
Fast Approximate Algorithms for
Chamfer Distance

Ainesh Bakshi Piotr Indyk Raj Jayaram Sandeep Silwal Erik Waingarten
 FODSI MIT FODSI MIT Google MIT U Penn

NeurIPS 2023, to appear

What is Chamfer distance?
• A distance between two point clouds A and B:

CD(A,B)=∑!∈#𝑚𝑖𝑛$∈% 	𝑑𝑖𝑠𝑡(𝑎, 𝑏)
 where dist(a,b) is e.g., the Euclidean distance
• Not a metric:
• Not symmetric

• Typically addressed by taking CD(A,B)+CD(B,A)
• No triangle inequality

• Typically addressed by not worrying about it

Chamfer distance = Relaxed Earth-Mover Distance

• Alternative definition of Chamfer distance:
CD(A,B)=𝑚𝑖𝑛

&:#→%
	∑!∈# 𝑑𝑖𝑠𝑡(𝑎, 𝑓(𝑏))

• Earth-Mover Distance*:
EMD(A,B)=𝑚𝑖𝑛

&:#
!:!
%
	∑!∈# 𝑑𝑖𝑠𝑡(𝑎, 𝑓(𝑏))

• CD is computationally more efficient than EMD
• Frequently used as a cheaper proxy for EMD
• “Relaxed EMD” (Kusner et al’15, Atasu et al’19)

*A.k.a. Wasserstein distance, Mallows distance, optimal transport distance

Chamfer distance: applications

• Distance between shapes (in 2D, 3D)

• Distance between bags of words (in high D)

• Loss function for deep learning (as above)

• Implemented in multiple libraries

How quickly can we compute CD(A,B) ?

• Recall
CD(A,B)=∑!∈#𝑚𝑖𝑛$∈% 	𝑑𝑖𝑠𝑡(𝑎, 𝑏)

• Assume A,B ⊆ Rd , |A|=|B|=n, dist=Euclidean distance

• Naive algorithm: dn2

• Accelerated algorithm: n nearest neighbor queries
 [Sudderth-Mandel-Freeman-Willsky’04]

• (1+ε)-approximate, low d:
 n (1/ε)d/2 log n [Clarkson’94]
• (1+ε)-approximate, high d:

 O~(𝑑𝑛&' (! "(!$%)"'!) [Andoni-Razenshteyn’15]

Our results

• Best prior algorithms: n (1/ε)O(d) log n , 𝑑𝑛&' (! "(!$%)"'!

• Our result I: can (1+ε)-approximate the value of CD(A,B) in time
d/ε2 n log n

• Easily parallelizable, “clean”
• Empirically fast

• Our result II: such a running time is impossible to achieve if we want to
output a (1+ε)-approximate mapping 𝑓: 𝐴→𝐵

• Assuming Hitting Set Conjecture

• Intuition: Our algorithm computes f(a) for only a small sample of as from A

Algorithm

1. Execute CrudeNN(A, B), which for each a∈A
outputs Da such that
• Da ⩾ minb∈B dist(a,b), and
• D = ∑ a∈A Da =O(log n) CD(A,B)

2. Construct a probability distribution, supported
on the set A, such that for each a∈A,

Pr [x=a]= Da/D
3. Let T = O(1/ε2 log n). For i=1…T, sample ai
and compute

ηi:= minb∈B dist(a,b)
4. Output |A|/T ∑i ηi D/Dai

1

10

4

7

3

Output = 3* 21/10 = 6.3
Truth = 3+4+4 = 11

/21

/21

/21

Analysis

1. Execute CrudeNN(A, B), which for each a∈A outputs Da such that
• Da ⩾ minb∈B dist(a,b), and
• D = ∑ a∈A Da =O(log n) CD(A,B)

2. Construct a probability distribution, supported on the set A, such
that for each a∈A,

Pr [x=a]= Da/D
3. Let T = O(1/ε2 log n). For i=1…T, sample ai and compute

ηi:= minb∈B dist(a,b) D/Da
4. Output |A|/T ∑i ηi

dn log n

Time ?

dn/ε2 log n

• Correctness ? E[ηi]=CD(A,B)/|A|
Variance can be bounded as well

CrudeNN(A,B) (described for dist(a,b)=||a-b||1)

• Goal: For each a∈A output Da such that:
• Da ⩾ minb∈B dist(a,b), and
• D = ∑ a∈A Da =O(log n) CD(A,B)

• One way to achieve this:
• Build a O(log n)-approximate NN data structure for B
• For each a∈A, query the data structure; Da = distance from a to returned point
• Query time O~(dn1/c) for c=O(log n) , but O~() hides some log n factors

• We go back to ”first principles” instead…
• …and obtain a weaker guarantee:
• The expectation of D is O(log n) CD(A,B)

CrudeNN(A,B) (described for dist(a,b)=||a-b||1)

• Similar to embedding into HSTs [Bartal’96]:
• Build a quadtree* for B
• For each a∈A, find the lowest level such that a’s

cell contains a point b∈B. Set Da=dist(a,b).

• One difference: each level is independently
shifted by a random translation
• Not a tree, but the algorithm still well-

defined

CrudeNN(A,B)

• For each a∈A, find the lowest level such that a’s cell
contains a point b∈B. Set Da=dist(a,b).
• Argument intuition:

• Consider a level of “scale” r; let hr(x) be the grid cell
containing x. We have:

• Pr[hr(x) ≠ hr(y)] < ||x-y||1 /r (scale>>distance)
• Pr[hr(x)=hr(y)]< exp(-||x-y||1 /r) (distance >>scale)

• Let b be the NN of a in B
• “Typically”, for r=O(||a-b||1) we have:

• hr(a) = hr(b)
• hr’(a) ≠ hr’(b) for all smaller scales r’ <r and all b’ such that

||a-b’||1 > log n ||a-b||1

• But we also need to consider “untypical” cases where
hr(a) ≠ hr(b) for r=O(||a-b||1)

• This is where the independence of the levels helps

Sample Experiments

• t

3D high D

2% error

exact

Our algorithm is fast, accurate and robust (provably)

Uniform vs. Importance sampling

Conclusions

• Fast algorithm for Chamfer distance
• Generalizes to weighted pointsets, other dist(.,.), etc
• Could be the algorithm of choice for comparing point clouds

