[n]}, \mathbf{X}^{\star} \in \mathbb{R}^{d \times d}$

Matrix "sparse recovery"

$\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n]$

$$
\gtrsim d r
$$

$\left\{\mathbf{A}_{i}\right\}_{i \in[n]}, \mathbf{X}^{\star} \in \mathbb{R}^{d \times d}$

Standard assumption:
\mathbf{X}^{\star} is ranker

Matrix "sparse recovery"

$$
\begin{array}{r}
\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n] \\
\\
\gtrsim d r
\end{array}
$$

Poster
Robust Matrix Sensing in the Semi-Random Model

$$
\begin{aligned}
& \text { Xing Gao • Yu Cheng } \\
& \text { Great Hall \& Hall B1+B2 \#1720 }
\end{aligned}
$$

$\left\{\mathbf{A}_{i}\right\}_{i \in[n]}, \mathbf{X}^{\star} \in \mathbb{R}^{d \times d}$

Standard assumption:

Theorem 1.1 (Semi-Random Matrix Sensing (Informal)). Given a set of wRIP sensing matrices $\left\{A_{i}\right\}_{i=1}^{n}$ and observation vector $b=\mathcal{A}\left[X^{*}\right]$, we can compute X such that $\left\|X-X^{*}\right\|_{F} \leq \epsilon$ with high probability in time $O\left(n d^{\omega+1}\right)$, where n is the number of sensing matrices and $O\left(d^{\omega}\right)$ represents the matrix multiplication time for $X \in \mathbb{R}^{d \times d}$.

Matrix completion

$$
\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n] \quad \mathbf{A}_{i}=e_{j_{i}} e_{k_{i}}^{\top} \forall i \in[n]
$$

$$
\left\{\mathbf{A}_{i}\right\}_{i \in[n]}, \mathbf{X}^{\star} \in \mathbb{R}^{d \times d}
$$

Standard assumption:

2						
		3				
					10	
		-7				
				2		

Matrix completion

$$
\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n] \quad \mathbf{A}_{i}=e_{j_{i}} e_{k_{i}}^{\top} \forall i \in[n]
$$

$$
\left\{\mathbf{A}_{i}\right\}_{i \in[n]}, \mathbf{X}^{\star} \in \mathbb{R}^{d \times d}
$$

Standard assumption:
"RIP"-type assumption impossible: dodge observations with single spike

Matrix completion

$$
\begin{array}{r}
\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n] \\
\underset{\gtrsim d r}{[n]}
\end{array}
$$

$\left\{\mathbf{A}_{i}\right\}_{i \in[n]}, \mathbf{X}^{\star} \in \mathbb{R}^{d \times d}$

Standard assumptions:

$$
\mathbf{X}^{\star}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}
$$

$\mathbf{U}, \mathbf{V} \in \mathbb{R}^{d \times r}$ are "spread"

Matrix completion

$$
\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n]
$$

$$
\left\{\mathbf{A}_{i}\right\}_{i \in[n]}, \mathbf{X}^{\star} \in \mathbb{R}^{d \times d}
$$

Standard assumptions:

$$
\mathbf{X}^{\star}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}
$$

$\mathbf{U}, \mathbf{V} \in \mathbb{R}^{d \times r}$ are "spread"

Matrix completion

$$
\begin{aligned}
& \left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in[n] \\
& \gtrsim d r
\end{aligned}
$$

Polynomial time:
$[$ Recht'll] $\quad \min _{\mathrm{X}^{\star} \text { matches obs }}\left\|\mathbf{X}^{\star}\right\| 1$
$\approx d r$ samples

Matrix completion

$$
\begin{array}{r}
\left\langle\mathbf{A}_{i}, \mathbf{X}^{\star}\right\rangle=b_{i} \quad \forall i \in \underset{\gtrsim d r}{[n]} \\
\underset{\sim}{l}
\end{array}
$$

Polynomial time: $\quad \min \left\|\mathbf{X}^{\star}\right\|_{1}$ [Recht'II] $\quad \mathrm{X}^{\star}$ matches obs

$\approx d r$ samples
$\substack{\text { Sander d } \\ \text { ansmpions }} \mathrm{X}^{\star}=\mathbf{U \Sigma} \mathrm{V}^{\top}$
$\mathbf{U}, \mathbf{V} \in \mathbb{R}^{d \times r}$ are "spread"

Matrix completion

Open questions:

I. Improved "fast" rates?
2. Beyond incoherence?

Polynomial time: $\quad \min \left\|\mathbf{X N}^{\star}\right\| 1$
[Recht'll] $\quad \mathrm{X}^{\star}$ matches obs
$\approx d r$ samples

Near-linear time:
[Jain-Netrapalli '15]
$\approx d r^{7}$ time
$\approx d r^{5}$ samples

Matrix completion

Open questions:

I. Improved "fast" rates?
2. Beyond incoherence?
3. Noise-robustness?

Observe: $\mathbf{M}^{\star}+\mathbf{N},\|\mathbf{N}\|_{\mathrm{F}} \leq \Delta$
Recovery: $\left\|\mathbf{M}-\mathbf{M}^{\star}\right\|_{\mathrm{F}} \leq \sqrt{d} \Delta$
...SOTA even for polynomial time!
[Candes-Plan ‘10]

$\approx d r$ samples

Near-linear time:
[Jain-Netrapalli ‘15]
$\approx d r^{7}$ time
$\approx d r^{5}$ samples

Matrix completion

Theorem, Part I [Kelner, Li, Liu, Sidford,Tian 23]:
From rank-r $\mathbf{M}^{\star} \in \mathbb{R}^{d \times d}+\left(\|\mathbf{N}\|_{F} \leq \Delta\right)$, can give $\mathbf{M} \in \mathbb{R}^{d \times d}, S \subseteq[d]$ with:
$\left\|\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{S \times S}\right\|_{\mathrm{F}}=O(\Delta),|S| \geq 0.99 d$

Polynomial time: $\quad \min \left\|\mathbf{X}^{\star}\right\|_{1}$ [Recht'II] $\quad \mathrm{X}^{\star}$ matches obs

$\approx d r$ samples

Near-linear time:
[Jain-Netrapalli' ‘5]
$\approx d r^{7}$ time
$\approx d r^{5}$ samples

Matrix completion

Theorem, Part I [Kelner, Li, Liu, Sidford,Tian 23]:
From rank-r $\mathbf{M}^{\star} \in \mathbb{R}^{d \times d}+\left(\|\mathbf{N}\|_{F} \leq \Delta\right)$, can give $\mathbf{M} \in \mathbb{R}^{d \times d}, S \subseteq[d]$ with: $\left\|\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{S \times S}\right\|_{\mathrm{F}}=O(\Delta),|S| \geq 0.99 d$

$$
\approx d r^{1+o(1)} \text { samples }
$$

$$
\approx d r^{2+o(1)} \text { time }
$$

Polynomial time:
[Recht'll] $]$ $\min _{\mathrm{X}^{\star} \text { matches obs }}\left\|\mathbf{X}^{\star}\right\|_{1}$
$\approx d r$ samples

Near-linear time:
[Jain-Netrapalli' ‘5]
$\approx d r^{7}$ time
$\approx d r^{5}$ samples

Matrix completion

Theorem, Part IIA [Kelner, Li, Liu, Sidford,Tian '23]:
From rank- r, "regular" $\mathbf{M}^{\star} \in \mathbb{R}^{d \times d}+$ $\left(\|\mathbf{N}\|_{F} \leq \Delta\right)$, can give $\mathbf{M} \in \mathbb{R}^{d \times d}$ with:

$$
\left\|\mathbf{M}-\mathbf{M}^{\star}\right\|_{\mathrm{F}}=O\left(r^{1.5} \Delta\right)
$$

...using

$$
\approx d r^{1+o(1)} \text { samples }
$$

$$
\approx d r^{2+o(1)} \text { time }
$$

Polynomial time: $\min \left\|\mathbf{X}^{\star}\right\|_{1}$ [Recht'll] X^{\star} matches obs

$\approx d r$ samples

Near-linear time:
PGD + clipping [Jain-Netrapalli ‘15]
$\approx d r^{7}$ time
$\approx d r^{5}$ samples

Matrix completion

Theorem, Part IIB [Kelner, Li, Liu, Sidford,Tian '23]:
From rank-r,"incoherent" $\mathbf{M}^{\star} \in \mathbb{R}^{d \times d}+$ ($\|\mathbf{N}\|_{F} \leq \Delta$), can give $\mathbf{M} \in \mathbb{R}^{d \times d}$ with:

$$
\left\|\mathbf{M}-\mathbf{M}^{\star}\right\|_{\mathrm{F}}=O\left(r^{1.5} \Delta\right)
$$

...using

$$
\approx d r^{2+o(1)} \text { samples }
$$

$$
\approx d r^{3+o(1)} \text { time }
$$

Polynomial time: $\min \left\|\mathbf{X}^{\star}\right\|_{1}$ [Recht'll] X^{\star} matches obs

$\approx d r$ samples

Near-linear time:
PGD + clipping
[Jain-Netrapalli ‘15]
$\approx d r^{7}$ time
$\approx d r^{5}$ samples

Roadmap

- Overview
- Sparse recovery: SOTA and what's new
- Matrix completion: SOTA and what's new
- Sparse recovery
- Short-flat decompositions
- Projected gradient descent
- Matrix completion

Optimization for sparse recovery?

RIP: for all $\|v\|_{0}=O(s)$
$\Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)$
"Restricted well-conditioning": Well-conditioned restricted to some set

Optimization for sparse recovery?

RIP: for all $\|v\|_{0}=O(s)$
$\Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)$

$$
\begin{aligned}
& \text { RIP+: for all NS } v \\
& \Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)
\end{aligned}
$$

v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

Optimization for sparse recovery?

A first attempt

- Maintain $x-x^{\star}$ is NS
- ??????
- Profit
v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

$$
\begin{aligned}
& \text { RIP+: for all NS } v \\
& \Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)
\end{aligned}
$$

Optimization for sparse recovery?

A first attempt

- Maintain $x-x^{\star}$ is NS
- ??????
- Profit

Question:

How to reason about effect of projection?

$$
\begin{aligned}
& \text { RIP+: for all NS } v \\
& \Omega\left(\|v\|_{2}\right)=\|\mathbf{A} v\|_{2}=O\left(\|v\|_{2}\right)
\end{aligned}
$$

v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

Key geometric insight

Lemma (informal): If you hit a unit v with a random Gaussian matrix, it is "flat" in all directions except v

Key geometric insight

Lemma (informal): If you hit a unit v with a random Gaussian matrix, it is "flat" in all directions except v

Random Gaussian matrix

$$
\left\{a_{i}\right\}_{i \in[n]} \sim_{\text {i.i.d. }} \mathcal{N}(0, \mathbf{I})
$$

Key geometric insight

$$
\left(\frac{1}{n} \sum_{i \in \in\left(a_{i} a_{i}\right.}\right) v
$$

Lemma (informal): If you hit a unit v with a random Gaussian matrix, it is "flat" in all directions except v

Write $a_{i}=\xi_{i} v+a_{i}^{\perp}$

$$
\xi_{i} \sim \mathcal{N}(0,1), a_{i}^{\perp} \sim \mathcal{N}\left(0, \mathbf{I}-v v^{\top}\right)
$$

Key geometric insight

$$
\left(\frac{1}{n} \sum_{i \in[n]} a_{i} a_{i}^{\top}\right) v
$$

Lemma (informal): If you hit a unit v with a random Gaussian matrix, it is "flat" in all directions except v

Write $a_{i}=\xi_{i} v+a_{i}^{\perp}$

$$
a_{i} a_{i}^{\top} v=\xi_{i}^{2} v+\xi_{i} a_{i}^{\perp}
$$

Key geometric insight

$$
\left(\frac{1}{n} \sum_{i \in[n]} a_{i} a_{i}^{\top}\right) v
$$

Lemma (informal): If you hit a unit v with a random Gaussian matrix, it is "flat" in all directions except v

Write $a_{i}=\xi_{i} v+a_{i}^{\perp}$

$$
a_{i} a_{i}^{\top} v=\xi_{i}^{2} v+\xi_{i} a_{i}^{\perp}
$$

$$
\frac{1}{n} \sum_{i \in[n]} a_{i} a_{i}^{\top} v \approx v+\frac{1}{n} \sum_{i \in[n]} \xi_{i} a_{i}^{\perp}
$$

Key geometric insight

$$
\left(\frac{1}{n} \sum_{i \in[n]} a_{i} a_{i}^{\top}\right) v
$$

Lemma (informal): If you hit a unit v with a random Gaussian matrix, it is "flat" in all directions except v

Write $a_{i}=\xi_{i} v+a_{i}^{\perp}$

$$
a_{i} a_{i}^{\top} v=\xi_{i}^{2} v+\xi_{i} a_{i}^{\perp}
$$

$$
\frac{1}{n} \sum_{i \in[n]} a_{i} a_{i}^{\top} v \approx v+\frac{1}{n} \sum_{i \in[n]} \xi_{i} a_{i}^{\perp}
$$

(essentially random)
"flat" := ℓ_{∞} bounded

Short-flat decompositions

Lemma (formal): let A be RIP with parameter s. For all NS unit v,

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A} v=p_{v}+e_{v} \\
\left\|p_{v}\right\|_{2}=O(1),\left\|e_{v}\right\|_{\infty}=O\left(\frac{1}{\sqrt{s}}\right)
\end{gathered}
$$

Why does PGD work?

Lemma: If you hit an NS unit v with $\mathbf{A}^{\top} \mathbf{A}$ where \mathbf{A} is RIP, the result has a short-flat decomposition.

Let $v:=x-x^{*}$
Suppose:

- \| $v \|_{2} \leq 1$
- $\|v\|_{1} \leq \sqrt{s}$

Why does PGD work?

Lemma: If you hit an NS unit v with $\mathbf{A}^{\top} \mathbf{A}$ where \mathbf{A} is RIP, the result has a short-flat decomposition.

Let $v:=x-x^{*}$
Suppose:

- $\|v\|_{2} \leq 1$
- $\|v\|_{1} \leq \sqrt{s}$

Case I: \| v $\|_{2} \leq \frac{1}{2}$
Halve our radius $)$
Case 2: \| $v \|_{2} \geq \frac{1}{2}$
Use $\mathbf{A}^{\mathrm{T}}(\mathbf{A} x-b)=\mathbf{A}^{\mathrm{T}} \mathbf{A} v$ as descent direction

Why does PGD work?

Lemma: If you hit an NS unit v with $\mathbf{A}^{\top} \mathbf{A}$ where \mathbf{A} is RIP, the result has a short-flat decomposition.

Case 2 is good idea by Lemma:
$\mathbf{A}^{\top} \mathbf{A} v \approx v+e$

$$
\text { "flat" := } \ell_{\infty} \text { bounded }
$$

Filtered by PGD against ℓ_{1} ball + Hölder's inequality

Case I: \|v $\|_{2} \leq \frac{1}{2}$
Halve our radius $;$
Case 2: \| v $\|_{2} \geq \frac{1}{2}$
Use $\mathbf{A}^{\mathrm{T}}(\mathbf{A} x-b)=\mathbf{A}^{\mathrm{T}} \mathbf{A} v$ as descent direction

Algorithm sketch

Input: s-sparse $x_{\text {in }},\left\|x_{\text {in }}-x^{*}\right\|_{2} \leq R$
Output: s-sparse $x_{\text {out }},\left\|x_{\text {out }}-x^{*}\right\|_{2} \leq \frac{R}{2}$

- $\mathcal{X}:=\left\{x \mid\left\|x_{\mathrm{in}}-x\right\|_{1}=O(\sqrt{s}) R\right\}$
- This set contains x^{*} by Cauchy-Schwarz
v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

RestrictedW-C: for all NS v,

$$
\frac{1}{n} \sum_{i \in[n]}\left\langle a_{i}, v\right\rangle^{2}=[\Omega(1), O(1)]
$$

Short-flat: for all NS unit v,

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A} v=p_{v}+e_{v} \\
\left\|p_{v}\right\|_{2}=O(1),\left\|e_{v}\right\|_{\infty}=O\left(\frac{1}{\sqrt{s}}\right)
\end{gathered}
$$

Algorithm sketch

Input: s-sparse $x_{\text {in }},\left\|x_{\text {in }}-x^{*}\right\|_{2} \leq R$
Output: s-sparse $x_{\text {out }},\left\|x_{\text {out }}-x^{*}\right\|_{2} \leq \frac{R}{2}$

- $\mathcal{X}:=\left\{x \mid\left\|x_{\mathrm{in}}-x\right\|_{1}=O(\sqrt{s}) R\right\}$
- $x \leftarrow x_{\text {in }}$
- For 10 iterations:
- If v is not numerically sparse, we're done
- If it is numerically sparse, we can PGD
v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

RestrictedW-C: for all NS v,

$$
\frac{1}{n} \sum_{i \in[n]}\left\langle a_{i}, v\right\rangle^{2}=[\Omega(1), O(1)]
$$

Short-flat: for all NS unit v,

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A} v=p_{v}+e_{v} \\
\left\|p_{v}\right\|_{2}=O(1),\left\|e_{v}\right\|_{\infty}=O\left(\frac{1}{\sqrt{s}}\right)
\end{gathered}
$$

Algorithm sketch

Input: s-sparse $x_{\text {in }},\left\|x_{\text {in }}-x^{*}\right\|_{2} \leq R$
Output: s-sparse $x_{\text {out }},\left\|x_{\text {out }}-x^{*}\right\|_{2} \leq \frac{R}{2}$

- $\mathcal{X}:=\left\{x \mid\left\|x_{\mathrm{in}}-x\right\|_{1}=O(\sqrt{s}) R\right\}$
- $x \leftarrow x_{\text {in }}$
- For 10 iterations:
- $\Delta=\mathbf{A} x-b=\mathbf{A} v$ for $v=x-x^{*}$
- If $\frac{1}{n} \sum_{1 \leq i \leq n} \Delta_{i}^{2} \geq \Omega(1)$ and $\frac{1}{n} \mathbf{A}^{\mathrm{T}} \Delta$ has a shortflat decomposition:
- $x \leftarrow \operatorname{argmin}_{x \prime \in \mathcal{X}}\left\|x^{\prime}-\left(x-\eta \mathbf{A}^{\mathrm{T}} \Delta\right)\right\|_{2}$
- Constant progress in distance to x^{*}
v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

RestrictedW-C: for all NS v,

$$
\frac{1}{n} \sum_{i \in[n]}\left\langle a_{i}, v\right\rangle^{2}=[\Omega(1), O(1)]
$$

Short-flat: for all NS unit v,

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A} v=p_{v}+e_{v} \\
\left\|p_{v}\right\|_{2}=O(1),\left\|e_{v}\right\|_{\infty}=O\left(\frac{1}{\sqrt{s}}\right)
\end{gathered}
$$

Algorithm sketch

Input: s-sparse $x_{\text {in }},\left\|x_{\text {in }}-x^{*}\right\|_{2} \leq R$
Output: s-sparse $x_{\text {out }},\left\|x_{\text {out }}-x^{*}\right\|_{2} \leq \frac{R}{2}$

- $\mathcal{X}:=\left\{x \mid\left\|x_{\mathrm{in}}-x\right\|_{1}=O(\sqrt{s}) R\right\}$
- $x \leftarrow x_{\text {in }}$
- For 10 iterations:
- $\Delta=\mathbf{A} x-b=\mathbf{A} v$ for $v=x-x^{*}$
- If $\frac{1}{n} \sum_{1 \leq i \leq n} \Delta_{i}^{2} \geq \Omega(1)$ and $\frac{1}{n} \mathbf{A}^{\mathrm{T}} \Delta$ has a shortflat decomposition:
- $x \leftarrow \operatorname{argmin}_{x \prime \in \mathcal{X}}\left\|x^{\prime}-\left(x-\eta \mathbf{A}^{\mathrm{T}} \Delta\right)\right\|_{2}$
- Constant progress in distance to x^{*}
- Else:
- Break
- Not numerically sparse, radius loose
v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

RestrictedW-C: for all NS v,

$$
\frac{1}{n} \sum_{i \in[n]}\left\langle a_{i}, v\right\rangle^{2}=[\Omega(1), O(1)]
$$

Short-flat: for all NS unit v,

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A} v=p_{v}+e_{v} \\
\left\|p_{v}\right\|_{2}=O(1),\left\|e_{v}\right\|_{\infty}=O\left(\frac{1}{\sqrt{s}}\right)
\end{gathered}
$$

Algorithm sketch

Input: s-sparse $x_{\text {in }},\left\|x_{\text {in }}-x^{*}\right\|_{2} \leq R$
Output: s-sparse $x_{\text {out }},\left\|x_{\text {out }}-x^{*}\right\|_{2} \leq \frac{R}{2}$

- $\mathcal{X}:=\left\{x \mid\left\|x_{\mathrm{in}}-x\right\|_{1}=O(\sqrt{s}) R\right\}$
- $x \leftarrow x_{\text {in }}$
- For 10 iterations:
- $\Delta=\mathbf{A} x-b=\mathbf{A} v$ for $v=x-x^{*}$
- If $\frac{1}{n} \sum_{1 \leq i \leq n} \Delta_{i}^{2} \geq \Omega(1)$ and $\frac{1}{n} \mathbf{A}^{\mathrm{T}} \Delta$ has a shortflat decomposition:
- $x \leftarrow \operatorname{argmin}_{x \prime \in \mathcal{X}}\left\|x^{\prime}-\left(x-\eta \mathbf{A}^{\mathrm{T}} \Delta\right)\right\|_{2}$
- Constant progress in distance to x^{*}
- Else:
- Break
v is numerically sparse (NS) if

$$
\frac{\|v\|_{1}^{2}}{\|v\|_{2}^{2}}=O(s)
$$

RestrictedW-C: for all NS v,

$$
\frac{1}{n} \sum_{i \in[n]}\left\langle a_{i}, v\right\rangle^{2}=[\Omega(1), O(1)]
$$

Short-flat: for all NS unit v,

$$
\begin{gathered}
\mathbf{A}^{\top} \mathbf{A} v=p_{v}+e_{v} \\
\left\|p_{v}\right\|_{2}=O(1),\left\|e_{v}\right\|_{\infty}=O\left(\frac{1}{\sqrt{s}}\right)
\end{gathered}
$$

- Return x truncated to s largest coordinates

Algorithm sketch

Input: s-sparse $x_{\text {in }},\left\|x_{\text {in }}-x^{*}\right\|_{2} \leq R$
Output: s-sparse $x_{\text {out }},\left\|x_{\text {out }}-x^{*}\right\|_{2} \leq \frac{R}{2}$

- $\mathcal{X}:=\left\{x \mid\left\|x_{\mathrm{in}}-x\right\|_{1}=O(\sqrt{s}) R\right\}$
- $x \leftarrow x_{\text {in }}$
- For 10 iterations:
- $\Delta=\mathbf{A} x-b=\mathbf{A} v$ for $v=x-x^{*}$
- If $\frac{1}{n} \sum_{1 \leq i \leq n} \Delta_{i}^{2} \geq \Omega(1)$ and $\frac{1}{n} \mathbf{A}^{\mathrm{T}} \Delta$ has a shortflat decomposition:
- $x \leftarrow \operatorname{argmin}_{x \prime \in X}\left\|x^{\prime}-\left(x-\eta \mathbf{A}^{\mathrm{T}} \Delta\right)\right\|_{2}$
- Constant progress in distance to x^{*}
- Else:
- Break
- Return x truncated to s largest coordinates

Analysis sketch

$$
\left\|x_{t}-x^{\star}\right\|_{2}^{2}-\left\|x_{t+1}-x^{\star}\right\|_{2}^{2} \geq 2 \eta\langle\underbrace{g_{t}}_{:=\mathbf{A}^{\top} \mathbf{A}\left(x_{t}-x^{\star}\right)}, x_{t+1}-x^{\star}\rangle-\left\|x_{t}-x_{t+1}\right\|_{2}^{2}
$$

Analysis sketch

$$
\begin{aligned}
\left\|x_{t}-x^{\star}\right\|_{2}^{2}-\left\|x_{t+1}-x^{\star}\right\|_{2}^{2} & \geq 2 \eta\langle\underbrace{g_{t}}_{:=\mathbf{A}^{\top} \mathbf{A}\left(x_{t}-x^{\star}\right)}, x_{t+1}-x^{\star}\rangle-\left\|x_{t}-x_{t+1}\right\|_{2}^{2} \\
& \geq 2 \eta\left\langle g_{t}, x_{t}-x^{\star}\right\rangle-2 \eta\left\langle e_{t}, x_{t}-x_{t+1}\right\rangle \\
& -2 \eta\left\langle p_{t}, x_{t}-x_{t+1}\right\rangle-\left\|x_{t}-x_{t+1}\right\|_{2}^{2}
\end{aligned}
$$

Analysis sketch

$$
\begin{gathered}
\left.\left\|x_{t}-x^{\star}\right\|_{2}^{2}-\left\|x_{t+1}-x^{\star}\right\|_{2}^{2} \geq \underset{:=\mathbf{A}^{\top} \mathbf{A}\left(x_{t}-x^{\star}\right)}{g_{t}}, x_{t+1}-x^{\star}\right\rangle-\left\|x_{t}-x_{t+1}\right\|_{2}^{2} \\
\geq 2 \eta\left\langle g_{t}, x_{t}-x^{\star}\right\rangle-2 \eta\left\langle e_{t}, x_{t}-x_{t+1}\right\rangle \\
\text { big (restricted W-C) } \quad \begin{array}{c}
\text { small (flatness + Hölder) } \\
-2 \eta\left\langle p_{t}, x_{t}-x_{t+1}\right\rangle-\left\|x_{t}-x_{t+1}\right\|_{2}^{2} \\
\text { small (shortness + Young) }
\end{array}
\end{gathered}
$$

Roadmap

- Overview
- Sparse recovery: SOTA and what's new
- Matrix completion: SOTA and what's new
- Sparse recovery
- Short-flat decompositions
- Projected gradient descent
- Matrix completion

Matrix short-flat decomposition?

$$
\frac{1}{p}\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{\Omega}
$$

Matrix short-flat decomposition?

$$
\frac{1}{p}\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{\Omega}=\underbrace{\mathbf{M}-\mathbf{M}^{\star}}_{\mathbf{P}}
$$

$$
+\underbrace{\frac{1}{p}\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{\Omega}-\left(\mathbf{M}-\mathbf{M}^{\star}\right)}_{\mathbf{E}}
$$

Matrix short-flat decomposition?

$$
\frac{1}{p}\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{\Omega}-\left(\mathbf{M}-\mathbf{M}^{\star}\right)
$$

Matrix Bernstein controls opnorm via...

- "Prob. I bound": entrywise small
- "Variance bound": row-column norms small

Matrix short-flat decomposition?

$$
\frac{1}{p}\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{\Omega}-\left(\mathbf{M}-\mathbf{M}^{\star}\right)
$$

Matrix Bernstein controls opnorm via...

- "Prob. I bound": entrywise small
- "Variance bound": row-column norms small

Not true in general, but OK if we drop I\% of rows/cols.

Matrix short-flat decomposition?

$$
\frac{1}{p}\left[\mathbf{M}-\mathbf{M}^{\star}\right]_{\Omega}-\left(\mathbf{M}-\mathbf{M}^{\star}\right)
$$

Matrix Bernstein controls opnorm via...

- "Prob. I bound": entrywise small
- "Variance bound": row-column norms small

Not true in general, but OK if we drop I\% of rows/cols.
...recovering dropped rows/cols is most of the work...
...also need to maintain iterates are low-rank...

What else?

I. General framework for semi-random inverse problems?

- Similar "fast algo/robust algo" gaps for other problems
- Fine-grained guarantees?

2. Harder adversaries?

- How far can we push definition of "bad" observations?
- Weaker types of hidden structure?

Thank you!

Contact
kjtian.github.io kjtian@cs.utexas.edu

Semi-Random Sparse Recovery in
Nearly-Linear Time

Matrix Completion in
Almost-Verification Time

