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TLDR: Better frequency estimation algorithms under 
natural assumptions

Some background first …



Frequency Estimation
Data stream S: a sequence of items from [n]
- E.g.: 8, 1, 7, 4, 6, 4, 10, 4, 4, 6, 8, 7, 5, 4, 2, 5, 6, 3, 9, 2

• Goal: at the end of the stream,  given item  
output an estimation  of the frequency in S

• Sub-linear space ?

i ∈ [n]
f̃i 𝑓𝑖 
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Two heroes (assumptions)
• Learning-augmented: Access to heavy hitter predictions

• Zipfian: True frequencies are heavy-tailed                                   

(for theory analysis)

Word frequencies in “Moby Dick” (Wikipedia)



The story so far [Hsu-Indyk-Katabi-Vakilian, ICLR’19]

• Augment sketching algorithms like CountMin 
(CM) or CountSketch (CS) with heavy-hitter 
predictions.
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The story so far [Hsu et al.]

• Augment sketching algorithms like CountMin (CM) 
or CountSketch (CS) with heavy-hitter predictions.

• Short and sweet intuition: heavy elements are 
responsible for error!
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Theoretical Analysis of [Hsu et al.]

• Analyzed it under Zipfian distribution

• Error metric: 

> “Average” error (Want better predictions for larger frequencies)

> Generalizes to other weights such as uniform

> Used in practical works ([Roy et al’16])

𝔼 [∑i fi ⋅ | f̃i − fi |]

 fi ∝ 1/i



Theoretical Analysis of [Hsu et al.]

• Analyzed it under Zipfian distribution

• Error metric: 

• B words of space

• Predictor correctly predicts top B heavy elements

∑i fi ⋅ | f̃i − fi |

 fi ∝ 1/i



Is the story over?

Next Steps Questions:

• Advantage only when space (B) is large?

• What about CountSketch?



Is the story over?
Next Steps Questions:

• Advantage only when space (B) is large?

• What about CountSketch?

Meta: 

• Can we just get better algorithms under Zipfian assumptions? 

• Do we even need predictions? “New” algorithms?



Our Results
Space = B words, n = # of elements, Error metric: ∑i fi ⋅ | f̃i − fi |

Characterize exact performance of 
classical algos and learned variants 
(for our error metric and Zipfian data)



Our Results

Learned variants are only 
useful over classic 
counterparts for large space

Space = B words, n = # of elements, Error metric: ∑i fi ⋅ | f̃i − fi |



•For small space (B ~ polylog n):   

New alg outperforms even prior 

learned variants without predictions

•Even better with predictions 
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•For small space (B ~ polylog n):   

New alg outperforms even prior 

learned variants without predictions

•Even better with predictions 

Space = B words, n = # of elements
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Zipfian assumption is also common in 

theory (e.g. [Milton-Price ’14])

Usually studied for ‘point wise’ error

Space = B words, n = # of elements
 Error metric: ∑i fi ⋅ | f̃i − fi |



New Algorithm Intuition (No predictions)



New Algorithm Intuition

Why would you incur large 

error for small elements?

Better to predict them as 0!
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elements are small



New Algorithm Intuition

Why would you incur large 

error for small elements?

Better to predict them as 0!

Use the estimate of CS itself!



New Algorithm Intuition

Note: The additive error of CS ( ) is a known quantity.Δ
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New Algorithm Intuition

Note: The additive error of CS ( ) is a known quantity.

Problem: Can potentially output 0 for large frequencies!
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Many small noisy CS tables

Space = B words, n = # of elements



Idea:

Use estimate of smaller noisy tables to determine if 

we should output 0 or listen to the large CS table
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Idea:

Use estimate of smaller noisy tables to determine if we 

should output 0 or listen to the large CS table

Small 
Tables

Stream 
element

> Δ

< Δ Output 0

Use Final CS 
Estimate

Space = B words, n = # of elements
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Some Empirical Results
Test on two real-world datasets 

• Internet search queries (AOL Dataset)

• Internet Traffic/IP (CAIDA Dataset)

• [Hsu et al.] obtained predictions (predictor trained on past versions of the data)





Why it works

Quick stretch time!
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Why it works

Ideal: Pay CS error for ‘large’ frequencies, pay fi error for ‘small’ frequencies

Large elements: If something goes ‘wrong’, we pay huge error: fi !



Handling large elements
To output 0 on a large element, all estimates of small tables are wayyyy off
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Handling large elements

To output 0 on a element i, all estimates of small tables are wayyyy off 

A majority of small estimates need to be off by O(fi).

Probability deviation is very large for single small table: 

• Event 1: An element with frequency > s collides with our element i [few 
elements due to Zipfian assumption!]

• Event 2: “Many” elements with frequency < s collide with element i



Handling large elements
To output 0 on a element i, all estimates of small tables are wayyyy off 

A majority of small estimates need to be off by O(fi).

• Event 1: An element with frequency > s collides with our element i [few 
elements due to Zipfian assumption!]

• Event 2: “Many” elements with frequency < s collide with element i [Small 
probability due to many]

Has to be “many” because we know the error is huge

Small probability of colliding on “many” elements!



Why it works
Ideal: Pay CS error for ‘large’ frequencies, pay fi error for ‘small’ frequencies

But it’s a bit asymmetric.

• Small elements: Even if something goes ‘wrong’, we only pay CS (= bounded) 
error

• Probability of going wrong ~ 1/log n

• Large elements: If something goes ‘wrong’, we pay huge error: fi !

• Probability estimate is “O(fi) off” exactly cancels fi factor



Thank you!

1) Better understanding of frequency estimation for Zipfian data?

2) ‘Better’ ways to use predictions? 

3) Other problems? Note: lots of work on learning-augmented algo design: 
https://algorithms-with-predictions.github.io/



Beyond Zipfian
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Note:

Can obtain good errors without Zipfian assumption by estimating the 

‘additive error’ of CountSketch on the fly



Our Results

Note: Our paper is a merger with an older manuscript

“(Learned) Frequency Estimation Algorithms under 
Zipfian Distribution”

Which analyzed the tight behavior of CS/CM and 
their learned variants (under Zipfian)

Space = B words, n = # of elements, Error metric: ∑i fi ⋅ | f̃i − fi |


