
Improved Frequency Estimation
Algorithms with and without Predictions

Anders Aamand* Justin Y. Chen* Huy Nguyen$ Sandeep Silwal* Ali Vakilian^
*MIT, $Northeastern, ^TTIC

Thanks to Piotr Indyk for some slides
Will appear at NeurIPS ‘23

1 2 3 4 5 6 7 8 9 10

TLDR: Better frequency estimation algorithms under
natural assumptions

Some background first …

Frequency Estimation
Data stream S: a sequence of items from [n]
- E.g.: 8, 1, 7, 4, 6, 4, 10, 4, 4, 6, 8, 7, 5, 4, 2, 5, 6, 3, 9, 2

• Goal: at the end of the stream, given item
output an estimation of the frequency in S

• Sub-linear space ?

i ∈ [n]
f̃i 𝑓𝑖

1 2 3 4 5 6 7 8 9 10

Two heroes (assumptions)
• Learning-augmented: Access to heavy hitter predictions

• Zipfian: True frequencies are heavy-tailed

(for theory analysis)

Word frequencies in “Moby Dick” (Wikipedia)

The story so far [Hsu-Indyk-Katabi-Vakilian, ICLR’19]

• Augment sketching algorithms like CountMin
(CM) or CountSketch (CS) with heavy-hitter
predictions.

Learned
Oracle

Stream
element

Heavy

Not Heavy

Unique
Bucket

Sketching Alg
(e.g. CM)

“Learned CM/CS”

The story so far [Hsu et al.]

• Augment sketching algorithms like CountMin (CM)
or CountSketch (CS) with heavy-hitter predictions.

• Short and sweet intuition: heavy elements are
responsible for error!

Learned
Oracle

Stream
element

Heavy

Not Heavy

Unique
Bucket

Sketching Alg
(e.g. CM)

[n]

“Learned CM/CS”

Theoretical Analysis of [Hsu et al.]

• Analyzed it under Zipfian distribution

• Error metric:

> “Average” error (Want better predictions for larger frequencies)

> Generalizes to other weights such as uniform

> Used in practical works ([Roy et al’16])

𝔼 [∑i fi ⋅ | f̃i − fi |]

 fi ∝ 1/i

Theoretical Analysis of [Hsu et al.]

• Analyzed it under Zipfian distribution

• Error metric:

• B words of space

• Predictor correctly predicts top B heavy elements

∑i fi ⋅ | f̃i − fi |

 fi ∝ 1/i

Is the story over?

Next Steps Questions:

• Advantage only when space (B) is large?

• What about CountSketch?

Is the story over?
Next Steps Questions:

• Advantage only when space (B) is large?

• What about CountSketch?

Meta:

• Can we just get better algorithms under Zipfian assumptions?

• Do we even need predictions? “New” algorithms?

Our Results
Space = B words, n = # of elements, Error metric: ∑i fi ⋅ | f̃i − fi |

Characterize exact performance of
classical algos and learned variants
(for our error metric and Zipfian data)

Our Results

Learned variants are only
useful over classic
counterparts for large space

Space = B words, n = # of elements, Error metric: ∑i fi ⋅ | f̃i − fi |

•For small space (B ~ polylog n):

New alg outperforms even prior

learned variants without predictions

•Even better with predictions

Space = B words, n = # of elements
 Error metric: ∑i fi ⋅ | f̃i − fi |

•For small space (B ~ polylog n):

New alg outperforms even prior

learned variants without predictions

•Even better with predictions

Space = B words, n = # of elements
 Error metric: ∑i fi ⋅ | f̃i − fi |

Zipfian assumption is also common in

theory (e.g. [Milton-Price ’14])

Usually studied for ‘point wise’ error

Space = B words, n = # of elements
 Error metric: ∑i fi ⋅ | f̃i − fi |

New Algorithm Intuition (No predictions)

New Algorithm Intuition

Why would you incur large

error for small elements?

Better to predict them as 0!

New Algorithm Intuition

Why would you incur large

error for small elements?

Better to predict them as 0!

Don’t know before hand which

elements are small

New Algorithm Intuition

Why would you incur large

error for small elements?

Better to predict them as 0!

Use the estimate of CS itself!

New Algorithm Intuition

Note: The additive error of CS () is a known quantity.Δ

CS
Stream
element

> Δ

< Δ

 Δ

Output 0

Use CS
Estimate

New Algorithm Intuition

Note: The additive error of CS () is a known quantity.

Problem: Can potentially output 0 for large frequencies!

Δ

CS
Stream
element

> Δ

< Δ

 Δ

Output 0

Use CS
Estimate

Many small noisy CS tables

Space = B words, n = # of elements

Idea:

Use estimate of smaller noisy tables to determine if

we should output 0 or listen to the large CS table

Small
Tables

Stream
element

> Δ

< Δ Output 0

Use Final CS
Estimate

Space = B words, n = # of elements

Idea:

Use estimate of smaller noisy tables to determine if we

should output 0 or listen to the large CS table

Small
Tables

Stream
element

> Δ

< Δ Output 0

Use Final CS
Estimate

Space = B words, n = # of elements

Learned
Oracle

Stream
element

Heavy

Not Heavy

Unique
Bucket

Our new alg

Learning-augmented Version

Some Empirical Results
Test on two real-world datasets

• Internet search queries (AOL Dataset)

• Internet Traffic/IP (CAIDA Dataset)

• [Hsu et al.] obtained predictions (predictor trained on past versions of the data)

Why it works

Quick stretch time!

Why it works

Ideal Analysis: Pay CS error for
‘large’ frequencies, pay fi error
for ‘small’ frequencies

Why it works

Ideal: Pay CS error for ‘large’ frequencies, pay fi error for ‘small’ frequencies

But it’s a bit asymmetric.

Why it works
Ideal: Pay CS error for ‘large’ frequencies, pay fi error for ‘small’ frequencies

But it’s a bit asymmetric.

• Small elements: Even if something goes ‘wrong’, we only pay CS (= bounded)
error

• Probability of going wrong ~ 1/log n [O(log log n) small tables for boosting]

Ideal: Pay CS error for ‘large’ frequencies, pay fi error for ‘small’ frequencies

But it’s a bit asymmetric.

• Small elements: Even if something goes ‘wrong’, we only pay CS (= bounded)
error

• Probability of going wrong ~ 1/log n [O(log log n) small tables for boosting]

Why it works

Ideal: Pay CS error for ‘large’ frequencies, pay fi error for ‘small’ frequencies

Large elements: If something goes ‘wrong’, we pay huge error: fi !

Handling large elements
To output 0 on a large element, all estimates of small tables are wayyyy off

Handling large elements

To output 0 on a element i, all estimates of small tables are wayyyy off

A majority of small estimates need to be off by O(fi).

Bound “probability deviation is very large” for single small table:

Handling large elements

To output 0 on a element i, all estimates of small tables are wayyyy off

A majority of small estimates need to be off by O(fi).

Bound “probability deviation is very large” for single small table:

• Event 1: An element with frequency > s collides with our element i [few
elements due to Zipfian assumption!]

Handling large elements

To output 0 on a element i, all estimates of small tables are wayyyy off

A majority of small estimates need to be off by O(fi).

Probability deviation is very large for single small table:

• Event 1: An element with frequency > s collides with our element i [few
elements due to Zipfian assumption!]

• Event 2: “Many” elements with frequency < s collide with element i

Handling large elements
To output 0 on a element i, all estimates of small tables are wayyyy off

A majority of small estimates need to be off by O(fi).

• Event 1: An element with frequency > s collides with our element i [few
elements due to Zipfian assumption!]

• Event 2: “Many” elements with frequency < s collide with element i [Small
probability due to many]

Has to be “many” because we know the error is huge

Small probability of colliding on “many” elements!

Why it works
Ideal: Pay CS error for ‘large’ frequencies, pay fi error for ‘small’ frequencies

But it’s a bit asymmetric.

• Small elements: Even if something goes ‘wrong’, we only pay CS (= bounded)
error

• Probability of going wrong ~ 1/log n

• Large elements: If something goes ‘wrong’, we pay huge error: fi !

• Probability estimate is “O(fi) off” exactly cancels fi factor

Thank you!

1) Better understanding of frequency estimation for Zipfian data?

2) ‘Better’ ways to use predictions?

3) Other problems? Note: lots of work on learning-augmented algo design:
https://algorithms-with-predictions.github.io/

Beyond Zipfian

Small
Tables

Stream
element

> Δ

< Δ Output 0

Use Final CS
Estimate

Note:

Can obtain good errors without Zipfian assumption by estimating the

‘additive error’ of CountSketch on the fly

Our Results

Note: Our paper is a merger with an older manuscript

“(Learned) Frequency Estimation Algorithms under
Zipfian Distribution”

Which analyzed the tight behavior of CS/CM and
their learned variants (under Zipfian)

Space = B words, n = # of elements, Error metric: ∑i fi ⋅ | f̃i − fi |

