Sublinear Time Eigenvalue Approximation via Random Sampling

Cameron Musco
University of Massachusetts Amherst

Joint with: Rajarshi Bhattacharjee (UMass), Gregory Dexter (Purdue), Petros Drineas (Purdue), Archan Ray (UMass)
ICALP 2023

Eigenvalue Approximation

Basic linear algebraic primitive: Given symmetric $A \in \mathbb{R}^{n \times n}$, compute approximations to all of A's eigenvalues.

- Nearly exact computation of all eigenvalues in $O\left(n^{\omega}\right)$ time via full eigendecomposition - but this is prohibitive for large n.
- Accurate approximation to k largest magnitude eigenvalues using $\tilde{O}(k)$ matrix vector multiplications with A (power method, Krylov subspace methods, eigs). $\tilde{O}\left(n^{2} \cdot k\right)$ time for dense matrices.

Eigenvalue Approximation

Basic linear algebraic primitive: Given symmetric $A \in \mathbb{R}^{n \times n}$, compute approximations to all of A's eigenvalues.

- Nearly exact computation of all eigenvalues in $O\left(n^{\omega}\right)$ time via full eigendecomposition - but this is prohibitive for large n.
- Accurate approximation to k largest magnitude eigenvalues using $\tilde{O}(k)$ matrix vector multiplications with A (power method, Krylov subspace methods, eigs). $\tilde{O}\left(n^{2} \cdot k\right)$ time for dense matrices.

How well can we approximate the spectrum in sublinear time, i.e., $o\left(n^{2}\right)$ time for dense matrices?

Summary

Today:

- Very simple sublinear time algorithm for approximating all eigenvalues of any symmetric matrix $A \in \mathbb{R}^{n \times n}$ up to additive error $\pm \epsilon n \cdot\|A\|_{\infty}$ using poly $(\log n, 1 / \epsilon)$ samples.
- Just sample a uniform random principal submatrix and computes its eigenvalues.
- Improved results when you can sample rows/columns with probabilities proportional to their sparsity or squared Euclidean norms. Give error $\epsilon \sqrt{\mathrm{nnz}(A)} \cdot\|A\|_{\infty}$ and $\epsilon \cdot\|A\|_{F}$ respectively.
- Lots of open questions on sublinear time algorithms for eigenspectrum estimation.

Our Main Result

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1$, and eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$.
Main Result: There is an algorithm that reads $O\left(\frac{\log ^{3} n}{\epsilon^{5}}\right)$ entries of A and outputs $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{n}$ such that, for all $i \in[n]$,

$[G]\left[\begin{array}{l}\pi \\ \sigma\end{array}\right]$

Some Remarks

How good are $\pm \epsilon n$ additive error approximations to each of A's eigenvalues?

$$
\pm \varepsilon_{n}
$$

- $\left|\lambda_{i}\right| \leq\|A\|_{F} \leq n$ for all i.
- $\sum \lambda_{i}^{2}=\|A\|_{F}^{2} \leq n^{2}$. So there are at most $\xrightarrow{1 / \epsilon^{2} \text { outlying }}$ eigenvalues with $\left|\lambda_{i}\right| \geq \epsilon \cdot n$.
- These are the only eigenvalues for which we give a non-trivial approximation.

Some Remarks

How good are $\pm \epsilon n$ additive error approximations to each of A's eigenvalues?

- $\left|\lambda_{i}\right| \leq\|A\|_{F} \leq n$ for all i.

- $\sum \lambda_{i}^{2}=\|A\|_{F}^{2} \leq n^{2}$. So there are at most $1 / \epsilon^{2}$ outlying eigenvalues with $\left|\lambda_{i}\right| \geq \epsilon \cdot n$.
- These are the only eigenvalues for which we give a non-trivial approximation.
- It is easy to see that additive error scaling linearly in $n \cdot\|A\|_{\infty}$ is necessary.

Lower Bound Instance

Only $\approx \epsilon^{2} n^{2}$ entries differ across these matrices. Need to read at least $\underline{\Omega\left(1 / \epsilon^{2}\right)}$ entries before you can distinguish them with good probability.

The Algorithm

Our algorithm just computes the eigenvalues of a small random principal submatrix of A.

The Algorithm

Our algorithm just computes the eigenvalues of a small random principal submatrix of A.

1. Let $s=\frac{c \log ^{3} n}{\epsilon^{3}}$, and let A_{S} be the random principal submatrix of A where each row/column is included independently with probability $\frac{s}{n}$.
2. Compute all eigenvalues of $\frac{n}{s}$. A_{s}.
3. Use these eigenvalues to approximate all eigenvalues of A.

The Algorithm

Our algorithm just computes the eigenvalues of a small random principal submatrix of A.

1. Let $s=\frac{c \log ^{3} n}{\epsilon^{3}}$, and let A_{S} be the random principal submatrix of A where each row/column is included independently with probability $\frac{s}{n}$.
2. Compute all eigenvalues of $\frac{n}{s} \cdot A_{s}$.
3. Use these eigenvalues to approximate all eigenvalues of A. Observe that A_{s} has $O(s)$ eigenvalues while A has n.

The Algorithm

Our algorithm just computes the eigenvalues of a small random principal submatrix of A.

1. Let $s=\frac{c \log ^{3} n}{\epsilon^{3}}$, and let A_{S} be the random principal submatrix of A where each row/column is included independently with probability $\frac{s}{n}$.
2. Compute all eigenvalues of $\frac{n}{s} \cdot A_{s}$.
3. Use these eigenvalues to approximate all eigenvalues of A. Observe that A_{s} has $O(s)$ eigenvalues while A has n.

Note: To obtain improved sample complexity, we further sparsify A_{s}. I will ignore this optimization in this talk.

Eigenvalue Alignment

Approximate the large positive eigenvalues using the positive eigenvalues of A_{s}, the large negative ones using the negative eigenvalues of A_{s}, and the rest by 0 .
$\mathrm{O}(\mathrm{s})$ eigenvalues of $\frac{n}{s} A_{S}$

$\{105,56,32,0,0,0,0,0,-1,-6,-76\}$
n approximate eigenvalues of A

Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1, n n z(A)$ non-zero entries, and nnz $\left(A_{i}\right)$ entries in row i.

Sparse Matrix Result: Given the ability to sample $i \in[n]$ with probability $\propto \frac{n n z\left(A_{i}\right)}{\operatorname{nnz}(A)}$, there is an algorithm that reads $O\left(\frac{\log ^{16} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{n}$ such that, for all $i \in[n]$,

$$
\left|\lambda_{i}-\tilde{\lambda}_{i}\right| \leq \epsilon \cdot \sqrt{\mathrm{nnz}(A)}
$$

Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1, n n z(A)$ non-zero entries, and nnz $\left(A_{i}\right)$ entries in row i.

Sparse Matrix Result: Given the ability to sample $i \in[n]$ with probability $\propto \frac{n n z\left(A_{i}\right)}{n n z(A)}$, there is an algorithm that reads $O\left(\frac{\log ^{16} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{n}$ such that, for all $i \in[n]$,

$$
\left|\lambda_{i}-\tilde{\lambda}_{i}\right| \leq \epsilon \cdot \sqrt{\mathrm{nnz}(A)}
$$

- Observe that $\left|\lambda_{i}\right| \leq\|A\|_{F} \leq \sqrt{n n z(A)} \leq n$ for all i.

Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1, n n z(A)$ non-zero entries, and nnz $\left(A_{i}\right)$ entries in row i.

Sparse Matrix Result: Given the ability to sample $i \in[n]$ with probability $\propto \frac{n n z\left(A_{i}\right)}{n n z(A)}$, there is an algorithm that reads $O\left(\frac{\log ^{16} n}{\epsilon^{6}}\right)$ entries of A and outputs $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{n}$ such that, for all $i \in[n]$,

$$
\left|\lambda_{i}-\tilde{\lambda}_{i}\right| \leq \epsilon \cdot \sqrt{\mathrm{nnz}(A)}
$$

- Observe that $\left|\lambda_{i}\right| \leq\|A\|_{F} \leq \sqrt{n n z(A)} \leq n$ for all i.
- Sparsity sampling requires sublinear queries per sample in the standard graph query model, where A is the adjacency matrix.
- Also possible via sampling a random non-zero entry when A is stored in sparse matrix format.

Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1, n n z(A)$ non-zero entries, and nnz $\left(A_{i}\right)$ entries in row i.

Sparse Matrix Result: Given the ability to sample $i \in[n]$ with probability $\propto \frac{n n z\left(A_{i}\right)}{n n z(A)}$, there is an algorithm that reads $O\left(\frac{\log ^{16} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{n}$ such that, for all $i \in[n]$,

$$
\left|\lambda_{i}-\tilde{\lambda}_{i}\right| \leq \epsilon \cdot \sqrt{\mathrm{nnz}(A)}
$$

Observe that $\left|\lambda_{i}\right| \leq\|A\|_{F} \leq \sqrt{n n z(A)} \leq n$ for all i.

- Sparsity sampling requires sublinear queries per sample in the standard graph query model, where A is the adjacency matrix.
- Also possible via sampling a random non-zero entry when A is stored in sparse matrix format.
- Surprisingly, simply computing the eigenvalues of a random submatrix does not suffice here. Need to carefully zero out some entries of the sampled matrix.

Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\left\|A_{i}\right\|_{2}^{2}$ equal to the squared Euclidean norm of row i.

Norm-Based Sampling Result: Given the ability to sample $i \in[n]$ with probability $\propto \frac{\left\|A_{i}\right\|_{2}^{2}}{\|A\|_{F}^{2}}$, there is an algorithm that reads $O\left(\frac{\log ^{20} n}{\epsilon^{6}}\right)$ entries of A and outputs $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{n}$ such that, for all $i \in[n]$,

$$
\left|\lambda_{i}-\tilde{\lambda}_{i}\right| \leq \epsilon\|A\|_{F} .
$$

Improved Bounds with Non-Uniform Sampling

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $\left\|A_{i}\right\|_{2}^{2}$ equal to the squared Euclidean norm of row i.

Norm-Based Sampling Result: Given the ability to sample $i \in[n]$ with probability $\propto \frac{\|A \cdot\|_{2}^{2}}{\|A\|_{F}^{2}}$, there is an algorithm that reads $O\left(\frac{\log ^{20} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \ldots \geq \tilde{\lambda}_{n}$ such that, for all $i \in[n]$,

$$
\left|\lambda_{i}-\tilde{\lambda}_{i}\right| \notin\|A\|_{F} .
$$

- Observe that $\left|\lambda_{i}\right| \leq\|A\|_{F} \leq \sqrt{n n z(A)} \leq n$ for all i.
- Norm based sampling has been considered since early work on randomized linear algebra (e.g., [Freize, Kannan Vempala '04].
- Recently it has received significant attention in work on 'quantum-inspired' classical algorithms [Tang '19].
- Our result matches known sublinear time quantum algorithms for singular value approximation up to poly $(\log n, 1 / \epsilon)$ factors [Kerenidis, Prakash '16].

Related Work

Recently, several works have looked at sublinear time property testing algorithms for matrices in the bounded entry model.

Related Work

Recently, several works have looked at sublinear time property testing algorithms for matrices in the bounded entry model.

- [Balcan, Li, Woodruff, Zhang '18] give algorithms for testing rank, stable rank, and matrix norms. E.g., $\tilde{O}\left(1 / \epsilon^{c}\right)$ queries for testing if A's Schatten-p norm is $\geq c n^{p}$ or at least an ϵ fraction of $A^{\prime} s$ entries must be changed for it to have this property.
- [Bakshi, Chepurko, Jayaram '20] give Õ $\left(1 / \epsilon^{c}\right)$ query algorithms for testing if A is either positive semidefinite or has at least one negative eigenvalue $<-\epsilon n$.

Related Work

Recently, several works have looked at sublinear time property testing algorithms for matrices in the bounded entry model.

- [Balcan, Li, Woodruff, Zhang '18] give algorithms for testing rank, stable rank, and matrix norms. E.g., $\tilde{O}\left(1 / \epsilon^{c}\right)$ queries for testing if A's Schatten-p norm is $\geq c n^{p}$ or at least an ϵ fraction of $A^{\prime} s$ entries must be changed for it to have this property.
- [Bakshi, Chepurko, Jayaram '20] give Õ $\left(1 / \epsilon^{c}\right)$ query algorithms for testing if A is either positive semidefinite or has at least one negative eigenvalue $<-\epsilon n$.
- Our point-wise approximation guarantee immediately implies such a testing result, but can be stronger. However, our ϵ and $\log n$ dependence is worse.

Related Work

Recently, several works have looked at sublinear time property testing algorithms for matrices in the bounded entry model.

- [Balcan, Li, Woodruff, Zhang '18] give algorithms for testing rank, stable rank, and matrix norms. E.g., $\tilde{O}\left(1 / \epsilon^{c}\right)$ queries for testing if A's Schatten-p norm is $\geq c n^{p}$ or at least an ϵ fraction of $A^{\prime} s$ entries must be changed for it to have this property.
- [Bakshi, Chepurko, Jayaram '20] give Õ $\left(1 / \epsilon^{c}\right)$ query algorithms for testing if A is either positive semidefinite or has at least one negative eigenvalue $<-\epsilon n$.
- Our point-wise approximation guarantee immediately implies such a testing result, but can be stronger. However, our ϵ and $\log n$ dependence is worse.
- Subsequent to our work, [Needell, Swartworth, and Woodruff '22, '23] give optimal eigenvalue approximation algorithms in the matrix vector query model. Also see [Andoni, Nguyen '13]

Related Work

Several other works look at sublinear time spectral density estimation for normalized graph adjacency matrices, which have $\|A\|_{\infty} \leq 1$.

- The goal is to approximate the spectral density: the distribution placing mass $1 / n$ at each eigenvalue.
- [Cohen-Steiner, Kong, Sohler, and Valiant '18] give a $2^{0(1 / \epsilon)}$ time algorithm for ϵ error approximation in the Wasserstein-1 distance.
- [Braverman, Krishnan, and Musco '22] give a Õ $\left(n / \epsilon^{c}\right)$ time algorithm for the same task.

Related Work

Several other works look at sublinear time spectral density estimation for normalized graph adjacency matrices, which have $\|A\|_{\infty} \leq 1$.

- The goal is to approximate the spectral density: the distribution placing mass $1 / n$ at each eigenvalue.
- [Cohen-Steiner, Kong, Sohler, and Valiant '18] give a $2^{0(1 / \epsilon)}$ time algorithm for ϵ error approximation in the Wasserstein-1 distance.
- [Braverman, Krishnan, and Musco '22] give a Õ $\left(n / \epsilon^{c}\right)$ time algorithm for the same task.
- Our result gives ϵ, error approximation in the Wasserstein-1 distance.
- Note that the eigenvalues of a general matrix with $\|A\|_{\infty} \leq 1$ lie in $[-n, n]$. Those of a normalized adjacency matrix lie in $[-1,1]$.

Broader Context

Broader Research Goal: Use randomness to give sublinear time algorithms for natural linear algebraic problems. Typically under some assumption on the input matrix structure.

Broader Context

Broader Research Goal: Use randomness to give sublinear time algorithms for natural linear algebraic problems. Typically under some assumption on the input matrix structure.

- Õ $\left(n k / \epsilon^{c}\right)$ time algorithms for near optimal rank- k approximation of positive semidefinite and distance matrices [Musco Musco '17, Musco Woodruff '17, Bakshi Woodruff '18, Indyk et al. '19]
- $\tilde{O}\left(d \cdot n^{1.173}\right)$ time algorithm for estimating the top eigenvalue of a Gaussian kernel matrix [Backurs Indyk Musco Wagner '21]
- Sublinear time algorithms for structured matrices via sublinear time matrix vector multiplication [Shi Woodruff '19]
- ‘Quantum-inspired’ algorithms for linear algebra [Tang '18, Chepurko Clarkson Horesh Lin Woodruff '21]
- Classic additive error randomized SVD [Frieze Kannan Vempala '04, Drineas Kannan Mahoney '06].

Proof Approach

Proof Approach

Recall: For a uniformly random principal submatrix A_{S}, need to show that the eigenvalues of $\frac{n}{s} \cdot A_{S}$, appropriately padded with zeros, approximate all eigenvalues of A to error $\pm \epsilon$.

- A_{S} will be $O(s) \times O(s)$ for $s=\operatorname{poly}(\log n, 1 / \epsilon)$.

Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give ${ }^{2} \varepsilon_{n}$ non-trivial approximations, and its middle eigenvalues, and analyze these components separately.

Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give non-trivial approximations, and its middle eigenvalues, and analyze these components separately.

- Let $V_{0} \in \mathbb{R}^{n \times n_{0}}$ have columns equal to all eigenvectors with corresponding eigenvalues satisfying $\left|\lambda_{i}\right| \geq \epsilon$. Let $\underline{V_{m}} \in \mathbb{R}^{n \times n_{m}}$ have columns equal to the remaining eigenvectors.
- Let $\Lambda_{0} \in \mathbb{R}^{n_{o} \times n_{o}}$ and $\Lambda_{m} \in \mathbb{R}^{n_{m} \times n_{m}}$ be the corresponding diagonal eigenvalue matrices.
- Write $A=A_{0}+A_{m}$ where $A_{0}=V_{0} \Lambda_{0} V_{0}^{\top}$ and $A_{m}=V_{m} \Lambda_{m} V_{m}^{\top}$.

Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give non-trivial approximations, and its middle eigenvalues, and analyze these components separately.

- Let $V_{0} \in \mathbb{R}^{n \times n_{0}}$ have columns equal to all eigenvectors with corresponding eigenvalues satisfying $\left|\lambda_{i}\right| \geq \epsilon n$. Let $V_{m} \in \mathbb{R}^{n \times n_{m}}$ have columns equal to the remaining eigenvectors.
- Let $\Lambda_{o} \in \mathbb{R}^{n_{o} \times n_{o}}$ and $\Lambda_{m} \in \mathbb{R}^{n_{m} \times n_{m}}$ be the corresponding diagonal eigenvalue matrices.
- Write $A=A_{0}+A_{m}$ where $A_{0}=V_{0} \Lambda_{0} V_{0}^{\top}$ and $A_{m}=V_{m} \Lambda_{m} V_{m}^{\top}$.

- Can similarly write $\frac{n}{S} \cdot A_{S}=S^{\top} A S=S^{\top} A_{0} S+S^{\top} A_{m} S$.

Proof Approach

So Far: Have written $A=A_{0}+A_{m}$ and $S^{\top} A S=S^{\top} A_{0} S+S^{\top} A_{m} S$.

Proof Approach

So Far: Have written $A=A_{0}+A_{m}$ and $S^{\top} A S=S^{\top} A_{0} S+S^{\top} A_{m} S$.
Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{o} to $\pm \epsilon n$ error.

Proof Approach

So Far: Have written $A=A_{0}+A_{m}$ and $S^{\top} A S=S^{\top} A_{0} S+S^{\top} A_{m} S$.
Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{o} to $\pm \epsilon n$ error.

Step 2: Show that the eigenvalues of $S^{\top} A_{m} S$ are all small in magnitude - i.e. $\leq \epsilon$.

Proof Approach

So Far: Have written $A=A_{0}+A_{m}$ and $S^{\top} A S=S^{\top} A_{0} S+S^{\top} A_{m} S$.
Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{o} to $\pm \epsilon n$ error.

Step 2: Show that the eigenvalues of $S^{\top} A_{m} S$ are all small in magnitude - i.e. $\leq \epsilon$ n.

Step 3: By Weyl's inequality, this gives that the eigenvalues of $S^{\top} A S$, appropriately padded with zeros, approximate those of A to error $\pm O(\epsilon n)$.

Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{0} to $\pm \epsilon n$ error.

Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{0} to $\pm \epsilon n$ error.

Key Proof Idea: Since $\|A\|_{\infty} \leq 1$, its outlying eigenvectors are all incoherent - i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{0} to $\pm \epsilon n$ error.

Key Proof Idea: Since $\|A\|_{\infty} \leq 1$, its outlying eigenvectors are all incoherent - i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^{n}$ with $A v=\lambda \cdot v$ and $|\lambda| \geq \epsilon n$:

$$
\underline{|v(i)|}=\frac{1}{|\lambda|} \cdot|[A v](i)|
$$

Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{0} to $\pm \epsilon n$ error.

Key Proof Idea: Since $\|A\|_{\infty} \leq 1$, its outlying eigenvectors are all incoherent - i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^{n}$ with $A v=\lambda \cdot v$ and $|\lambda| \geq \epsilon n$:

$$
|v(i)|=\frac{1}{|\lambda|} \cdot|[A v](i)|=\frac{1}{|\lambda|} \cdot\left\langle A_{i,:}, v\right\rangle \leq \frac{1}{|\lambda|} \cdot\left\|A_{i,:}\right\|_{2} \cdot\|v\|_{2}
$$

Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{0} to $\pm \epsilon n$ error.

Key Proof Idea: Since $\|A\|_{\infty} \leq 1$, its outlying eigenvectors are all incoherent - i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^{n}$ with $A v=\lambda \cdot v$ and $|\lambda| \geq \epsilon n$:

Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{0} to $\pm \epsilon n$ error.

Key Proof Idea: Since $\|A\|_{\infty} \leq 1$, its outlying eigenvectors are all incoherent - i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^{n}$ with $A v=\lambda \cdot v$ and $|\lambda| \geq \epsilon n$:

$$
|v(i)|=\frac{1}{|\lambda|} \cdot|[A v](i)|=\frac{1}{|\lambda|} \cdot\left\langle A_{i,:}, v\right\rangle \leq \frac{1}{|\lambda|} \cdot\left\|A_{i,:}\right\|_{2} \cdot\|v\|_{2} \leq \frac{1}{\epsilon \sqrt{n}} .
$$

I.e., v is within a $1 / \epsilon$ factor of being perfectly flat.

Incoherence of Outlying Eigenvalues

Step 1: Show that the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{0} to $\pm \epsilon n$ error.

Key Proof Idea: Since $\|A\|_{\infty} \leq 1$, its outlying eigenvectors are all incoherent - i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^{n}$ with $A v=\lambda \cdot v$ and $|\lambda| \geq \epsilon n$:

The above bound was an important part of [Bakshi, Chepurko, and Jayaram '20]. We show a related bound, that $\left\|\left[V_{0}\right]_{i,:}\right\|_{2}^{2} \leq \frac{1}{\epsilon^{2} n}$. I.e., we show that the leverage scores of V_{0} are uniformly bounded.

Sampling Outlying Eigendirections

So far: Can show that the outlying eigenspace of A is incoherent, with $i^{\text {th }}$ leverage score bounded by $\left\|\left[V_{0}\right]_{i,:}\right\|_{2}^{2} \leq \frac{1}{\epsilon^{2} n}$.

Sampling Outlying Eigendirections

So far: Can show that the outlying eigenspace of A is incoherent, with $i^{\text {th }}$ leverage score bounded by $\left\|\left[V_{0}\right]_{i,:}\right\|_{2}^{2} \leq \frac{1}{\epsilon^{2} n}$.

- Via a standard matrix Bernstein bound, can show that if we take $s=\tilde{O}\left(1 / \epsilon^{4}\right)$ samples, with high probability $V_{0}^{\top} S S^{\top} V_{0} \approx V_{0}^{\top} V_{0} \approx 1$.
- Can use this to argue that the nonzero eigenvalues of
$S^{\top} A_{0} S=S^{\top} V\left(\Lambda_{0}\right) V_{0} S$ are close to those of Λ_{o} - i.e., close to the outiynn eigenvalues in A_{0}.
- This completes Step 1 of the proof.

Sampling Middle Eigendirections

It remains to show that the eigenvalues of $S^{\top} A_{m} S$ are bounded in magnitude by ϵ.

Sampling Middle Eigendirections

It remains to show that the eigenvalues of $S^{\top} A_{m} S$ are bounded in magnitude by ϵ.

- Via the incoherence of V_{0}, can show that $\left\|A_{0}\right\|_{\infty} \leq \frac{1}{\epsilon}$ and so by triangle inequality, $\left\|A_{m}\right\|_{\infty} \leq\|A\|_{\infty}+\left\|A_{\circ}\right\|_{\infty} \leq 1+\frac{1}{\epsilon}$.

Sampling Middle Eigendirections

It remains to show that the eigenvalues of $S^{\top} A_{m} S$ are bounded in magnitude by ϵ.

- Via the incoherence of V_{0}, can show that $\left\|A_{0}\right\|_{\infty} \leq \frac{1}{\epsilon}$ and so by triangle inequality, $\left\|A_{m}\right\|_{\infty} \leq\|A\|_{\infty}+\left\|A_{\circ}\right\|_{\infty} \leq 1+\frac{1}{\epsilon}$.

- Can then apply spectral norm bounds for random principal submatrices of bounded entry matrices [Rudelson Vershynin '07, Tropp '08], to show that $\left\|S^{\top} A_{m} S\right\|_{2} \leq \epsilon n$ when $s=\tilde{O}\left(1 / \epsilon^{2}\right)$.

Proof Recap

Step 0: Split $A=A_{0}+A_{m}$ into its outlying and middle eigendirections.
Step 1: Prove that the outlying eigendirections of A are incoherent, and thus, uniform sampling approximately preserves the eigenvalues of A_{0}. I.e., the non-zero eigenvalues of $S^{\top} A_{0} S$ approximate all the eigenvalues of A_{o} to $\pm \epsilon n$ error.

Step 2: Use the incoherence of A_{0} to argue that $A_{m}=A-A_{0}$ is entrywise bounded, and thus $\left\|S^{\top} A_{m} S\right\|_{2} \leq \epsilon$.

Step 3: Combine the above to show that, after padding by zeros, the eigenvalues of $\frac{n}{S} \cdot A_{S}=S^{\top} A S=S^{\top} A_{0} S+S^{\top} A_{m} S$ approximate those of A up to $\pm \epsilon n$ error.

Improved Bounds with Non-Uniform Sampling

Non-Uniform Sampling

Natural extension of random submatrix algorithm to sparsity-based sampling:

1. Let $S=\operatorname{poly}(\log n, 1 / \epsilon)$, and let A_{S} be the random principal submatrix of A where each row/column is included independently with probability $p_{i}=S \cdot \frac{n n z\left(A_{i}\right)}{n n z(A)}$.
2. Let D be the diagonal matrix with $D_{i, i}=\frac{1}{\sqrt{p_{j}}}$ if the $i^{\text {th }}$ sampled row/column is row j.
3. Compute all eigenvalues of $D A_{S} D$.
4. Use these eigenvalues to approximate all eigenvalues of A.

Non-Uniform Sampling

Natural extension of random submatrix algorithm to sparsity-based sampling:

1. Let $S=\operatorname{poly}(\log n, 1 / \epsilon)$, and let A_{S} be the random principal submatrix of A where each row/column is included independently with probability $p_{i}=S \cdot \frac{n n z\left(A_{i}\right)}{n n z(A)}$.
2. Let D be the diagonal matrix with $D_{i, i}=\frac{1}{\sqrt{p_{j}}}$ if the $i^{\text {th }}$ sampled row/column is row j.
3. Compute all eigenvalues of $D A_{S} D$.
4. Use these eigenvalues to approximate all eigenvalues of A.

Observe that if the rows have uniform sparsity, $D A_{S} D=\frac{n}{s} \cdot A_{S}$, and we have exactly the uniform sampling algorithm.

Challenge 1: The Identity

Say that $A=I$, so sparsity-based sampling is just uniform sampling, so $D A_{s} D=\frac{n}{s} \cdot A_{s}$. $\operatorname{Alsonnz}(A)=n$.

- Want to approximate all eigenvalues up to $\pm \epsilon \sqrt{n}$

Challenge 1: The Identity

Say that $A=I$, so sparsity-based sampling is just uniform sampling, so $D A_{s} D=\frac{n}{s} \cdot A_{s}$. Also nnz $(A)=n$.

- Want to approximate all eigenvalues up to $\pm \epsilon \sqrt{n}$
- However, A_{s} is just a smaller identity matrix, so $\frac{n}{s}$ • A_{S} has all eigenvalues equal to $\frac{n}{s}$.

$$
\frac{n}{3}
$$

Challenge 1: The Identity

Say that $A=I$, so sparsity-based sampling is just uniform sampling, so $D A_{s} D=\frac{n}{s} \cdot A_{s}$. Also nnz $(A)=n$.

- Want to approximate all eigenvalues up to $\pm \epsilon \sqrt{n}$
- However, A_{s} is just a smaller identity matrix, so $\frac{n}{s}$. A_{S} has all eigenvalues equal to $\frac{n}{s}$.

- Would need to set $s \geq \frac{\sqrt{n}}{\epsilon}$ to achieve the desired bound.

Challenge 1: The Identity

Say that $A=I$, so sparsity-based sampling is just uniform sampling, so $D A_{s} D=\frac{n}{s} \cdot A_{s}$. Also nnz $(A)=n$.

- Want to approximate all eigenvalues up to $\pm \epsilon \sqrt{n}$
- However, A_{s} is just a smaller identity matrix, so $\frac{n}{s}$. A_{s} has all eigenvalues equal to $\frac{n}{s}$.

- Would need to set $s \geq \frac{\sqrt{n}}{\epsilon}$ to achieve the desired bound.

Simple Fix: Set the diagonal of A_{S} to 0 . Introduces at most ± 1 error into the eigenvalue estimates and resolves this issue. When $A=I$, $A_{S}=0$. So our eigenvalue estimates all have error 1 .

Challenge 2: Sparse Rows and Columns

Consider A with $A_{i, i+1}=A_{i+1, i}=1$ for all $i=1, \ldots, n-1$.

Challenge 2: Sparse Rows and Columns

Consider A with $A_{i, i+1}=A_{i+1, i}=1$ for all $i=1, \ldots, n-1$.

- $\sqrt{n n z(A)} \leq \sqrt{2 n}$ and $\left|\lambda_{i}\right| \leq 2$ for all i. Roughly, $D A_{S} D \approx \frac{n}{s} \cdot A_{S}$.

Challenge 2: Sparse Rows and Columns

Consider A with $A_{i, i+1}=A_{i+1, i}=1$ for all $i=1, \ldots, n-1$.

- $\sqrt{n n z(A)} \leq \sqrt{2 n}$ and $\left|\lambda_{i}\right| \leq 2$ for all i. Roughly, $D A_{S} D \approx \frac{n}{s} \cdot A_{S}$.
- If $s=o(\sqrt{n})$, with good probability, $\frac{n}{s} \cdot A_{S}=0$, and we get good estimates: ± 2 error.

Challenge 2: Sparse Rows and Columns

Consider A with $A_{i, i+1}=A_{i+1, i}=1$ for all $i=1, \ldots, n-1$.

- $\sqrt{n n z(A)} \leq \sqrt{2 n}$ and $\left|\lambda_{i}\right| \leq 2$ for all i. Roughly, $D A_{s} D \approx \frac{n}{s} \cdot A_{s}$.
- If $s=O(\sqrt{n})$, with good probability, $\frac{n}{s} \cdot A_{S}=0$, and we get good estimates: ± 2 error.
- When $s=c \sqrt{n}$, with constant probability, $\frac{n}{s} \cdot A s$ is non-zero (birthday paradox), and we have error $\approx \frac{n}{s}=\frac{\sqrt{n}}{c} \not \epsilon \sqrt{n}$.

Challenge 2: Sparse Rows and Columns

Consider A with $A_{i, i+1}=A_{i+1, i}=1$ for all $i=1, \ldots, n-1$.

- $\sqrt{n n z(A)} \leq \sqrt{2 n}$ and $\left|\lambda_{i}\right| \leq 2$ for all i. Roughly, $D A_{s} D \approx \frac{n}{s} \cdot A_{s}$.
- If $s=O(\sqrt{n})$, with good probability, $\frac{n}{s} \cdot A_{s}=0$, and we get good estimates: ± 2 error.
- When $s=c \sqrt{n}$, with constant probability, $\frac{n}{s} \cdot A_{S}$ is non-zero (birthday paradox), and we have error $\approx \frac{n}{s}=\frac{\sqrt{n}}{c}>\epsilon \sqrt{n}$.
Can find many related examples: entries at the intersection of sparse rows/columns get scaled up too much in $D A_{S} D$, leading to large estimation errors.

Zeroing Out Entries

- To handle these cases, we argue that zeroing out the entries of A lying at the intersection of sparse rows and columns does not significantly alter the eigenvalues.
- Ensures that after sampling, no entries are scaled up too much in $D A_{S} D$, and lets us extend our uniform sampling proof to give $\pm \epsilon \sqrt{n n z(A)}$ error with sparsity-based sampling.
- See paper for the full argument. Challenging to obtain bounds on $S^{\top} A_{m} S$ when S is sampled non-uniformly
- Our approach loses many poly $(\log n, 1 / \epsilon)$ factors. What is the right algorithm /analysis here?

Open Questions

Open Questions

- Our uniform sampling bound samples a $\tilde{O}\left(1 / \epsilon^{3}\right) \times \tilde{O}\left(1 / \epsilon^{3}\right)$ random principal submatrix to give $\pm \epsilon n$ approximations.
- We believe this can be tightened to $O\left(1 / \epsilon^{2}\right) \times O\left(1 / \epsilon^{2}\right)$, matching a lower bound for algorithms based on principal submatrix sampling.
- When A is PSD, a trivial proof based on approximate matrix multiplication obtains the above bound.
- A simple matrix Bernstein bound shows that if we independently sample $O\left(\log n / \epsilon^{2}\right)$ rows and columns then we can approximate all singular values to $\pm \epsilon n$.
- Perhaps techniques from [Woodruff, Swartworth '23], who give optimal bounds in the matvec query model can be useful.

Open Questions

Can we obtain tight $\tilde{O}\left(1 / \epsilon^{2}\right)$ query complexity for computing $\pm \epsilon$ n approximations to all eigenvalues? Requires going beyond principal submatrix sampling, for which a simple $\Omega\left(1 / \epsilon^{4}\right)$ lower bound holds. What is even a plausible algorithm here?

- Can we approximate $\|A\|_{1}=\sum_{i=1}^{n}\left|\lambda_{i}\right|$ to error $1 / 2 \cdot n^{3 / 2}$ using $o\left(n^{2}\right)$ queries to A? [Balcan, Li, Woodruff, Zhang '18] show that $\tilde{\Omega}(n)$ is required. Key challenge problem in understanding how to approximate bulk spectral properties.
- For what classes of structured matrices can we give stronger approximation bounds? E.g., interesting bounds are known for normalized graph adjacency matrices. What else?

Follow Up Work

In recent work Universal Matrix Sparsifiers and Fast Deterministic Algorithms for Linear Algebra with Bhattacharjee, Dexter, Musco, Ray, Sachdeva, and Woodruff, we show that, perhaps surprisingly, our results can be derandomized to some extent.

Follow Up Work

In recent work Universal Matrix Sparsifiers and Fast Deterministic Algorithms for Linear Algebra with Bhattacharjee, Dexter, Musco, Ray, Sachdeva, and Woodruff, we show that, perhaps surprisingly, our results can be derandomized to some extent.

- Reading $\tilde{O}\left(n / \epsilon^{4}\right)$ entries of any symmetric $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1$ according to the edges of a fixed spectral expander graph, suffices to approximate that matrix (and all of its eigenvalues) to spectral norm error ϵ n.

Follow Up Work

In recent work Universal Matrix Sparsifiers and Fast Deterministic Algorithms for Linear Algebra with Bhattacharjee, Dexter, Musco, Ray, Sachdeva, and Woodruff, we show that, perhaps surprisingly, our results can be derandomized to some extent.

- Reading $\tilde{O}\left(n / \epsilon^{4}\right)$ entries of any symmetric $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1$ according to the edges of a fixed spectral expander graph, suffices to approximate that matrix (and all of its eigenvalues) to spectral norm error ϵ n.
- Can be improved to $O\left(n / \epsilon^{2}\right)$ entries when A is PSD.

Follow Up Work

In recent work Universal Matrix Sparsifiers and Fast Deterministic Algorithms for Linear Algebra with Bhattacharjee, Dexter, Musco, Ray, Sachdeva, and Woodruff, we show that, perhaps surprisingly, our results can be derandomized to some extent.

- Reading $\tilde{O}\left(n / \epsilon^{4}\right)$ entries of any symmetric $A \in \mathbb{R}^{n \times n}$ with $\|A\|_{\infty} \leq 1$ according to the edges of a fixed spectral expander graph, suffices to approximate that matrix (and all of its eigenvalues) to spectral norm error ϵ n.
- Can be improved to $O\left(n / \epsilon^{2}\right)$ entries when A is PSD.
-What else is possible with deterministic queries?

