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Initial Research Question

Algorithmic mechanism design identifies 
• algorithms that produce nearly efficient 

allocations and 
• pricing that supplements the algorithm to 

create a truthful mechanism.

Do near-efficient truthful mechanisms 
incentivize near-efficient investments?
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When exact optimization is infeasible, approximate!

A vast OR/MS literature studies fast approximation algorithms for hard problems.

Theorems emphasize worst-case guarantees for (i) quality of approximation and 
(ii) computation time.
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Algorithms à Mechanisms
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ALGORITHM

values

MECHANISM

Reported 
values

Selected outcome

??

Selected outcome

When do there exist payment rules to incentivize truthful reporting?
Which payment rules do that?

If values are private information, computations must rely on reported values. 
The analysis of incentives for truthful reporting is part of mechanism design theory. 

Payments

constraints constraints



Packing Problems
A special case to ease exposition
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Notation for Packing Problems

𝑣! ∈ ℝ" is 𝑛’s the value of being packed (value=0 if not packed).

Ω ⊆ 0,1 # is the set of feasible packing outcomes.

𝑥:ℝ"# → Ω is the algorithm’s packing function.
Realized welfare is:

𝑊$(𝑣) ≝ 1
!∈#

𝑣!𝑥! 𝑣

Constrained optimizer 

Unconstrained optimizer

Optimal welfare

Payment to 𝑛
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𝑥∗ 𝑣|𝑆 ∈ arg max
"∈$∩&

+
'∈(

𝑣'𝑧'	

𝑥∗ 𝑣 ≝ 𝑥∗ 𝑣 Ω

	 𝑊∗ 𝑣 ≝ +
'∈(

𝑣'𝑥'∗ 𝑣

𝑝' 𝑣', 𝑣)'



Externalities and Investment Incentives

When player 𝑛’s value changes from 𝑣! to 2𝑣!, the externality is the wedge between the 
change in 𝑛’s payment and the change in others’ welfare. 

ℰ$,' 2𝑣! 𝑣 = 𝑝! 2𝑣!, 𝑣(! − 𝑝! 𝑣 + 1
)*!

𝑣) 𝑥) 2𝑣!, 𝑣(! − 𝑥) 𝑣

If the investment cost is low enough, player 𝑛 may invest to increase its net profit by some 
Δ. Then, net welfare increases by Δ + ℰ$,' 2𝑣! 𝑣 , which can be negative.
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Main Findings
1. All non-optimizing algorithms entail non-zero externalities, which can lead to welfare-reducing investments.

 OK, sure. But won’t good approximations have small externalities?

2. No. An FPTAS can consist entirely of algorithms that guarantee only a 0-fraction of the possible net welfare 
when a single agent can invest. 
 Ouch! That’s bad. Do all approximation-based algorithms have bad investment guarantees?  

3. No. Any algorithm that “excludes confirming negative externalities” – XCONE algorithms –has the same 
investment guarantee as its allocative guarantee.  

Nice! But are there any useful XCONE algorithms? 

4. Yes. We introduce a new XCONE FPTAS for the knapsack problem. 
 Cool! Does the guarantee change if the investor must decide subject to uncertainty? 

5. No, uncertainty does not affect the guarantee. We show that the worst-case problem is always deterministic.
 OK, but surely there is some drawback.

6. Yes, there is. The XCONE theorem depends on its unrestricted value domain assumption, which does not extend 
to randomized algorithms.
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Truthful Packing Mechanisms
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Definitions
1. A packing algorithm is monotone if for each item 𝑛, there exists a threshold	𝜏!(𝑣"!) 

such that 𝑛 is packed if 𝑣! > 𝜏!(𝑣"!) and not packed if 𝑣! < 𝜏!(𝑣"!).
2. A direct mechanism (𝑥, 𝑝) is truthful if for all 𝑣, truthful reporting is a Nash equilibrium 

of the mechanism. 
3. The threshold payment rule is

𝑝#(𝑣) = -𝜏!(𝑣"!)	when	𝑛	wins
0	 when	𝑛	loses

Theorem 
The direct mechanism (𝑥, 𝑝) is truthful if and only if 

1. The algorithm 𝑥 is monotone and
2. For some functions 𝑓! !$%

& , we have 𝑝! 𝑣 = 𝑝!# 𝑣 + 𝑓!(𝑣"!).



For sufficiency, by the usual “second-price/threshold” logic, (𝑥, 𝑝#) is truthful.
For necessity, suppose that (𝑥, 𝑝) is truthful and denote the maximum payoff to bidder 𝑛 by

𝑈! 𝑣!, 𝑣"!|𝑝 ≝ max
'(*

𝑣!𝑥! ?𝑣!, 𝑣"! − 𝑝! ?𝑣!, 𝑣"!

Since the mechanism is truthful, the maximizer is 𝑣!: 
𝑈! 𝑣!, 𝑣"!|𝑝 = 𝑣!𝑥! 𝑣!, 𝑣"! − 𝑝! 𝑣!, 𝑣"!

…and by the envelope theorem 

𝑈! 𝑣!, 𝑣"!|𝑝 = −𝑔! 𝑣"! +B
)

(*
𝑥! 𝑠, 𝑣"! 𝑑𝑠

where −𝑔! 𝑣"!  is a constant of integration. 
Equating the two expressions for 𝑈! 𝑣!, 𝑣"!|𝑝  and solving for prices leads to:  

𝑝! 𝑣!, 𝑣"! = 𝑔! 𝑣"! + 𝑣!𝑥! 𝑣!, 𝑣"! −B
)

(*
𝑥! 𝑠, 𝑣"! 𝑑𝑠

A similar formula applies to 𝑝!# , so 𝑝! − 𝑝!# = 𝑔! 𝑣"! − 𝑔!# 𝑣"! = 𝑓! 𝑣"! . 	∎

Proof
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Example: VCG Pivot Mechanism

Uniform price threshold auctions
• There are more passengers booked (P) than seats (S) on the plane.
• Each passenger is asked to report her value.
• The 𝑆 passengers with highest values are seated and charged a price equal to the (𝑆 + 1)th highest 

value.
• Others are not seated and pay zero

VCG “pivot mechanism” (a more general case) 
• Set of packed items 𝑆 (indicator 𝑧$) is chosen from feasible set Ω to maximize total packed value
• Each packed item/bidder 𝑛 ∈ 𝑆 is charged its threshold price: 

𝑝' = max
"∈&

+
+,'

𝑧+𝑣+ − 𝑊∗ 𝑣 − 𝑣'

• Others are not packed and pay zero.
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1. How Algorithms Determine Investment Incentives 

2. Algorithms and Externalities: Worst-Case Analysis

3. An FPTAS that is Robust to Investments



Algorithm + Truthfulness Determines Investment Incentives

Proof. Let 𝑐 be the cost of investment. Since �̂�! ⋅, 𝑣"! ≡ 𝑝! ⋅, 𝑣"! + 𝑓!(𝑣"!),
when 𝑛’s investment changes its value vector from 𝑣! to 𝑣!* , its net return using 𝑝! is 

𝑣!* ⋅ 𝑥! 𝑣!* , 𝑣"! − 𝑝! 𝑣!* , 𝑣"! − 𝑐 	− 𝑣! ⋅ 𝑥! 𝑣!, 𝑣"! − 𝑝! 𝑣!, 𝑣"!
= 𝑣!* ⋅ 𝑥! 𝑣!* , 𝑣"! − �̂�! 𝑣!* , 𝑣"! − 𝑐 	− 𝑣! ⋅ 𝑥! 𝑣!, 𝑣"! − �̂�! 𝑣!, 𝑣"! 	∎
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Theorem 1 
Let (𝑥, 𝑝) and (𝑥, �̂�) be two truthful mechanisms with the same algorithm 𝑥. For any 𝑣"!, 
bidder 𝑛’s net return for investing to change from 𝑣! to 𝑣!*  is the same for both mechanisms. 

All truthful mechanisms that use algorithm 𝒙 have the same investment incentives.

The numbered theorems are new in this paper.  



VCG Mechanisms ⟹ Efficient Investments
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Theorem
In the VCG pivot mechanism, bidder 𝑛’s profit is 𝑊∗ 𝑣 −𝑊∗ 0, 𝑣"! . 

Theorem (Rogerson)
In any VCG mechanism, bidder 𝑛’s profit increase from an investment at cost 𝑐 that 
changes its value from 𝑣! to ?𝑣! is 𝑊∗ ?𝑣!, 𝑣"! −𝑊∗ 𝑣 − 𝑐. It is individually profitable for 
𝑛 to invest if and only if the investment increases net welfare. 



Efficient Investments ⟹ Constrained Optimization 

Theorem 2
Suppose 𝑥 has the property that an investment (𝑐, 𝑣! → ?𝑣!) is individually profitable if and 
only if it increases net welfare:

𝑊, ?𝑣!, 𝑣"! − 𝑐 > 𝑊, 𝑣!, 𝑣"! .
Then there there exists some 𝑆 ⊆ Ω such that

𝑊, 𝑣 = max
-∈/

Q
!∈&

𝑣!(𝑧!) .
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This is almost, but not quite the same as saying 𝑥 𝑣 ∈ argmax
"∈$

∑'∈( 𝑣'(𝑧'). The 
subtlety is that we do not guarantee for all 𝑣 that 𝑥 𝑣 ∈ 𝑆.
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1. How Algorithms Determine Investment Incentives 

2. Algorithms and Externalities: Worst-Case Analysis

3. An FPTAS that is Robust to Investments



An Extreme but Simple Example

Here is a satisficing algorithm for packing problems:
1. If the most valuable item is at least 99% of the total value, pack it alone.
2. Otherwise, optimize.
This algorithm has a 99% allocative guarantee.

Investment Example: Three items. Bidder 1 value 0 while bidders 2 and 3 have value 1 
each. It is feasible to pack all items. 1’s threshold price is zero. 

• By investing at cost 200, bidder 1 can raise its value to 200 + 𝜀, earning 𝜀 > 0, so 
investing is strictly profitable.

• Result of the investment: 1 is packed alone, reducing net value from 2 to 𝜀. 
The investment guarantee for algorithm 𝑥 is no more than inf

01)
0
230

= 0. 
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Is That Example Too 
Special?

No. The example exploits the fact that approximation 
algorithms for the knapsack problem can have good 
allocative guarantees even when they are “careless” 
about packing items with relatively low values. 

What follows are “real” algorithms with similarly bad 
investment performance. 
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The BKV FPTAS for Knapsack Problems
Briest, Krysta and Vöcking (2005) introduced a monotone FPTAS, as follows:
Given an integer value profile 𝑣 ∈ ℕ;< and a target approximation ratio 1 − 𝜀, 
construct approximate a series of knapsack problems indexed by ℓ = 0,1, … by 
replacing the values as follows.

1.  Step size: Define 𝛾ℓ ≝
,-ℓ

#
.

2.  Truncate: 𝑣!. ≝ min 𝑣!, 2ℓ"/ .

3.  Round values down to step: 𝑣!,ℓ ≝
0"#

1ℓ
𝛾ℓ

4.  Optimize: For all ℓ ∈ ℕ such that some 𝑣!,ℓ ≠ 0, compute 𝑥∗(𝑣,ℓ). There is a
 polynomial time dynamic programming algorithm for this problem.  

5.  Choose: The BKV allocation is 𝑥!∗(𝑣,ℓ
∗) where ℓ∗ ∈ argmax∑! 𝑣!,ℓ𝑥!∗(𝑣,ℓ).
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Limits number of 
possible values to -(

.
.

Theorem (BKV FPTAS)
The BKV algorithm is monotone, guarantees 1 − 𝜀 of the maximum, and runs in time that 
is polynomial in input size and %

0
.



How BKV Can Go Wrong

• When 𝑙 is low, high item-value gets truncated 
to 2ℓ, which can make low ℓ∗ suboptimal. 

• When 𝑙∗ is high, low items-values get rounded 
to zero and those items go unpacked.

• In our example, a large investment in BKV 
contribute little to net surplus but leads small 
items to go unpacked, crashing performance 
just as in the satisficing example.
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The BKV allocation is 𝑥'∗(𝑣.ℓ
∗) where 

ℓ∗ ∈ argmax∑' 𝑣'.ℓ𝑥'∗(𝑣.ℓ).



BKV: Careless Packing of Low-Value Items

Briest, Krysta and Vöcking (2005) introduced a monotone FPTAS, as follows:
Given an integer value profile 𝑣 ∈ ℕ;< and a target approximation ratio 1 − 𝜀, 
construct approximate a series of knapsack problems indexed by ℓ = 0,1, … by 
replacing the values as follows.

1.  Step size: Define 𝛾ℓ ≝
,-ℓ

#
.

2.  Truncate: 𝑣!. ≝ min 𝑣!, 2ℓ"/ .

3.  Round values down to step: 𝑣!,ℓ ≝
0"#

1ℓ
𝛾ℓ

4.  Optimize: For all ℓ ∈ ℕ such that some 𝑣!,ℓ ≠ 0, compute 𝑥∗(𝑣,ℓ). There is a
 polynomial time dynamic programming algorithm for this problem.  

5.  Choose: The BKV allocation is 𝑥!∗(𝑣,ℓ
∗) where ℓ∗ ∈ argmax∑! 𝑣!,ℓ𝑥!∗(𝑣,ℓ).

To take full credit for packing highly valued items, low item-values must be rounded to 
zero, leaving those items unpacked. 
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The BKV FPTAS Destroys Investment Incentives

Theorem 3
For all 𝛿 > 0, there exists 𝜀 < 𝛿 such that the BKV rule with parameter 𝜀 has an 
investment guarantee of 0. 
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Proof Sketch: Bidder 1 is the investor with initial value near 0; bidder 2 has value 2; and the 
bidders 3,… ,𝑁 have values of 1. It is feasible to pack {1,2} or {1,3,4… ,𝑁}, but not to pack all 
bidders. 1 has threshold price 0.
Investment leads to high value 𝑣/ but is barely profitable. It leads to an optimal step size 

𝛾ℓ∗ =
,-ℓ

∗

#
∈ (1,2). In problem ℓ∗, the values of bidders 3,… ,𝑁 are rounded down to zero.

Hence, 𝑥∗ 𝑣,ℓ∗ = {1,2} is BKV’s selected packing.

The net value with investment is 2, but the optimum net value is 𝑁 − 2, and lim
#→4

-
#(-

= 0.  ∎



Intuition: How Do Investments Worsen Performance?

Consider any packing algorithm 𝑥, its threshold auction, and an investor: bidder 𝑛. 

We study three barely profitable investment opportunities for approximation algorithms:  

1. Investing at cost 𝑐 raises 𝑛’s value from below to barely above the threshold.
• To be profitable for the bidder, 𝑐 = 0. The performance ratio is then the same as for the allocation problem created 

by the investment.  
• In that case, investment performance is never worse than the worst allocation performance. 

2. Investing at cost 𝑐 raises 𝑛’s value from above the threshold and is just profitable. 
• Call this a confirming investment. By monotonicity, 𝑛 remains packed. 
• If 𝑥 reduces the total value of the other packed bidders, that is a confirming negative externality (CONE). Then, net 

performance is then strictly worse than without investment. 
• See the previous example. 

3. Investing at cost 𝑐 raises 𝑛’s value from strictly below to strictly above the threshold and is barely 
profitable. 
• This adds the effects of steps (1) and (2) and can be harmful only with a CONE.

Worst cases involve barely profitable investments, because profit raises investment performance.
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The XCONE Sufficient Condition

Theorem 4
If an algorithm excludes confirming negative externalities (“is XCONE”), then its worst-
case investment performance is the same as its worst-case allocation performance. 
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What About Uncertainty?

Suppose that, at the time of investment, the bidder is uncertain about… everything:
• Other bidders’ values 𝑣)'
• The packing constraints  
• The 𝑣' values and constraints that will result from investing and/or not investing
• All of these depend on an unknown state 𝑠 with pdf 𝑝 (finite support)
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Theorem 5 (“Uncertainty Changes Nothing”)
1. The worst case for the investment problem is deterministic. 
2. Even with uncertainty, XCONE is a sufficient condition for the guarantees to coincide.



1. Algorithms and Investment Incentives: Preliminary Analysis 

2. Algorithms and Investment Incentives: Worst-Case Analysis

3. An FPTAS that is Robust to Investments
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Finding the CONE

1. In our example, when bidder 1 makes a large investment, the BKV algorithm increases ℓ∗.

2. When ℓ∗ increases by enough, the values of bidders {3, … ,𝑁} are rounded to 0. They are 
then not packed: there is a confirming negative externality (“CONE”).

3. That externality is so large that it reduces the net value to a near-zero fraction of the 
optimal investment value.
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Building XCONE Algorithms
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Theorem 6
1. Optimization algorithms (as used in BKV) are always non-bossy. 
2. For packing problems, every non-bossy algorithm is XCONE.
3. An algorithm that outputs the highest-valued allocation from among other XCONE 

algorithms is XCONE. 

Definition

An algorithm 𝑥 is non-bossy if for all value profiles 𝑣, 𝑣′ and all 𝑛, 
𝑥' 𝑣 = 𝑥' 𝑣'0 , 𝑣)' ⟹ 𝑥 𝑣 = 𝑥 𝑣'0 , 𝑣)' .



Adjusting BKV to be XCONE

We make two changes to BKV to create an XCONE algorithm.

1. We define 𝑥∗ to always exclude items of value zero and to break ties “systematically.” 
• For large ℓ, with adjusted values of zero, the selected optimum must be ∅. 
• This 𝑥∗ is non-bossy. 

2. Where BKV uses ℓ∗ ∈ argmax∑! 𝑣!0ℓ𝑥!∗ 𝑣0ℓ , our modification uses 
ℓ ∈ argmax∑! 𝑣!𝑥!∗(𝑣0ℓ), based on the actual values 𝑣. 
• Our approximation has values at least as large as BKV, so it is also an FPTAS.
• Maximization is non-bossy, so our selection is a maximum of non-bossy selections, ensuring that our 

algorithm XCONE.
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XCONE-FPTAS Theorem

Theorem 7
The modified BKV algorithm is an FPTAS. Its algorithms are XCONE, monotone, and 1 − 𝜀 
approximations for the knapsack problem. 
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…and the same technique can be applied to FPTAS for some other problems as described in 
the paper.



Summary (Our Numbered Theorems)

1. Investment incentives are the same for all truthful mechanisms that use the same 
algorithm.  

2. The approximation algorithms that incentivize welfare-increasing investments are the 
constrained optimizers. 

3. The BKV-FPTAS algorithm are zero-approximations for the investment problem. 
4. XCONE algorithms have the same worst-case performance ratios for both the 

investment and allocation problems. 
5. Investment uncertainty does not change worst-case performance. 
6. Every non-bossy packing algorithm is XCONE; max of XCONE algorithms is XCONE.
7. There is an XCONE FPTAS for the knapsack problem (and for several other problems).
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Formulations with Structure Values
Including Randomized Approximation Algorithms

A Randomized Approximation Algorithm with no externalities:
• With probability ½ , pack knapsack optimally.
• With probability ½ , leave knapsack empty
• This randomized algorithm is a ½ approximation for the allocation problem.
• The value of the random outcome is the mean of the pure values.

Example:
• 1 bidder/item with value 0
• Bidder can invest at cost 𝑐 to increase its value to 1.99𝑐
• Randomized algorithm: Bidder does not invest. Value remains 0.
• Optimization: Bidder invests. Net value is .99𝑐.

Despite no externalities, this algorithm, which is a ½-approximation for the allocation problem, 
is a 0-approximation for the investment problem.
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Beyond Packing Problems

Our general theory makes arguments closely similar to those for packing problems, finding 
that XCONE applies widely to problems satisfying this assumption:

Assumption. For each bidder, the possible value vectors is a product of intervals. 

This assumption is not compatible with randomized algorithms, in which some relevant 
outcomes are randomizations with values equal to the expected value of pure outcomes.

In some formulations with deterministic algorithms, item values are assumed to be 
additive, so our analysis does not apply to those. 
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End
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