Fast Approximate Algorithms for Chamfer Distance

NeurIPS 2023, to appear

What is Chamfer distance?

- A distance between two point clouds A and B :

$$
\operatorname{CD}(\mathrm{A}, \mathrm{~B})=\sum_{a \in A} \min _{b \in B} \operatorname{dist}(a, b)
$$

where dist(a,b) is e.g., the Euclidean distance

- Not a metric:

- Not symmetric
- Typically addressed by taking $C D(A, B)+C D(B, A)$
- No triangle inequality
- Typically addressed by not worrying about it

Chamfer distance $=$ Relaxed Earth-Mover Distance

- Alternative definition of Chamfer distance:

$$
\mathrm{CD}(\mathrm{~A}, \mathrm{~B})=\min _{f: A \rightarrow B} \sum_{a \in A} \operatorname{dist}(a, f(b))
$$

- Earth-Mover Distance*:
$\operatorname{EMD}(\mathrm{A}, \mathrm{B})=\min _{f: A \xrightarrow{1: 1}} \sum_{a \in A} \operatorname{dist}(a, f(b))$
- CD is computationally more efficient than EMD
- Frequently used as a cheaper proxy for EMD
- "Relaxed EMD" (Kusner et al'15, Atasu et al'19)

*A.k.a. Wasserstein distance, Mallows distance, optimal transport distance

Chamfer distance: applications

- Distance between shapes (in 2D, 3D)

- Distance between bags of words (in high D)
- Loss function for deep learning (as above)

- Implemented in multiple libraries

How quickly can we compute $C D(A, B)$?

- Recall

$$
\mathrm{CD}(\mathrm{~A}, \mathrm{~B})=\sum_{a \in A} \min _{b \in B} \operatorname{dist}(a, b)
$$

- Assume $A, B \subseteq R^{d},|A|=|B|=n$, dist=Euclidean distance

- Naive algorithm: dn^{2}
- Accelerated algorithm: n nearest neighbor queries
[Sudderth-Mandel-Freeman-Willsky’04]
- ($1+\varepsilon$)-approximate, low d :

```
n(1/\varepsilon)}\mp@subsup{)}{}{d/2}\operatorname{log}
```

- $(1+\varepsilon)$-approximate, high d:

$$
\mathrm{O}^{\sim}\left(d n^{1+1 / 2(1+\varepsilon)^{2}-1}\right) \text { [Andoni-Razenshteyn'15] }
$$

Our results

- Best prior algorithms: $n(1 / \varepsilon)^{\mathrm{O}(\mathrm{d})} \log \mathrm{n}, d n^{1+1 / 2(1+\varepsilon)^{2}-1}$
- Our result I: can $(1+\varepsilon)$-approximate the value of $C D(A, B)$ in time

$$
d / \varepsilon^{2} n \log n
$$

- Easily parallelizable, "clean"
- Empirically fast
- Our result II: such a running time is impossible to achieve if we want to output a ($1+\varepsilon$)-approximate mapping $f: A \rightarrow B$
- Assuming Hitting Set Conjecture
- Intuition: Our algorithm computes $f(a)$ for only a small sample of as from A

Algorithm

1. Execute CrudeNN(A, B), which for each $a \in A$ outputs D_{a} such that

- $\mathrm{D}_{\mathrm{a}} \geqslant \min _{\mathrm{b} \in \mathrm{B}} \operatorname{dist}(\mathrm{a}, \mathrm{b})$, and
- $D=\sum_{a \in A} D_{a}=O(\log n) C D(A, B)$

2. Construct a probability distribution, supported on the set A, such that for each $a \in A$,

$$
\operatorname{Pr}[x=a]=D_{a} / D
$$

3. Let $T=O\left(1 / \varepsilon^{2} \log n\right)$. For $i=1 \ldots T$, sample a_{i} and compute

$$
\eta_{i}:=\min _{b \in B} \operatorname{dist}(a, b)
$$

4. Output $|A| / T \sum_{i} \eta_{i} D / D_{a i}$

$$
\begin{aligned}
& \text { Output }=3 * 21 / 10=6.3 \\
& \text { Truth }=3+4+4=11
\end{aligned}
$$

Time ?

1. Execute CrudeNN(A, B), which for each $a \in A$ outputs D_{a} such that

- $D_{a} \geqslant \min _{b \in B} \operatorname{dist}(a, b)$, and
$d n \log n$
- $D=\sum_{a \in A} D_{a}=O(\log n) C D(A, B)$

2. Construct a probability distribution, supported on the set A, such that for each $a \in A$,

$$
\operatorname{Pr}[x=a]=D_{a} / D
$$

$$
\eta_{i}:=\min _{b \in B} \operatorname{dist}(\alpha, b) D / D_{a}
$$

4. Output $|A| / T \sum_{i} \eta_{i}$

- Correctness ? $E\left[\eta_{i}\right]=C D(A, B) /|A|$ Variance can be bounded as well

CrudeNN(A,B) (described for dist(a,b)=\|a-b|| $\|_{1}$)

- Goal: For each $a \in A$ output D_{a} such that:
- $D_{a} \geqslant \min _{b \in B} \operatorname{dist}(a, b)$, and
- $D=\sum_{a \in A} D_{a}=O(\log n) C D(A, B)$
- One way to achieve this:
- Build a O(log n)-approximate NN data structure for B
- For each $a \in A$, query the data structure; $D_{a}=$ distance from a to returned point
- Query time $O^{\sim}\left(d n^{1 / c}\right)$ for $c=O(\log n)$, but $O^{\sim}()$ hides some log n factors
- We go back to "first principles" instead...
- ...and obtain a weaker guarantee:
- The expectation of D is $O(\log n) C D(A, B)$

$\operatorname{CrudeNN}(A, B)$ (described for $\left.\operatorname{dist}(a, b)=\|a-b\|_{1}\right)$

- Similar to embedding into HSTs [Bartal'96]:
- Build a quadtree* for B
- For each $a \in A$, find the lowest level such that a's cell contains a point $b \in B$. Set $D_{a}=\operatorname{dist}(a, b)$.
- One difference: each level is independently shifted by a random translation
- Not a tree, but the algorithm still welldefined

CrudeNN(A,B)

- For each $a \in A$, find the lowest level such that a's cell contains a point $b \in B$. Set $D_{a}=\operatorname{dist}(a, b)$.
- Argument intuition:
- Consider a level of "scale" r; let $h_{r}(x)$ be the grid cell containing x. We have:
- $\operatorname{Pr}\left[h_{r}(x) \neq h_{r}(y)\right]<\|x-y \mid\|_{1} / r \quad$ (scale>>distance)
- $\operatorname{Pr}\left[h_{r}(x)=h_{r}(y)\right]<\exp \left(-\|x-y \mid\|_{1} / r\right) \quad$ (distance $\left.\gg s c a l e\right)$
- Let b be the NN of a in B
- "Typically", for $r=O\left(\|a-b\|_{1}\right)$ we have:
- $h_{r}(a)=h_{r}(b)$
- $h_{r^{\prime}}(a), h_{r^{\prime}}(b)$ for all smaller scales $r^{\prime}<r$ and all b^{\prime} such that $\left|\left|a-b^{\prime}\right|\right|_{1}>\log n| | a-b| |_{1}$
- But we also need to consider "untypical" cases where $h_{r}(a) \neq h_{r}(b)$ for $r=0\left(\left.|a-b|\right|_{1}\right)$
- This is where the independence of the levels helps

Sample Experiments

(a) ShapeNet 3D
(b) Federalist Papers high D

Our algorithm is fast, accurate and robust (provably)

Uniform vs. Importance sampling

(a) ShapeNet

(b) Federalist Papers

(c) Gaussian Points

Conclusions

- Fast algorithm for Chamfer distance
- Generalizes to weighted pointsets, other dist(...), etc
- Could be the algorithm of choice for comparing point clouds

