ENDOGENOUS MARKET FORMATION: THEORY AND EVIDENCE FROM CHILEAN COLLEGE ADMISSION

October 26, 2023

Soohyung (Soo) Lee

Seoul National University

Collaborators: R. Espinoza and H. Lopez

MOTIVATION

- Student-School Assignment
 - Lessons from Market Design are actively adopted
 - Evidence suggesting significant benefits from a welldesigned centralized matching system
 - → Challenges
 - Policy intervention is often needed
 - Some schools (e.g., charter and private schools) opt out

MOTIVATION

- Student-School Assignment
 - Lessons from Market Design are actively adopted
 - Policy intervention is often needed
- Chilean case
 - In 1967, some colleges voluntarily formed a centralized matching system (CM) and then expanded it by adding more members in 2012
 - * Share of CM in college freshmen:

100% in 1967, 50% in 2011, and 70% in 2012

RESEARCH QUESTIONS

QI) What economic conditions make market participants voluntarily form a centralized market?

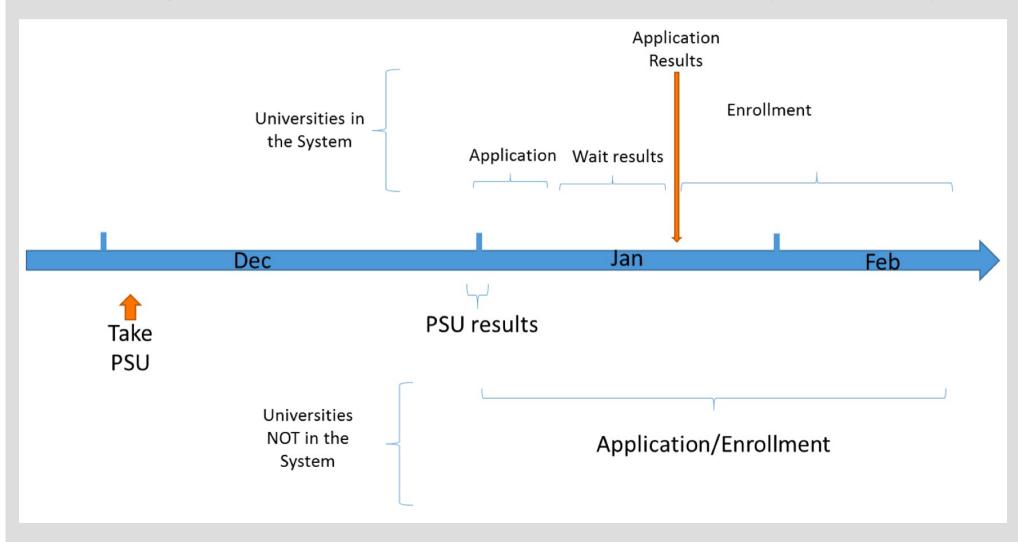
Q2) What are the impacts on students and on schools?

OUTLINE

- Key Institutional features of the Chilean system
- Analytic framework
 - Simple two-sided matching model
 - * two colleges
 - * heterogeneous students w.r.t. preference, test scores, and resources for application costs
 - Empirical examination for testable predictions
 - * vacancy, heterogeneous effects on schools & students
 - * Historical & administrative microlevel data (2010-2013)

OUTLINE

- Key findings
- QI) What economic conditions make market participants voluntarily form a centralized market?
 - → * comparability between colleges
 - * share of students who can afford application costs
 - Q2) What are the impacts on students and on schools?
 - → * \ vacancies & \ enrollments (raw, test-score weighted)
 - * Overall beneficial to all students


but even more so to students with low SES

RELATED STUDIES

- Market Design literature
 - Student-school matching *Che and Koh (2016), Hafalir et al. (2018), Ekmekci and Yenmez (2019), Avery et al. (2014), Chen et al. (2018)
 - Unraveling *Niederle and Roth (2003), Avery and Levin (2010), Fainmesser (2013), and Avery et al. (2014)
- Empirical/Experimental studies on the consequences of a change in school admission system
 - * Abdulkadiroğlu et al. (2017), Chen and Kesten (2017, 2019), Machado and Szerman (2018), Tanaka et al. (2020), Knight and Schiff (2020)
 - * Chile: Figueroa et al. (2018), Bordon et al. (2016), Kapor et al. (2020)

- Colleges
 - CRUCH: initially 8, then 25 traditional schools (~ lvy League schools)
 - Non-CRUCH: 35 schools established mostly in the 1980s
- College admission
 - Quota set at the beginning of each cycle
 - Prior to 1967: decentralized
 - From 1967 to 2011: CRUCH (CM) vs. Non-CRUCH(decentralized)
 - In 2012:
 - * CRUCH invited all non-CRUCH to join its centralized system
 - * 8 highly-ranked colleges joined
 - From 2012: 33 schools ($50\% \rightarrow 70\%$ of freshmen quota)

Competition btw CRUCH and non-CRUCH (untill 2011)

Observations

- Unraveling:

quotas exhausted in the same day when the national test scores are released

i.e., students need to apply for individual colleges without knowing the outcomes from the CM(centralized matching)

- Vacancy:

sizable number of offers from the CM rejected & unfilled

Unequal opportunity:
students from low SES/credit constraints

Competition btw CRUCH and non-CRUCH (until 2011)

- disadvantageous to students with low SES:
 - * deposit, travel cost

Colleges

- C_i with quota q_i with $i \in \{1,2\}$
- $-q_1+q_2<1$
- $u(E) = \int s f(s) ds : E$ is the set of enrollees, s is test score
 - → both quantity and quality (test score) matter

Students

- Unit measure, test score (s)
- Idiosyncratic preference: with prob. p, $C_1 > C_2$
- n is share of students who can afford the application costs (k)
- Payoffs: U^F , U^S , 0

- College admission system
 - Decentralized
 - * students apply before knowing their pref.
 - * application costs
 - * rejected admission offers → vacancies
 - Centralized
 - * students apply after knowing their pref.
 - * no application costs
 - * only one offer is made to an applicant

- Pros and Cons of CM (rel. to decentralized admission)
 - Colleges
 - * all quotas are filled
 - * less preferred college may lose top applicants
 - Students
 - * by eliminating unfilled seats, more students receive admission offers
 - * "rich" students now face more competition with "poor" students

- Impact on Students
 - ↑ in effective quota size

	Affordability of Application Costs			
	Yes (Rich)	No (Poor)		
Test scores				
Group 1 (Highest)	Most preferred	$C_1 \rightarrow Most preferred$		
- s> s_2^D		_		
Group 2	$C_1 \rightarrow Most preferred$	$C_1 \rightarrow Most preferred$		
$-s_{2}^{C} < s < s_{2}^{D}$				
Group 3	\mathbf{C}_1	C_1		
$- S_1^D <_S < S_2^C$				
Group 4 (Lowest)	No college \rightarrow C_1	No college \rightarrow C_1		
$-s_1^C < s < s_1^D$				

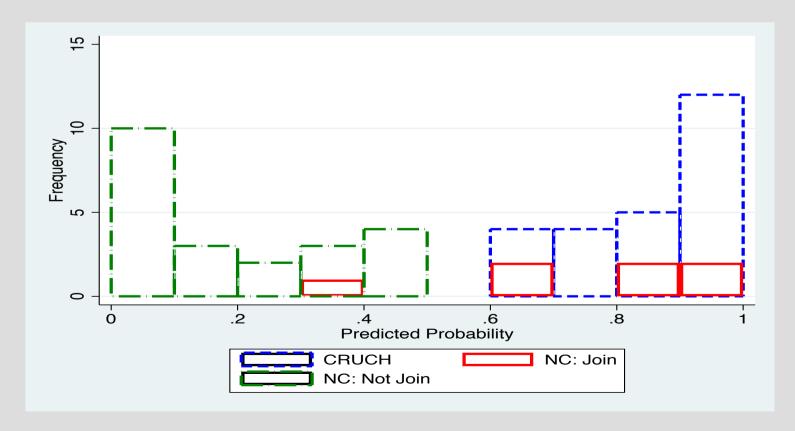
- Impact on Students
 - removing application costs -> leveling the playing field

	1 00 1 1 11	. 11		
	Affordability of Application Costs			
	Yes (Rich)	No (Poor)		
Test scores				
Group 1 (Highest)	Most preferred	$C_1 \rightarrow Most preferred$		
$-s>s_2^D$		•		
Group 2	$C_1 \rightarrow Most preferred$	$C_1 \rightarrow Most preferred$		
$-s_{2}^{C} < s < s_{2}^{D}$	•	•		
Group 3	C_1	C_1		
$-s_1^D < s < s_2^C$				
Group 4 (Lowest)	No college \rightarrow C ₁	No college \rightarrow C ₁		
$-s_1^C < s < s_1^D$				

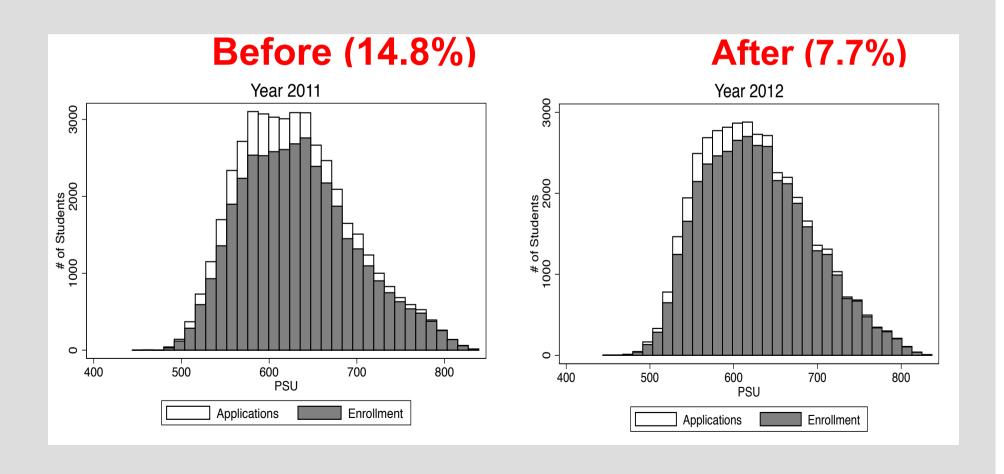
- Testable predictions
 - ↑ incentive to centralize

if \uparrow comparability btw C_1 and C_2 (i.e., $p \to 0.5$)

& n & k are neither too large nor too small


- ↓ Vacancies under centralized admission
- Application costs
 - → Decentralized system penalizes low SES students conditional on their test scores
 - → Centralized system reduces the SES gap

Comparability


- In 1967: only 8 CRUCH schools (effectively three)
 - * 2 public schools (49%, 15%)
 - * 6 private schools, all governed by the Catholic Church in Chile (35%)
- In 2012: CRUCH, non-CRUCH(join), non-CRUCH(not)

Types	<u>CRUCH</u>	Non-C	Non-CRUCH	
Centralized Admission (no. of colleges)	Yes (25)	Yes (7)	No (23)	
` ,	[Type1]	[Type2]	[Type3]	
	(1)	(2)	(3)	
Panel A. 2010–2011				
No. of majors offered	32.78	24.50	19.72	
No. of new enrollees	2,179.42	2,642.50	1,873.63	
PSU of new enrollees	587.79	610.74	497.21	
Sum of PSU (thousand)	1,266.91	1,443.42	818.22	
Share of students aged over 20	24.51%	23.08%	45.54%	
Tuition (2009 USD)	4,091.87	6,541.59	3,940.43	

- Comparability
 - Linear Prob Model (2011 data): I if participated, 0 otherwise
 - Predicted probability: CRUCH vs. non-CRUCH

- Incentives to Expand (or Participate in) the CM
 - Vacancy (CRUCH): 14.8% (2011) →7.7% (2012)

• Incentives to Expand (or Participate in) the CM

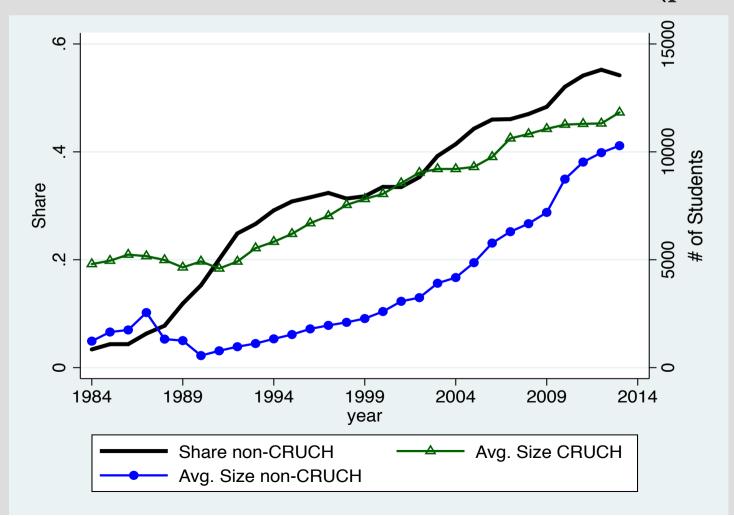
- Payoffs
$$Y_{c,t} = \alpha + \beta_i Post_t x \ 1(Type_c = i) + \theta_c + \varepsilon_{c,t}$$

2010, 11 vs. 2012, 13

2008. 9 vs. 2010, 11

2010, 11 75. 2012, 15			2000. 7 vs. 2010		
Outcome	Sum of test	# of	Avg scores	Sum of test	
	scores	Enrollees	(1 pt.)	scores	
	(1,000 pts.)	(person)		(1,000 pts.)	
	Main	,		Falsification	
	(1)	(2)	(3)	(4)	
Post x CRUCH (a)	-20.38	57.48	-8.56***	62.17*	
	(30.91)	(64.93)	(1.38)	(33.79)	
x non-CRUCH: join (b)	85.05	273.79**	-3.29	117.71*	
	(58.42)	(122.71)	(2.61)	(63.86)	
x non-CRUCH: not join (c)	-156.72***	-188.89***	-11.22***	182.24***	
	(32.23)	(67.70)	(1.442)	(35.23)	
Test (p-val)					
(a) = (b)	0.113	0.121	0.076	0.443	
(a) = (c)	0.003	0.009	0.185	0.015	
(b) = (c)	0.000	0.001	0.009	0.377	
Mean Dep. V.	1,070	2,101	548	1,042	
R^2	0.98	0.98	0.99	0.98	
N	220	220	220	220	

• Student Outcomes by SES(app. high school type)


$$Y_{i,s,t} = \alpha_s + \beta_s Post_t \times 1(HS_{i,s,t} = s) + \gamma X_{i,s,t} + \varepsilon_{i,s,t}$$

with $s \in Public(L) \in Voucher(M), Private(H)$

Outcome	Drogtigo	Enrollment:	Duagtica	Preference
Outcome	Prestige		Prestige:	
		Type2	Falsification	ranking
	(1)	(2)	(3)	(4)
Post	2.533**	-0.009	-1.471*	0.083
	(0.538)	(0.009)	(0.591)	(0.063)
Post x Voucher	2.146**	0.027	-0.688	-0.206**
	(0.468)	(0.017)	(0.585)	(0.045)
x Public	2.342***	0.021	-0.420	-0.186**
	(0.343)	(0.015)	(0.450)	(0.047)
Voucher	-3.764***	-0.263***	-3.080***	0.322***
\downarrow 2.6% in income	(0.166)	(0.003)	(0.492)	(0.050)
Public	-2.616***	-0.295***	-2.214***	0.280***
	(0.147)	(0.004)	(0.362)	(0.048)
Test Score(PSU)	0.272***	-0.000**	0.272***	-0.000
	(0.003)	(0.000)	(0.003)	(0.000)
Mean Dep. V.	55.09	0.17	53.55	2.10
R^2	0.58	0.13	0.60	0.02
N	374,103	374,103	378,102	321,822

CONCLUSIONS

- Voluntary adoption of centralized matching
 - Theoretical and empirical analyses
- Policy implications & future work
 - Link btw market competition & efficiency
 - New policy tool to reduce inequality

- Comparability
- Share of non-CRUCH in freshmen enrollments (p, n, & k)

