Sublinear Time Eigenvalue Approximation via Random Sampling

Cameron Musco

University of Massachusetts Amherst

Joint with: Rajarshi Bhattacharjee (UMass), Gregory Dexter (Purdue), Petros Drineas (Purdue), Archan Ray (UMass) ICALP 2023 **Basic linear algebraic primitive:** Given symmetric $A \in \mathbb{R}^{n \times n}$, compute approximations to all of A's eigenvalues.

- Nearly exact computation of all eigenvalues in $O(n^{\omega})$ time via full eigendecomposition but this is prohibitive for large *n*.
- Accurate approximation to k largest magnitude eigenvalues using Õ(k) matrix vector multiplications with A (power method, Krylov subspace methods, eigs). Õ(n² · k) time for dense matrices.

Basic linear algebraic primitive: Given symmetric $A \in \mathbb{R}^{n \times n}$, compute approximations to all of A's eigenvalues.

- Nearly exact computation of all eigenvalues in $O(n^{\omega})$ time via full eigendecomposition but this is prohibitive for large *n*.
- Accurate approximation to k largest magnitude eigenvalues using Õ(k) matrix vector multiplications with A (power method, Krylov subspace methods, eigs). Õ(n² · k) time for dense matrices.

How well can we approximate the spectrum in sublinear time, i.e., $o(n^2)$ time for dense matrices?

Summary

Today:

- Very simple sublinear time algorithm for approximating all eigenvalues of any symmetric matrix $A \in \mathbb{R}^{n \times n}$ up to additive error $\pm \epsilon n \cdot ||A||_{\infty}$ using poly(log $n, 1/\epsilon$) samples.
- Just sample a uniform random principal submatrix and computes its eigenvalues.
- Improved results when you can sample rows/columns with probabilities proportional to their sparsity or squared Euclidean norms. Give error $\epsilon \sqrt{\operatorname{nnz}(A)} \cdot \|A\|_{\infty}$ and $\epsilon \cdot \|A\|_{F}$ respectively.
- Lots of open questions on sublinear time algorithms for eigenspectrum estimation.

Our Main Result

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$, and eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$.

Main Result: There is an algorithm that reads $O\left(\frac{\log^3 n}{\epsilon^5}\right)$ entries of A and outputs $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n$ such that, for all $i \in [n]$,

How good are $\pm \epsilon n$ additive error approximations to each of A's eigenvalues?

- $|\lambda_i| \leq ||A||_F \leq n$ for all *i*.
- $\sum \lambda_i^2 = ||A||_F^2 \le n^2$. So there are at most $1/\epsilon^2$ outlying eigenvalues with $|\lambda_i| \ge \epsilon \cdot n$.
- These are the only eigenvalues for which we give a non-trivial approximation.

How good are $\pm \epsilon n$ additive error approximations to each of A's eigenvalues?

- $\cdot |\lambda_i| \le ||A||_F \le n$ for all *i*.
- $\sum \lambda_i^2 = ||A||_F^2 \le n^2$. So there are at most $1/\epsilon^2$ outlying eigenvalues with $|\lambda_i| \ge \epsilon \cdot n$.
- These are the only eigenvalues for which we give a non-trivial approximation.
- It is easy to see that additive error scaling linearly in $n \cdot ||A||_{\infty}$ is necessary.

Lower Bound Instance

Only $\approx \epsilon^2 n^2$ entries differ across these matrices. Need to read at least $\Omega(1/\epsilon^2)$ entries before you can distinguish them with good probability.

Our algorithm just computes the eigenvalues of a small random principal submatrix of A.

Our algorithm just computes the eigenvalues of a small random principal submatrix of *A*.

- 1. Let $s = \frac{c \log^3 n}{\epsilon^3}$, and let A_S be the random principal submatrix of A where each row/column is included independently with probability $\frac{s}{n}$.
- 2. Compute all eigenvalues of $\frac{n}{s} \cdot A_s$.
- 3. Use these eigenvalues to approximate all eigenvalues of A.

Our algorithm just computes the eigenvalues of a small random principal submatrix of A.

- 1. Let $s = \frac{c \log^3 n}{\epsilon^3}$, and let A_S be the random principal submatrix of A where each row/column is included independently with probability $\frac{s}{n}$.
- 2. Compute all eigenvalues of $\frac{n}{s} \cdot A_s$.
- 3. Use these eigenvalues to approximate all eigenvalues of A. Observe that A_s has O(s) eigenvalues while A has n.

Our algorithm just computes the eigenvalues of a small random principal submatrix of A.

- 1. Let $s = \frac{c \log^3 n}{\epsilon^3}$, and let A_S be the random principal submatrix of A where each row/column is included independently with probability $\frac{s}{n}$.
- 2. Compute all eigenvalues of $\frac{n}{s} \cdot A_s$.
- Use these eigenvalues to approximate all eigenvalues of A.
 Observe that A_s has O(s) eigenvalues while A has n.

Note: To obtain improved sample complexity, we further sparsify *A*_S. I will ignore this optimization in this talk.

Approximate the large positive eigenvalues using the positive eigenvalues of A_s , the large negative ones using the negative eigenvalues of A_s , and the rest by 0.

{105, 56, 32, 0, 0, 0, 0, 0, -1, -6, -76}

n approximate eigenvalues of A

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$, nnz(A) non-zero entries, and nnz(A_i) entries in row *i*.

Sparse Matrix Result: Given the ability to sample $i \in [n]$ with probability $\propto \frac{\operatorname{nnz}(A_i)}{\operatorname{nnz}(A)}$, there is an algorithm that reads $O\left(\frac{\log^{16} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n$ such that, for all $i \in [n]$,

$$|\lambda_i - \tilde{\lambda}_i| \leq \epsilon \cdot \sqrt{\mathsf{nnz}(A)}.$$

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$, nnz(A) non-zero entries, and nnz(A_i) entries in row *i*.

Sparse Matrix Result: Given the ability to sample $i \in [n]$ with probability $\propto \frac{\operatorname{nnz}(A_i)}{\operatorname{nnz}(A)}$, there is an algorithm that reads $O\left(\frac{\log^{16} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n$ such that, for all $i \in [n]$,

$$|\lambda_i - \tilde{\lambda}_i| \leq \epsilon \cdot \sqrt{\mathsf{nnz}(\mathsf{A})}.$$

• Observe that $|\lambda_i| \le ||A||_F \le \sqrt{\mathsf{nnz}(A)} \le n$ for all *i*.

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$, nnz(A) non-zero entries, and nnz(A_i) entries in row *i*.

Sparse Matrix Result: Given the ability to sample $i \in [n]$ with probability $\propto \frac{\operatorname{nnz}(A_i)}{\operatorname{nnz}(A)}$, there is an algorithm that reads $O\left(\frac{\log^{16} n}{\epsilon^{15}}\right)$ entries of A and outputs $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n$ such that, for all $i \in [n]$,

$$|\lambda_i - \tilde{\lambda}_i| \leq \epsilon \cdot \sqrt{\mathsf{nnz}(\mathsf{A})}.$$

- Observe that $|\lambda_i| \le ||A||_F \le \sqrt{\operatorname{nnz}(A)} \le n$ for all *i*.
- Sparsity sampling requires sublinear queries per sample in the standard graph query model, where A is the adjacency matrix.
- Also possible via sampling a random non-zero entry when A is stored in sparse matrix format.

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$, nnz(A) non-zero entries, and nnz(A_i) entries in row *i*.

Sparse Matrix Result: Given the ability to sample $i \in [n]$ with probability $\propto \frac{\operatorname{nnz}(A_i)}{\operatorname{nnz}(A)}$, there is an algorithm that reads $O\left(\frac{\log^{16} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n$ such that, for all $i \in [n]$, $|\lambda_i - \tilde{\lambda}_i| \leq \epsilon \cdot \sqrt{\operatorname{nnz}(A)}$.

Observe that $|\lambda_i| \le ||A||_F \le \sqrt{\operatorname{nnz}(A)} \le n$ for all *i*.

- Sparsity sampling requires sublinear queries per sample in the standard graph query model, where A is the adjacency matrix.
- Also possible via sampling a random non-zero entry when A is stored in sparse matrix format.
- Surprisingly, simply computing the eigenvalues of a random submatrix does not suffice here. Need to carefully zero out some entries of the sampled matrix.

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $||A_i||_2^2$ equal to the squared Euclidean norm of row *i*.

Norm-Based Sampling Result: Given the ability to sample $i \in [n]$ with probability $\propto \frac{||A_i||_2^2}{||A||_F^2}$, there is an algorithm that reads $O\left(\frac{\log^{20} n}{\epsilon^{16}}\right)$ entries of A and outputs $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n$ such that, for all $i \in [n]$,

$$|\lambda_i - \tilde{\lambda}_i| \leq \epsilon \|\mathsf{A}\|_{\mathsf{F}}.$$

Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with $||A_i||_2^2$ equal to the squared Euclidean norm of row *i*.

Norm-Based Sampling Result: Given the ability to sample $i \in [n]$ with probability $\propto \frac{\|A_i\|_2^2}{\|A\|_F^2}$, there is an algorithm that reads $O(\underbrace{\log^{20} n}{\epsilon^{16}})$ entries of A and outputs $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n$ such that, for all $i \in [n]$,

$$|\lambda_i - \tilde{\lambda}_i| \leq \epsilon \|A\|_{F}.$$

- Observe that $|\lambda_i| \leq ||A||_F \leq \sqrt{\operatorname{nnz}(A)} \leq n$ for all *i*.
- Norm based sampling has been considered since early work on randomized linear algebra (e.g., [Freize, Kannan Vempala '04].
- Recently it has received significant attention in work on 'quantum-inspired' classical algorithms [Tang '19].
- Our result matches known sublinear time quantum algorithms for singular value approximation up to $poly(log n, 1/\epsilon)$ factors [Kerenidis, Prakash '16].

- [Balcan, Li, Woodruff, Zhang '18] give algorithms for testing rank, stable rank, and matrix norms. E.g., $\tilde{O}(1/\epsilon^c)$ queries for testing if A's Schatten-*p* norm is $\geq cn^p$ or at least an ϵ fraction of A's entries must be changed for it to have this property.
- [Bakshi, Chepurko, Jayaram '20] give $\tilde{O}(1/\epsilon^c)$ query algorithms for testing if A is either positive semidefinite or has at least one negative eigenvalue $< -\epsilon n$.

- [Balcan, Li, Woodruff, Zhang '18] give algorithms for testing rank, stable rank, and matrix norms. E.g., $\tilde{O}(1/\epsilon^c)$ queries for testing if A's Schatten-*p* norm is $\geq cn^p$ or at least an ϵ fraction of A's entries must be changed for it to have this property.
- [Bakshi, Chepurko, Jayaram '20] give $\tilde{O}(1/\epsilon^c)$ query algorithms for testing if A is either positive semidefinite or has at least one negative eigenvalue $< -\epsilon n$.
- Our point-wise approximation guarantee immediately implies such a testing result, but can be stronger. However, our ϵ and log *n* dependence is worse.

- [Balcan, Li, Woodruff, Zhang '18] give algorithms for testing rank, stable rank, and matrix norms. E.g., $\tilde{O}(1/\epsilon^c)$ queries for testing if A's Schatten-*p* norm is $\geq cn^p$ or at least an ϵ fraction of A's entries must be changed for it to have this property.
- [Bakshi, Chepurko, Jayaram '20] give $\tilde{O}(1/\epsilon^c)$ query algorithms for testing if A is either positive semidefinite or has at least one negative eigenvalue $< -\epsilon n$.
- Our point-wise approximation guarantee immediately implies such a testing result, but can be stronger. However, our ϵ and log *n* dependence is worse.
- Subsequent to our work, [Needell, Swartworth, and Woodruff '22, '23] give optimal eigenvalue approximation algorithms in the matrix vector query model. Also see [Andoni, Nguyen '13]

Several other works look at sublinear time spectral density estimation for normalized graph adjacency matrices, which have $\|A\|_{\infty} \leq 1$.

- The goal is to approximate the spectral density: the distribution placing mass 1/n at each eigenvalue.
- [Cohen-Steiner, Kong, Sohler, and Valiant '18] give a 2^{o(1/ε)} time algorithm for ε error approximation in the Wasserstein-1 distance.
- [Braverman, Krishnan, and Musco '22] give a $\tilde{O}(n/\epsilon^c)$ time algorithm for the same task.

Several other works look at sublinear time spectral density estimation for normalized graph adjacency matrices, which have $\|A\|_{\infty} \leq 1$.

- The goal is to approximate the spectral density: the distribution placing mass 1/n at each eigenvalue.
- [Cohen-Steiner, Kong, Sohler, and Valiant '18] give a 2^{0(1/ε)} time algorithm for ε error approximation in the Wasserstein-1 distance.
- [Braverman, Krishnan, and Musco '22] give a $\tilde{O}(n/\epsilon^c)$ time algorithm for the same task.
- Our result gives $\epsilon_{\mathbf{k}}$ error approximation in the Wasserstein-1 distance.
- Note that the eigenvalues of a general matrix with $||A||_{\infty} \leq 1$ lie in [-n, n]. Those of a normalized adjacency matrix lie in [-1, 1].

Broader Context

Broader Research Goal: Use randomness to give sublinear time algorithms for natural linear algebraic problems. Typically under some assumption on the input matrix structure.

Broader Context

Broader Research Goal: Use randomness to give sublinear time algorithms for natural linear algebraic problems. Typically under some assumption on the input matrix structure.

- Õ(nk/ϵ^c) time algorithms for near optimal rank-k approximation of positive semidefinite and distance matrices [Musco Musco '17, Musco Woodruff '17, Bakshi Woodruff '18, Indyk et al. '19]
- Õ(d · n^{1.173}) time algorithm for estimating the top eigenvalue of a Gaussian kernel matrix [Backurs Indyk Musco Wagner '21]
- Sublinear time algorithms for structured matrices via sublinear time matrix vector multiplication [Shi Woodruff '19]
- 'Quantum-inspired' algorithms for linear algebra [Tang '18, Chepurko Clarkson Horesh Lin Woodruff '21]
- Classic additive error randomized SVD [Frieze Kannan Vempala '04, Drineas Kannan Mahoney '06].

Proof Approach

Recall: For a uniformly random principal submatrix A_S , need to show that the eigenvalues of $\frac{n}{s} \cdot A_S$, appropriately padded with zeros, approximate all eigenvalues of A to error $\pm \epsilon n$.

• A_S will be $O(s) \times O(s)$ for $s = poly(log n, 1/\epsilon)$.

Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give ${}^{\mathcal{F}}\mathcal{E}_{O}$ non-trivial approximations, and its middle eigenvalues, and analyze these components separately.

Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give non-trivial approximations, and its middle eigenvalues, and analyze these components separately.

- Let $V_o \in \mathbb{R}^{n \times n_o}$ have columns equal to all eigenvectors with corresponding eigenvalues satisfying $|\lambda_i| \ge \epsilon n$. Let $V_m \in \mathbb{R}^{n \times n_m}$ have columns equal to the remaining eigenvectors.
- Let $\underline{\Lambda_o} \in \mathbb{R}^{n_o \times n_o}$ and $\underline{\Lambda_m} \in \mathbb{R}^{n_m \times n_m}$ be the corresponding diagonal eigenvalue matrices.
- Write $A = A_o + A_m$ where $A_o = V_o \Lambda_o V_o^T$ and $A_m = V_m \Lambda_m V_m^T$.

Eigenvalue Split

Key Idea: Split A into its outlying eigenvalues, for which we give non-trivial approximations, and its middle eigenvalues, and analyze these components separately.

- Let $V_o \in \mathbb{R}^{n \times n_o}$ have columns equal to all eigenvectors with corresponding eigenvalues satisfying $|\lambda_i| \ge \epsilon n$. Let $V_m \in \mathbb{R}^{n \times n_m}$ have columns equal to the remaining eigenvectors.
- Let $\Lambda_o \in \mathbb{R}^{n_o \times n_o}$ and $\Lambda_m \in \mathbb{R}^{n_m \times n_m}$ be the corresponding diagonal eigenvalue matrices.
- Write $A = A_o + A_m$ where $A_o = V_o \Lambda_o V_o^T$ and $A_m = V_m \Lambda_m V_m^T$.

• Can similarly write $\frac{n}{s} \cdot A_S = S^T A S = S^T A_o S + S^T A_m S$.

So Far: Have written $A = A_o + A_m$ and $S^T A S = S^T A_o S + S^T A_m S$.

So Far: Have written $A = A_o + A_m$ and $S^TAS = S^TA_oS + S^TA_mS$. **Step 1:** Show that the non-zero eigenvalues of S^TA_oS approximate all the eigenvalues of A_o to $\pm \epsilon n$ error. **So Far:** Have written $A = A_o + A_m$ and $S^T A S = S^T A_o S + S^T A_m S$.

Step 1: Show that the non-zero eigenvalues of $S^T A_o S$ approximate all the eigenvalues of A_o to $\pm \epsilon n$ error.

Step 2: Show that the eigenvalues of $S^T A_m S$ are all small in magnitude - i.e. $\leq \epsilon n$.

So Far: Have written $A = A_o + A_m$ and $S^TAS = S^TA_oS + S^TA_mS$. Step 1: Show that the non-zero eigenvalues of S^TA_oS approximate all the eigenvalues of A_o to $\pm \epsilon n$ error.

Step 2: Show that the eigenvalues of $S^T A_m S$ are all small in magnitude - i.e. $\leq \epsilon n$.

Step 3: By Weyl's inequality, this gives that the eigenvalues of S^TAS , appropriately padded with zeros, approximate those of A to error $\pm O(\epsilon n)$.

Key Proof Idea: Since $||A||_{\infty} \le 1$, its outlying eigenvectors are all incoherent — i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

Key Proof Idea: Since $||A||_{\infty} \le 1$, its outlying eigenvectors are all incoherent — i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^n$ with $Av = \lambda \cdot v$ and $|\lambda| \ge \epsilon n$:

$$|v(i)| = \frac{1}{|\lambda|} \cdot |[Av](i)|$$

Key Proof Idea: Since $||A||_{\infty} \le 1$, its outlying eigenvectors are all incoherent — i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^n$ with $Av = \lambda \cdot v$ and $|\lambda| \ge \epsilon n$:

$$|v(i)| = \frac{1}{|\lambda|} \cdot |[Av](i)| = \frac{1}{|\lambda|} \cdot \langle A_{i,:}, v \rangle \leq \frac{1}{|\lambda|} \cdot ||A_{i,:}||_2 \cdot ||v||_2$$

Key Proof Idea: Since $||A||_{\infty} \leq 1$, its outlying eigenvectors are all incoherent — i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^n$ with $Av = \lambda \cdot v$ and $|\lambda| \ge \epsilon n$: $|v(i)| = \frac{1}{|\lambda|} \cdot |[Av](i)| = \frac{1}{|\lambda|} \cdot \langle A_{i,:}, v \rangle \le \frac{1}{\zeta} \frac{1}{|\lambda|} \cdot ||A_{i,:}||_2 \cdot ||v||_2 \le \frac{1}{\epsilon\sqrt{n}}.$ $\zeta \uparrow$

Key Proof Idea: Since $||A||_{\infty} \leq 1$, its outlying eigenvectors are all incoherent — i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^n$ with $Av = \lambda \cdot v$ and $|\lambda| \ge \epsilon n$:

$$|v(i)| = \frac{1}{|\lambda|} \cdot |[Av](i)| = \frac{1}{|\lambda|} \cdot \langle A_{i,:}, v \rangle \leq \frac{1}{|\lambda|} \cdot ||A_{i,:}||_2 \cdot ||v||_2 \leq \frac{1}{\epsilon \sqrt{n}}.$$

I.e., v is within a $1/\epsilon$ factor of being perfectly flat.

Key Proof Idea: Since $||A||_{\infty} \leq 1$, its outlying eigenvectors are all incoherent — i.e., their mass is spread across many entries. Thus, they are well approximated via uniform sampling.

For any unit norm eigenvector $v \in \mathbb{R}^n$ with $Av = \lambda \cdot v$ and $|\lambda| \ge \epsilon n$:

$$\bigvee_{\mathbf{0}} |v(i)| = \frac{1}{|\lambda|} \cdot |[Av](i)| = \frac{1}{|\lambda|} \cdot \langle A_{i,:}, v \rangle \leq \frac{1}{|\lambda|} \cdot ||A_{i,:}||_2 \cdot ||v||_2 \leq \frac{1}{\epsilon \sqrt{n}}.$$

I.e., v is within a $1/\epsilon$ factor of being perfectly flat.

The above bound was an important part of [Bakshi, Chepurko, and Jayaram '20]. We show a related bound, that $\|[V_o]_{i,:}\|_2^2 \leq \frac{1}{\epsilon^2 n}$. I.e., we show that the leverage scores of V_o are uniformly bounded.

So far: Can show that the outlying eigenspace of A is incoherent, with i^{th} leverage score bounded by $\|[V_o]_{i,:}\|_2^2 \leq \frac{1}{\epsilon^2 n}$.

So far: Can show that the outlying eigenspace of *A* is incoherent, with i^{th} leverage score bounded by $\|[V_o]_{i,:}\|_2^2 \leq \frac{1}{\epsilon^2 n}$.

- Via a standard matrix Bernstein bound, can show that if we take $s = \tilde{O}(1/\epsilon^4)$ samples, with high probability $V_o^T S S^T V_o \approx V_o^T V_o \approx I$.
- Can use this to argue that the nonzero eigenvalues of $S^{T}A_{o}S = S^{T}V_{0}\Lambda_{0}V_{o}S$ are close to those of Λ_{o} i.e., close to the outlying eigenvalues in A_{o} .
- This completes Step 1 of the proof.

Sampling Middle Eigendirections

It remains to show that the eigenvalues of $S^T A_m S$ are bounded in magnitude by ϵn .

Sampling Middle Eigendirections

It remains to show that the eigenvalues of $S^T A_m S$ are bounded in magnitude by ϵn .

• Via the incoherence of V_o , can show that $||A_o||_{\infty} \leq \frac{1}{\epsilon}$ and so by triangle inequality, $||A_m||_{\infty} \leq ||A||_{\infty} + ||A_o||_{\infty} \leq 1 + \frac{1}{\epsilon}$.

Sampling Middle Eigendirections

It remains to show that the eigenvalues of $S^T A_m S$ are bounded in magnitude by ϵn .

• Via the incoherence of V_o , can show that $||A_o||_{\infty} \leq \frac{1}{\epsilon}$ and so by triangle inequality, $||A_m||_{\infty} \leq ||A||_{\infty} + ||A_o||_{\infty} \leq 1 + \frac{1}{\epsilon}$.

• Can then apply spectral norm bounds for random principal submatrices of bounded entry matrices [Rudelson Vershynin '07, Tropp '08], to show that $||S^T A_m S||_2 \le \epsilon n$ when $s = \tilde{O}(1/\epsilon^2)$.

Proof Recap

$$\frac{1}{\varepsilon^3}$$
 $\frac{1}{\varepsilon^2}$

Step 0: Split $A = A_o + A_m$ into its outlying and middle eigendirections.

Step 1: Prove that the outlying eigendirections of A are incoherent, and thus, uniform sampling approximately preserves the eigenvalues of A_o . I.e., the non-zero eigenvalues of $S^T A_o S$ approximate all the eigenvalues of A_o to $\pm \epsilon n$ error.

Step 2: Use the incoherence of A_o to argue that $A_m = A - A_o$ is entrywise bounded, and thus $\|S^T A_m S\|_2 \le \epsilon n$.

Step 3: Combine the above to show that, after padding by zeros, the eigenvalues of $\frac{n}{s} \cdot A_S = S^T A S = S^T A_o S + S^T A_m S$ approximate those of A up to $\pm \epsilon n$ error.

Improved Bounds with Non-Uniform Sampling

Natural extension of random submatrix algorithm to sparsity-based sampling:

- 1. Let $s = poly(log n, 1/\epsilon)$, and let A_s be the random principal submatrix of A where each row/column is included independently with probability $p_i = s \cdot \frac{nnz(A_i)}{nnz(A)}$.
- 2. Let *D* be the diagonal matrix with $D_{i,i} = \frac{1}{\sqrt{p_j}}$ if the *i*th sampled row/column is row *j*.
- 3. Compute all eigenvalues of DA_SD .
- 4. Use these eigenvalues to approximate all eigenvalues of A.

Natural extension of random submatrix algorithm to sparsity-based sampling:

- 1. Let $s = poly(log n, 1/\epsilon)$, and let A_s be the random principal submatrix of A where each row/column is included independently with probability $p_i = s \cdot \frac{nnz(A_i)}{nnz(A)}$.
- 2. Let *D* be the diagonal matrix with $D_{i,i} = \frac{1}{\sqrt{p_j}}$ if the *i*th sampled row/column is row *j*.
- 3. Compute all eigenvalues of DA_SD .
- 4. Use these eigenvalues to approximate all eigenvalues of A.

Observe that if the rows have uniform sparsity, $DA_SD = \frac{n}{s} \cdot A_S$, and we have exactly the uniform sampling algorithm.

Say that A = I, so sparsity-based sampling is just uniform sampling, so $DA_SD = \frac{n}{s} \cdot A_S$. Also nnz(A) = n.

• Want to approximate all eigenvalues up to $\pm \epsilon \sqrt{n}$

Say that A = I, so sparsity-based sampling is just uniform sampling, so $DA_SD = \frac{n}{s} \cdot A_S$. Also nnz(A) = n.

- Want to approximate all eigenvalues up to $\pm\epsilon\sqrt{n}$
- However, A_S is just a smaller identity matrix, so $\frac{n}{s} \cdot A_S$ has all eigenvalues equal to $\frac{n}{s}$.

Say that A = I, so sparsity-based sampling is just uniform sampling, so $DA_SD = \frac{n}{s} \cdot A_S$. Also nnz(A) = n.

- Want to approximate all eigenvalues up to $\pm\epsilon\sqrt{n}$
- However, A_S is just a smaller identity matrix, so $\frac{n}{s} \cdot A_S$ has all eigenvalues equal to $\frac{n}{s}$.

• Would need to set $s \ge \frac{\sqrt{n}}{\epsilon}$ to achieve the desired bound.

Say that A = I, so sparsity-based sampling is just uniform sampling, so $DA_SD = \frac{n}{s} \cdot A_S$. Also nnz(A) = n.

- Want to approximate all eigenvalues up to $\pm\epsilon\sqrt{n}$
- However, A_S is just a smaller identity matrix, so $\frac{n}{s} \cdot A_S$ has all eigenvalues equal to $\frac{n}{s}$.

• Would need to set $s \ge \frac{\sqrt{n}}{\epsilon}$ to achieve the desired bound.

Simple Fix: Set the diagonal of A_S to 0. Introduces at most ± 1 error into the eigenvalue estimates and resolves this issue. When A = I, $A_S = 0$. So our eigenvalue estimates all have error 1.

Consider A with $A_{i,i+1} = A_{i+1,i} = 1$ for all i = 1, ..., n - 1.

Consider A with $A_{i,i+1} = A_{i+1,i} = 1$ for all i = 1, ..., n - 1.

• $\sqrt{\operatorname{nnz}(A)} \leq \sqrt{2n}$ and $|\lambda_i| \leq 2$ for all *i*. Roughly, $\underline{DA_SD} \approx \frac{n}{s} \cdot A_S$.

Consider A with $A_{i,i+1} = A_{i+1,i} = 1$ for all i = 1, ..., n - 1.

- $\sqrt{\operatorname{nnz}(A)} \leq \sqrt{2n}$ and $|\lambda_i| \leq 2$ for all *i*. Roughly, $DA_SD \approx \frac{n}{s} \cdot A_S$.
- If $s = o(\sqrt{n})$, with good probability, $\frac{n}{s} \cdot A_S = 0$, and we get good estimates: ± 2 error.

Consider A with $A_{i,i+1} = A_{i+1,i} = 1$ for all i = 1, ..., n - 1.

- $\sqrt{\operatorname{nnz}(A)} \leq \sqrt{2n}$ and $|\lambda_i| \leq 2$ for all *i*. Roughly, $DA_SD \approx \frac{n}{s} \cdot A_S$.
- If $s = o(\sqrt{n})$, with good probability, $\frac{n}{s} \cdot A_S = 0$, and we get good estimates: ± 2 error.
- When $s = c\sqrt{n}$, with constant probability, $\frac{n}{s} \cdot A_s$ is non-zero (birthday paradox), and we have error $\approx \frac{n}{s} = \left(\frac{\sqrt{n}}{c}\right) \cdot \epsilon\sqrt{n}$.

Consider A with $A_{i,i+1} = A_{i+1,i} = 1$ for all i = 1, ..., n - 1.

- $\sqrt{\operatorname{nnz}(A)} \leq \sqrt{2n}$ and $|\lambda_i| \leq 2$ for all *i*. Roughly, $DA_SD \approx \frac{n}{s} \cdot A_S$.
- If $s = o(\sqrt{n})$, with good probability, $\frac{n}{s} \cdot A_S = 0$, and we get good estimates: ± 2 error.
- When $s = c\sqrt{n}$, with constant probability, $\frac{n}{s} \cdot A_S$ is non-zero (birthday paradox), and we have error $\approx \frac{n}{s} = \frac{\sqrt{n}}{c} > \epsilon\sqrt{n}$. Can find many related examples: entries at the intersection of

sparse rows/columns get scaled up too much in *DA_sD*, leading to large estimation errors.

Zeroing Out Entries

- To handle these cases, we argue that zeroing out the entries of A lying at the intersection of sparse rows and columns does not significantly alter the eigenvalues.
- Ensures that after sampling, no entries are scaled up too much in DA_SD , and lets us extend our uniform sampling proof to give $\pm \epsilon \sqrt{\text{nnz}(A)}$ error with sparsity-based sampling.
- See paper for the full argument. Challenging to obtain bounds on $S^T A_m S$ when S is sampled non-uniformly
- Our approach loses many $poly(log n, 1/\epsilon)$ factors. What is the right algorithm/analysis here?

Open Questions

Open Questions

- Our uniform sampling bound samples a $\tilde{O}(1/\epsilon^3) \times \tilde{O}(1/\epsilon^3)$ random principal submatrix to give $\pm \epsilon n$ approximations.
- We believe this can be tightened to $O(1/\epsilon^2) \times O(1/\epsilon^2)$, matching a lower bound for algorithms based on principal submatrix sampling.
- When A is PSD, a trivial proof based on approximate matrix multiplication obtains the above bound.

- A simple matrix Bernstein bound shows that if we independently sample $O(\log n/\epsilon^2)$ rows and columns then we can approximate all singular values to $\pm \epsilon n$.
- Perhaps techniques from [Woodruff, Swartworth '23], who give optimal bounds in the matvec query model can be useful.

Can we obtain tight $\tilde{O}(1/\epsilon^2)$ query complexity for computing $\pm \epsilon n$ approximations to all eigenvalues? Requires going beyond principal submatrix sampling, for which a simple $\Omega(1/\epsilon^4)$ lower bound holds. What is even a plausible algorithm here?

- Can we approximate $||A||_1 = \sum_{i=1}^n |\lambda_i|$ to error $1/2 \cdot n^{3/2}$ using $o(n^2)$ queries to A? [Balcan, Li, Woodruff, Zhang '18] show that $\tilde{\Omega}(n)$ is required. Key challenge problem in understanding how to approximate bulk spectral properties.
- For what classes of structured matrices can we give stronger approximation bounds? E.g., interesting bounds are known for normalized graph adjacency matrices. What else?

• Reading $\tilde{O}(n/\epsilon^4)$ entries of any symmetric $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$ according to the edges of a fixed spectral expander graph, suffices to approximate that matrix (and all of its eigenvalues) to spectral norm error ϵn .

- Reading $\tilde{O}(n/\epsilon^4)$ entries of any symmetric $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$ according to the edges of a fixed spectral expander graph, suffices to approximate that matrix (and all of its eigenvalues) to spectral norm error ϵn .
- Can be improved to $O(n/\epsilon^2)$ entries when A is PSD.

- Reading $\tilde{O}(n/\epsilon^4)$ entries of any symmetric $A \in \mathbb{R}^{n \times n}$ with $||A||_{\infty} \leq 1$ according to the edges of a fixed spectral expander graph, suffices to approximate that matrix (and all of its eigenvalues) to spectral norm error ϵn .
- Can be improved to $O(n/\epsilon^2)$ entries when A is PSD.
- What else is possible with deterministic queries?