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What is Chamfer distance?

* A distance between two point clouds A and B:
CD(A,B)=).,c. min,cp dist(a,b)
where dist(a,b) is e.g., the Euclidean distance

* Not a metric:
* Not symmetric
» Typically addressed by taking CD(A,B)+CD(B,A)
* No triangle inequality
» Typically addressed by not worrying about it



Chamfer distance = Relaxed Earth-Mover Distance

CD(A,B)=minf:A_)B Yaeadist(a, f(b))

e Earth-Mover Distance*:
EMD(A,B)=minf 11 Yaeadist(a, f(b))

A—

e Alternative definition of Chamfer distance: \

* CD is computationally more efficient than EMD

* Frequently used as a cheaper proxy for EMD
» “Relaxed EMD” (Kusner et al’15, Atasu et al’19) T

*A.k.a. Wasserstein distance, Mallows distance, optimal transport distance



Chamfer distance: applications

 Distance between shapes (in 2D, 3D)
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How quickly can we compute CD(A,B) 7

* Recall
CD(A,B)=).,c4 miny,cp dist(a,b) \

e Assume A,B € RY, |A|=|B|=n, dist=Euclidean distance

* Naive algorithm: dn?
* Accelerated algorithm: n nearest neighbor queries
[Sudderth-Mandel-Freeman-Willsky’04]
* (1+¢€)-approximate, low d: o/
n (1/€)¥2 log n [Clarkson’94] °
* (1+¢€)-approximate, high d:
1+1/ 2
O~(dn 2(1+£)%=1)  [Andoni-Razenshteyn’15]



Our results

1
e Best prior algorithms: n (1/¢)° log n , dn't 2are?-1
* Our result I: can (1+£)-approximate the value of CD(A,B) in time
d/€2 n logn

* Easily parallelizable, “clean”
* Empirically fast

e Our result Il: such a running time is impossible to achieve if we want to

output a (1+€)-approximate mapping f: A— B
* Assuming Hitting Set Conjecture

* Intuition: Our algorithm computes f(a) for only a small sample of as from A



Algorithm

1. Execute CrudeNN(A, B), which for each aeA 10/21
outputs D, such that 3
* D, = min,zdist(a,b), and o

* D=3 A D, =0(log n) CD(A,B)
2. Construct a probability distribution, supporte
on the set A, such that for each a€A,
Pr [x=a]=D,/D
3. LetT=0(1/¢?logn). Fori=1..T, sample a
and compute | o
ni:= min, g dist(a,b)

4. Output |[A[/T >,n, D/D,
Output =3*21/10=6.3
Truth =3+4+4 =11



Analysis Time ?

1. Execute CrudeNN(A, B), which for each a€A outputs D, such that
* D, > min,gdist(a,b), and dn logn
* D=3 A D, =0(log n) CD(A,B)

2. Construct a probability distribution, supported on the set A, such
that for each a€A,

=al]=D,/D
3. LetT=0(1/¢?logn). Fori=1..% sample a; and compute
Ni:= Mingcg dist 5
4. Output |Al/T 3. n; dn/e?logn
e Correctness? E[n]|=CD(A,B)/|A]
Variance can be bounded as well



CrudeNN(A,B) (described for dist(a,b)=| |a-b| | ;)

* Goal: For each a€A output D, such that:
* D, = minyggdist(a,b), and
* D=3 A D, =0(log n) CD(A,B)

* One way to achieve this:
e Build a O(log n)-approximate NN data structure for B
* For each a€A, query the data structure; D, = distance from a to returned point
* Query time O~(dn?/c) for c=O(log n) , but O~() hides some log n factors

* We go back to "first principles” instead...

e ...and obtain a weaker guarantee:
* The expectation of Dis O(log n) CD(A,B)



CrudeNN(A,B) (described for dist(a,b)=| |a-b] | )

 Similar to embedding into HSTs [Bartal’96]:

* Build a quadtree* for B

* For each aEA, find the lowest level such that a’s °
cell contains a point bEB. Set D,=dist(a,b).

* One difference: each level is independently

shifted by a random translation

* Not a tree, but the algorithm still well-
defined ©




CrudeNN(A,B)

* For each a€A, find the lowest level such that a’s cell
contains a point bEB. Set D_=dist(a,b).

* Argument intuition:
* Consider a level of “scale” r; let h.(x) be the grid cell
containing x. We have:

o Prih,(x) #h(y)] < | |xy||./r (scale>>distance)
* Pr[h.(x)=h.(y)]< exp(-| |x-y||./r) (distance >>scale)

* LetbbetheNNofainB

* “Typically”, for r=0(| |a-b| |, ) we have:
e h(a)=hb)

* ho(a) # h.(b) for all smaller scales r’ <r and all b’ such that
|[a-b’| [, >1ogn | [a-b] [,

* But we also need to consider “untypical” cases where
h.(a) # h,(b) for r=0(| |a-b| 1)

* This is where the independence of the levels helps




Sample Experiments

\ ShapeNet Dataset Federalist Papers Dataset
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Our algorithm is fast, accurate and robust (provably)



Relative Error

Uniform vs. Importance sampling

ShapeNet Dataset

Federalist Papers Dataset

Synthetic Dataset
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Conclusions

* Fast algorithm for Chamfer distance
* Generalizes to weighted pointsets, other dist(.,.), etc
* Could be the algorithm of choice for comparing point clouds



