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Eigenvalue Approximation

Basic linear algebraic primitive: Given symmetric A ∈ Rn×n, compute
approximations to all of A’s eigenvalues.

• Nearly exact computation of all eigenvalues in O(nω) time via
full eigendecomposition — but this is prohibitive for large n.

• Accurate approximation to k largest magnitude eigenvalues
using Õ(k) matrix vector multiplications with A (power method,
Krylov subspace methods, eigs). Õ(n2 · k) time for dense
matrices.

How well can we approximate the spectrum in sublinear time, i.e.,
o(n2) time for dense matrices?
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Summary

Today:

• Very simple sublinear time algorithm for approximating all
eigenvalues of any symmetric matrix A ∈ Rn×n up to additive
error ±εn · ‖A‖∞ using poly(log n, 1/ε) samples.

• Just sample a uniform random principal submatrix and
computes its eigenvalues.

• Improved results when you can sample rows/columns with
probabilities proportional to their sparsity or squared Euclidean
norms. Give error ε

√
nnz(A) · ‖A‖∞ and ε · ‖A‖F respectively.

• Lots of open questions on sublinear time algorithms for
eigenspectrum estimation.
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Our Main Result

Consider a symmetric matrix A ∈ Rn×n with ‖A‖∞ ≤ 1, and
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Main Result: There is an algorithm that reads O
(

log3 n
ε5

)
entries of A

and outputs λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n such that, for all i ∈ [n],

|λi − λ̃i| ≤ ε · n.

4

Lycia
-



Some Remarks

How good are ±εn additive error approximations to each of A’s
eigenvalues?

• |λi| ≤ ‖A‖F ≤ n for all i.

•
∑

λ2
i = ‖A‖2F ≤ n2. So there are at most 1/ε2 outlying

eigenvalues with |λi| ≥ ε · n.

• These are the only eigenvalues for which we give a non-trivial
approximation.

• It is easy to see that additive error scaling linearly in n · ‖A‖∞ is
necessary.
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Lower Bound Instance

Only ≈ ε2n2 entries differ across these matrices. Need to read
at least Ω(1/ε2) entries before you can distinguish them with
good probability.

6

E n

=



The Algorithm

Our algorithm just computes the eigenvalues of a small random
principal submatrix of A.

1. Let s = c log3 n
ε3 , and let AS be the random principal submatrix of A

where each row/column is included independently with
probability s

n .

2. Compute all eigenvalues of n
s · AS.

3. Use these eigenvalues to approximate all eigenvalues of A.

Observe that AS has O(s) eigenvalues while A has n.

Note: To obtain improved sample complexity, we further sparsify AS.
I will ignore this optimization in this talk.
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Eigenvalue Alignment

Approximate the large positive eigenvalues using the positive
eigenvalues of AS, the large negative ones using the negative
eigenvalues of AS, and the rest by 0.
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Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix A ∈ Rn×n with ‖A‖∞ ≤ 1, nnz(A)
non-zero entries, and nnz(Ai) entries in row i.

Sparse Matrix Result: Given the ability to sample i ∈ [n] with
probability ∝ nnz(Ai)

nnz(A) , there is an algorithm that reads O
(

log16 n
ε16

)

entries of A and outputs λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n such that, for all i ∈ [n],

|λi − λ̃i| ≤ ε ·
√

nnz(A).

• Observe that |λi| ≤ ‖A‖F ≤
√
nnz(A) ≤ n for all i.

• Sparsity sampling requires sublinear queries per sample in the
standard graph query model, where A is the adjacency matrix.

• Also possible via sampling a random non-zero entry when A is
stored in sparse matrix format.

• Surprisingly, simply computing the eigenvalues of a random
submatrix does not suffice here. Need to carefully zero out
some entries of the sampled matrix.
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Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix A ∈ Rn×n with ‖Ai‖22 equal to the
squared Euclidean norm of row i.

Norm-Based Sampling Result: Given the ability to sample i ∈ [n]
with probability ∝ ‖Ai‖2

2
‖A‖2

F
, there is an algorithm that reads O

(
log20 n
ε16

)

entries of A and outputs λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n such that, for all i ∈ [n],

|λi − λ̃i| ≤ ε‖A‖F.

• Observe that |λi| ≤ ‖A‖F ≤
√
nnz(A) ≤ n for all i.

• Norm based sampling has been considered since early work on
randomized linear algebra (e.g., [Freize, Kannan Vempala ‘04].

• Recently it has received significant attention in work on
‘quantum-inspired’ classical algorithms [Tang ‘19].

• Our result matches known sublinear time quantum algorithms
for singular value approximation up to poly(log n, 1/ε) factors
[Kerenidis, Prakash ‘16].
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Related Work

Recently, several works have looked at sublinear time property
testing algorithms for matrices in the bounded entry model.

• [Balcan, Li, Woodruff, Zhang ‘18] give algorithms for testing rank,
stable rank, and matrix norms. E.g., Õ(1/εc) queries for testing if
A’s Schatten-p norm is ≥ cnp or at least an ε fraction of A’s
entries must be changed for it to have this property.

• [Bakshi, Chepurko, Jayaram ‘20] give Õ(1/εc) query algorithms
for testing if A is either positive semidefinite or has at least one
negative eigenvalue < −εn.

• Our point-wise approximation guarantee immediately implies
such a testing result, but can be stronger. However, our ε and
log n dependence is worse.

• Subsequent to our work, [Needell, Swartworth, and Woodruff
‘22, ‘23] give optimal eigenvalue approximation algorithms in
the matrix vector query model. Also see [Andoni, Nguyen ‘13]
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for testing if A is either positive semidefinite or has at least one
negative eigenvalue < −εn.

• Our point-wise approximation guarantee immediately implies
such a testing result, but can be stronger. However, our ε and
log n dependence is worse.

• Subsequent to our work, [Needell, Swartworth, and Woodruff
‘22, ‘23] give optimal eigenvalue approximation algorithms in
the matrix vector query model. Also see [Andoni, Nguyen ‘13]

11



Related Work

Recently, several works have looked at sublinear time property
testing algorithms for matrices in the bounded entry model.

• [Balcan, Li, Woodruff, Zhang ‘18] give algorithms for testing rank,
stable rank, and matrix norms. E.g., Õ(1/εc) queries for testing if
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Related Work

Several other works look at sublinear time spectral density
estimation for normalized graph adjacency matrices, which have
‖A‖∞ ≤ 1.

• The goal is to approximate the spectral density: the distribution
placing mass 1/n at each eigenvalue.

• [Cohen-Steiner, Kong, Sohler, and Valiant ‘18] give a 2O(1/ε) time
algorithm for ε error approximation in the Wasserstein-1
distance.

• [Braverman, Krishnan, and Musco ‘22] give a Õ(n/εc) time
algorithm for the same task.

• Our result gives εn error approximation in the Wasserstein-1
distance.

• Note that the eigenvalues of a general matrix with ‖A‖∞ ≤ 1 lie
in [−n,n]. Those of a normalized adjacency matrix lie in [−1, 1].
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Broader Context

Broader Research Goal: Use randomness to give sublinear time
algorithms for natural linear algebraic problems. Typically under
some assumption on the input matrix structure.

• Õ(nk/εc) time algorithms for near optimal rank-k approximation
of positive semidefinite and distance matrices [Musco Musco
’17, Musco Woodruff ‘17, Bakshi Woodruff ‘18, Indyk et al. ‘19]

• Õ(d · n1.173) time algorithm for estimating the top eigenvalue of
a Gaussian kernel matrix [Backurs Indyk Musco Wagner ‘21]

• Sublinear time algorithms for structured matrices via sublinear
time matrix vector multiplication [Shi Woodruff ‘19]

• ‘Quantum-inspired’ algorithms for linear algebra [Tang ‘18,
Chepurko Clarkson Horesh Lin Woodruff ‘21]

• Classic additive error randomized SVD [Frieze Kannan Vempala
‘04, Drineas Kannan Mahoney ‘06].

13



Broader Context

Broader Research Goal: Use randomness to give sublinear time
algorithms for natural linear algebraic problems. Typically under
some assumption on the input matrix structure.
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Proof Approach
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Proof Approach

Recall: For a uniformly random principal submatrix AS, need to
show that the eigenvalues of n

s · AS, appropriately padded with
zeros, approximate all eigenvalues of A to error ±εn.

• AS will be O(s)× O(s) for s = poly(log n, 1/ε).
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Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give
non-trivial approximations, and its middle eigenvalues, and analyze
these components separately.

• Let Vo ∈ Rn×no have columns equal to all eigenvectors with
corresponding eigenvalues satisfying |λi| ≥ εn. Let Vm ∈ Rn×nm

have columns equal to the remaining eigenvectors.

• Let Λo ∈ Rno×no and Λm ∈ Rnm×nm be the corresponding diagonal
eigenvalue matrices.

• Write A = Ao + Am where Ao = VoΛoVTo and Am = VmΛmVTm.

• Can similarly write n
s · AS = STAS = STAoS+ STAmS.
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Proof Approach

So Far: Have written A = Ao + Am and STAS = STAoS+ STAmS.

Step 1: Show that the non-zero eigenvalues of STAoS
approximate all the eigenvalues of Ao to ±εn error.

Step 2: Show that the eigenvalues of STAmS are all small in
magnitude — i.e. ≤ εn.

Step 3: By Weyl’s inequality, this gives that the eigenvalues of
STAS, appropriately padded with zeros, approximate those of A
to error ±O(εn).
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Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of STAoS approximate all
the eigenvalues of Ao to ±εn error.

Key Proof Idea: Since ‖A‖∞ ≤ 1, its outlying eigenvectors are all
incoherent — i.e., their mass is spread across many entries. Thus,
they are well approximated via uniform sampling.

For any unit norm eigenvector v ∈ Rn with Av = λ · v and |λ| ≥ εn:

|v(i)| = 1
|λ| · |[Av](i)|

=
1
|λ| · 〈Ai,:, v〉 ≤

1
|λ| · ‖Ai,:‖2 · ‖v‖2 ≤

1
ε
√
n
.

I.e., v is within a 1/ε factor of being perfectly flat.

The above bound was an important part of [Bakshi, Chepurko, and
Jayaram ‘20]. We show a related bound, that ‖[Vo]i,:‖22 ≤ 1

ε2n . I.e., we
show that the leverage scores of Vo are uniformly bounded.
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Step 1: Show that the non-zero eigenvalues of STAoS approximate all
the eigenvalues of Ao to ±εn error.

Key Proof Idea: Since ‖A‖∞ ≤ 1, its outlying eigenvectors are all
incoherent — i.e., their mass is spread across many entries. Thus,
they are well approximated via uniform sampling.
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Sampling Outlying Eigendirections

So far: Can show that the outlying eigenspace of A is incoherent,
with ith leverage score bounded by ‖[Vo]i,:‖22 ≤ 1

ε2n .

• Via a standard matrix Bernstein bound, can show that if we take
s = Õ(1/ε4) samples, with high probability VToSSTVo ≈ VToVo ≈ I.

• Can use this to argue that the nonzero eigenvalues of
STAoS = STVoΛoVoS are close to those of Λo — i.e., close to the
outlying eigenvalues in Ao.

• This completes Step 1 of the proof.
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Sampling Middle Eigendirections

It remains to show that the eigenvalues of STAmS are bounded in
magnitude by εn.

• Via the incoherence of Vo, can show that ‖Ao‖∞ ≤ 1
ε and so by

triangle inequality, ‖Am‖∞ ≤ ‖A‖∞ + ‖Ao‖∞ ≤ 1+ 1
ε .

• Can then apply spectral norm bounds for random principal
submatrices of bounded entry matrices [Rudelson Vershynin
‘07, Tropp ‘08], to show that ‖STAmS‖2 ≤ εn when s = Õ(1/ε2).
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Proof Recap

Step 0: Split A = Ao +Am into its outlying and middle eigendirections.

Step 1: Prove that the outlying eigendirections of A are incoherent,
and thus, uniform sampling approximately preserves the eigenvalues
of Ao. I.e., the non-zero eigenvalues of STAoS approximate all the
eigenvalues of Ao to ±εn error.

Step 2: Use the incoherence of Ao to argue that Am = A− Ao is
entrywise bounded, and thus ‖STAmS‖2 ≤ εn.

Step 3: Combine the above to show that, after padding by zeros, the
eigenvalues of n

s · AS = STAS = STAoS+ STAmS approximate those of A
up to ±εn error.
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Improved Bounds with Non-Uniform Sampling
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Non-Uniform Sampling

Natural extension of random submatrix algorithm to
sparsity-based sampling:

1. Let s = poly(log n, 1/ε), and let AS be the random principal
submatrix of A where each row/column is included
independently with probability pi = s · nnz(Ai)

nnz(A) .

2. Let D be the diagonal matrix with Di,i =
1√
pj

if the ith

sampled row/column is row j.
3. Compute all eigenvalues of DASD.
4. Use these eigenvalues to approximate all eigenvalues of A.

Observe that if the rows have uniform sparsity, DASD = n
s · AS,

and we have exactly the uniform sampling algorithm.
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Challenge 1: The Identity

Say that A = I, so sparsity-based sampling is just uniform sampling,
so DASD = n

s · AS. Also nnz(A) = n.

• Want to approximate all eigenvalues up to ±ε
√
n

• However, AS is just a smaller identity matrix, so n
s · AS has all

eigenvalues equal to n
s .

• Would need to set s ≥
√
n
ε to achieve the desired bound.

Simple Fix: Set the diagonal of AS to 0. Introduces at most ±1 error
into the eigenvalue estimates and resolves this issue. When A = I,
AS = 0. So our eigenvalue estimates all have error 1.
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Challenge 2: Sparse Rows and Columns

Consider A with Ai,i+1 = Ai+1,i = 1 for all i = 1, . . . ,n− 1.

•
√
nnz(A) ≤

√
2n and |λi| ≤ 2 for all i. Roughly, DASD ≈ n

s · AS.

• If s = o(
√
n), with good probability, n

s · AS = 0, and we get good
estimates: ±2 error.

• When s = c
√
n, with constant probability, n

s · AS is non-zero
(birthday paradox), and we have error ≈ n

s =
√
n
c > ε

√
n.

• Can find many related examples: entries at the intersection of
sparse rows/columns get scaled up too much in DASD, leading
to large estimation errors.

23



Challenge 2: Sparse Rows and Columns

Consider A with Ai,i+1 = Ai+1,i = 1 for all i = 1, . . . ,n− 1.

•
√
nnz(A) ≤

√
2n and |λi| ≤ 2 for all i. Roughly, DASD ≈ n

s · AS.

• If s = o(
√
n), with good probability, n

s · AS = 0, and we get good
estimates: ±2 error.

• When s = c
√
n, with constant probability, n

s · AS is non-zero
(birthday paradox), and we have error ≈ n

s =
√
n
c > ε

√
n.

• Can find many related examples: entries at the intersection of
sparse rows/columns get scaled up too much in DASD, leading
to large estimation errors.

23

-



Challenge 2: Sparse Rows and Columns

Consider A with Ai,i+1 = Ai+1,i = 1 for all i = 1, . . . ,n− 1.

•
√
nnz(A) ≤

√
2n and |λi| ≤ 2 for all i. Roughly, DASD ≈ n

s · AS.

• If s = o(
√
n), with good probability, n

s · AS = 0, and we get good
estimates: ±2 error.

• When s = c
√
n, with constant probability, n

s · AS is non-zero
(birthday paradox), and we have error ≈ n

s =
√
n
c > ε

√
n.

• Can find many related examples: entries at the intersection of
sparse rows/columns get scaled up too much in DASD, leading
to large estimation errors.

23

0



Challenge 2: Sparse Rows and Columns

Consider A with Ai,i+1 = Ai+1,i = 1 for all i = 1, . . . ,n− 1.

•
√
nnz(A) ≤

√
2n and |λi| ≤ 2 for all i. Roughly, DASD ≈ n

s · AS.

• If s = o(
√
n), with good probability, n

s · AS = 0, and we get good
estimates: ±2 error.

• When s = c
√
n, with constant probability, n

s · AS is non-zero
(birthday paradox), and we have error ≈ n

s =
√
n
c > ε

√
n.

• Can find many related examples: entries at the intersection of
sparse rows/columns get scaled up too much in DASD, leading
to large estimation errors.

23

O

O -



Challenge 2: Sparse Rows and Columns

Consider A with Ai,i+1 = Ai+1,i = 1 for all i = 1, . . . ,n− 1.

•
√
nnz(A) ≤

√
2n and |λi| ≤ 2 for all i. Roughly, DASD ≈ n

s · AS.

• If s = o(
√
n), with good probability, n

s · AS = 0, and we get good
estimates: ±2 error.

• When s = c
√
n, with constant probability, n

s · AS is non-zero
(birthday paradox), and we have error ≈ n

s =
√
n
c > ε

√
n.

• Can find many related examples: entries at the intersection of
sparse rows/columns get scaled up too much in DASD, leading
to large estimation errors. 23
[



Zeroing Out Entries

• To handle these cases, we argue that zeroing out the entries of
A lying at the intersection of sparse rows and columns does not
significantly alter the eigenvalues.

• Ensures that after sampling, no entries are scaled up too much
in DASD, and lets us extend our uniform sampling proof to give
±ε

√
nnz(A) error with sparsity-based sampling.

• See paper for the full argument. Challenging to obtain bounds
on STAmS when S is sampled non-uniformly

• Our approach loses many poly(log n, 1/ε) factors. What is the
right algorithm/analysis here?
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Open Questions
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Open Questions

• Our uniform sampling bound samples a Õ(1/ε3)× Õ(1/ε3)
random principal submatrix to give ±εn approximations.

• We believe this can be tightened to O(1/ε2)× O(1/ε2), matching
a lower bound for algorithms based on principal submatrix
sampling.

• When A is PSD, a trivial proof based on approximate matrix
multiplication obtains the above bound.

• A simple matrix Bernstein bound shows that if we
independently sample O(log n/ε2) rows and columns then we
can approximate all singular values to ±εn.

• Perhaps techniques from [Woodruff, Swartworth ‘23], who give
optimal bounds in the matvec query model can be useful.
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Open Questions

• Can we obtain tight Õ(1/ε2) query complexity for computing ±εn
approximations to all eigenvalues? Requires going beyond
principal submatrix sampling, for which a simple Ω(1/ε4) lower
bound holds. What is even a plausible algorithm here?

• Can we approximate ‖A‖1 =
∑n

i=1 |λi| to error 1/2 · n3/2 using
o(n2) queries to A? [Balcan, Li, Woodruff, Zhang ‘18] show that
Ω̃(n) is required. Key challenge problem in understanding how
to approximate bulk spectral properties.

• For what classes of structured matrices can we give stronger
approximation bounds? E.g., interesting bounds are known for
normalized graph adjacency matrices. What else?
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Follow Up Work

In recent work Universal Matrix Sparsifiers and Fast Deterministic
Algorithms for Linear Algebra with Bhattacharjee, Dexter, Musco, Ray,
Sachdeva, and Woodruff, we show that, perhaps surprisingly, our
results can be derandomized to some extent.

• Reading Õ(n/ε4) entries of any symmetric A ∈ Rn×n with
‖A‖∞ ≤ 1 according to the edges of a fixed spectral expander
graph, suffices to approximate that matrix (and all of its
eigenvalues) to spectral norm error εn.

• Can be improved to O(n/ε2) entries when A is PSD.

• What else is possible with deterministic queries?
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