Matching and Disclosure

Hector Chade
Arizona State University

Kym Pram
University of Nevada, Reno

October 2023
Motivation

- SAT Optional in College Admissions:
 - How does this affect the matching between colleges and students?
 - Do students benefit compared to mandatory SAT taking and disclosure?
 - How about case with voluntary SAT taking but mandatory disclosure?

- Features:
 - Costly pre-match investment
 - Disclosure opportunity
 - Matching

- Another application: Entrepreneurs and VC matching
This Paper

- **Matching model with pre-match investment and disclosure:**
 - Two sides with heterogeneous agents on each side and no transfers
 - One side can costly find out an attribute (payoff-relevant to the other side)
 - Agents choose to disclose the observed attribute
 - Matching takes place between the two sides of the market

- **Key forces at play:**
 - Matching affects incentives to invest and disclose
 - Investment and disclosure affects matching

- **Main results:**
 - Comparison of equilibrium under voluntary/mandatory disclosure
 - Analysis of who benefits from voluntary disclosure
 - Illustration: optional SAT
Related Literature

- **Disclosure:**

- **Matching with pre-match investments:**

- **Optional SAT:**
 - Borghesan (2022), Osaki (2022), Dessein, Frankel, and Kartik (2023)
Model

- Continuum of colleges (measure one) with $s \sim G, g > 0$ on $[0, 1]$

- Continuum of students (measure one) with $t \sim H, h > 0$ on $[0, 1]$

 - Type t is only observed by students

 - **Pre-match investment:** student can draw $x \sim F(\cdot \mid t), f(\cdot \mid t) > 0,$ at cost $c > 0$

 - $\{f(\cdot \mid t)\}$ common support, strict monotone likelihood ratio property (MLRP)

 - **Disclosure:** If a student observes $x,$ she can then decide whether to disclose it

 - Students who do not invest or invest but do not disclose look identical

- **Payoffs:** utility of students is $s,$ and utility of colleges is x

- After pre-match investment and disclosure, matching takes place

- Equilibrium concept: PBE such that matching is stable
Equilibrium

- Wlog, equilibria in threshold strategies:
 - Invest iff $t \geq t_v \in [0, 1]$; then disclose iff $x \geq x_v \in [0, 1]$

- Matching:
 - All $x \geq x_v$ are positively assortatively matched according to $\mu_v(\cdot, t_v)$
 - $s = \mu_v(x, t_v)$ is the college with s who matches with student who disclosed x
 - Rest of students (noninvestor/nondisclosers) and colleges randomly matched
 - x_v expectation of x conditional on students who do not invest/disclose and t_v

- Pre-match investment and disclosure:
 - Given t_v and x_v, a student with t who invested willing to disclose iff $x \geq x_v$
 - Marginal benefit of investment for t given t_v and x_v ($MB_v(t, t_v)$):
 $$\mathbb{P}[x \geq x_v(t_v)|t]E[\mu_v(x, t_v)|x \geq x_v(t_v), t] + (1 - \mathbb{P}[x \geq x_v(t_v)|t])\hat{s}(t_v, x_v(t_v)) - \hat{s}(t_v, x_v(t_v))$$
 where $\hat{s}(t_v, x_v(t_v))$ is the expected payoff from random matching
 - Invest iff $MB_v(t, t_v) \geq c$; unique cutoff \tilde{t}_v by MLRP
In equilibrium, $\tilde{t}_v = t_v$, hence equilibrium condition is

$$MB_v(t_v, t_v) = c$$

If $MB_v(0, 0) \geq c$ then $t_v = 0$; if $MB_v(1, 1) \leq c$ then $t_v = 1$

For any c equilibrium exists; there can be multiple equilibria
Benchmark I: Fully Mandatory Case

- As a benchmark, consider case where students must invest and disclose.

- Matching μ_{fm} matches marginal distribution F of x and G.

- Payoff for each t is $\int_{0}^{1} \mu_{fm}(x)dF(x|t) - c$.

- If student can leave the market, then only $t \geq t_{fm}$ stay, where t_{fm} solves

$$\int_{0}^{1} \mu_{fm}(x, t_{fm})dF(x|t_{fm}) = c$$
Benchmark II: Mandatory Disclosure

- Another benchmark: voluntary investment but mandatory disclosure
- Wlog, equilibrium in threshold strategies: invest iff \(t \geq t_m \)
- Matching:
 - \(x \geq x_n \) matched positively assortatively with high \(s \)'s according to \(\mu^+_m(\cdot, t_m) \)
 - Randomly match students who do not invest with colleges of intermediate \(s \)'s
 - \(x < x_n \) matched positively assortatively with low \(s \)'s with \(\mu^-_m(\cdot, t_m) \)
 - \(x_n \) is expectation of \(x \) conditional on set of students who do not invest and \(t_m \)
- Pre-match investment:
 - Invest iff \(MB_m(t, t_m) \geq c \) where marginal benefit is
 \[
 \mathbb{P}[x \geq x_n | t] \mathbb{E}[\mu^+_m(x, t_m) | x \geq x_n, t] + (1 - \mathbb{P}[x \geq x_n | t]) \mathbb{E}[\mu^-_m(x, t_m) | x < x_n, t] - \bar{s}(t_m)
 \]
 where \(\bar{s} \) is the expected payoff from random matching
- Equilibrium: \(MB_m(t_m, t_m) = c \) (plus boundary cases); existence, multiplicity
Voluntary Disclosure vs Mandatory Disclosure

- There is more investment under voluntary than under mandatory disclosure:
 - If equilibrium is unique, $t_v \leq t_m$ and $x_v(t_v) \leq x_n(t_m)$ (both strict if interior)
 - If multiple, set of equilibrium thresholds under mandatory “higher set” than under voluntary disclosure
 - If multiple, interval of values of c that sustain interior equilibria under voluntary “higher” than under mandatory cost
 - Intuition is that MB_v is “higher” than MB_m

- Amount of disclosure (mass of students disclosing) comparison ambiguous:
 - $1 - H(t_v) - \int_{t_v}^{1} F(x_v(t_v)|t)dH(t)$ versus $1 - H(t_m)$
 - More investment under voluntary but, conditional on investing, less disclosure
 - For low and high c’s, amount of disclosure higher under voluntary disclosure
Who Benefits from Voluntary Disclosure?

- Voluntary disclosure versus fully mandatory case:

Proposition (VD versus FM)

(i) Interval of low types \(t \) starting at \(t = 0 \) strictly prefers VD to FM;

(ii) If \(\{f(x|t)\}_{t \in [0,1]} \) is TP3, then either (a) all students strictly prefer VD; or (b) students with \(t \) below a threshold strictly prefer VD, while rest FM; or (c) an interval of intermediate types strictly prefers FM, while rest strictly prefers VD.

- (i) since \(t = 0 \) strictly benefits from not investing in VD comparing to FM

- (ii) from Karlin’s Variation Diminishing Property

- Easy to pin down comparison for \(t < t_v \)

- For \(t \geq t_v \), write difference in payoffs VD–MD as \(\eta(t) = \int_0^1 r(x, t_v) f(x|t) dx \)

- \(r(\cdot, t_v) \) pcw continuous, changes signs at most twice; if twice, then +/−/+−/+−+

- By Karlin’s result, same holds for \(\eta \), and result follows
Who Benefits from Voluntary Disclosure?

- Voluntary disclosure versus mandatory disclosure:

Proposition (VD versus MD)

(i) Interval of low types t starting at $t = 0$ strictly prefers MD to VD;
(ii) If $\{f(x|t)\}_{t \in [0,1]}$ is TP_4, then either (a) all students strictly prefer MD; or (b) students with t below a threshold strictly prefer MD, while rest VD; or (c) there is one or two intervals of intermediate types that strictly prefer VD, while rest strictly prefers MD.

- (i) since $\bar{s}(t_m) > \hat{s}(t_v, x_v(t_v))$ so all $t \leq t_v$ strictly better off under MD
- (ii) from Karlin’s Variation Diminishing Property
 - All $t < t_v$ better off under MD
 - For $t \geq t_v$, write difference MD–VD as $\delta(t) = \int_0^1 q(x, t_v, t_m) f(x|t)dx$
 - $q(\cdot, t_v, t_m)$ pcw cts, changes signs at most thrice; if thrice, $-/+/-/+$
 - By Karlin’s result, same holds for δ, and result follows
Who Benefits from Voluntary Disclosure?

- Sharper results if we assume binary college characteristics:
 - A measure $\kappa \in (0, 1)$ has characteristic s_1; $1 - \kappa$ has $s_2 > s_1$
 - s_2 colleges are “top schools” while s_1 colleges are “non-top schools”
 - $1 - \kappa$ and κ aggregate capacities of top and non-top schools

- Focus on interior equilibria $0 < t_v < t_m < 1$, such that:
 - Measure of students who disclose $x \geq x_v$ strictly less than $1 - \kappa$
 - In mandatory case, measure of students with $x \geq x_n$ strictly less than $1 - \kappa$
 - Easy to ensure from primitives; this is the most interesting case
Who Benefits from Voluntary Disclosure?

- There is a \(\hat{t} \in (0, 1] \) s.t. \(t \leq \hat{t} \) strictly prefer VD and \(t > \hat{t} \) FM
 - Result holds with \(\{f(\cdot|t)\} \) MLRP; no need for \(TP_3 \)
 - \textbf{Intuition:} Higher probability of \(s_2 \) in fully mandatory; \(\hat{s} > s_1 \)

- There is a \(\tilde{t} \in (t_v, 1] \) s.t. \(t \leq \tilde{t} \) strictly prefer MD and \(t > \tilde{t} \) VD
 - Result holds with \(\{f(\cdot|t)\} \) MLRP; no need for \(TP_4 \)
 - \textbf{Intuition:} for high enough \(t \) disclosure choice provides extra benefit; for low enough \(t \) random matching payoff dominates
Optional SAT

- Interpret incurring $c > 0$ as taking the SAT

- Assume that SAT perfectly reveals student caliber
 - Low caliber students strictly prefer VD to FM
 - But, they benefit even more from MD
 - Ranking reversed for high caliber students in top and non-top schools case
 - More applications under VD than under FM
Other Results

- Comparative statics: so far wrt FOSD shift in G

- t observable: $x_v = 0$

- t payoff-relevant: either lots of equilibria, or $x_v = 0$

- Colleges choosing to commit to mandatory disclosure
Conclusion

- Many economic applications combine matching and disclosure
 - This paper analyzes their interaction

- Motivation comes from voluntary SAT taking and reporting
 - All students can be better off than in mandatory SAT taking and reporting
 - **Low-caliber students**: MD \succ VD \succ FM
 - **High-caliber students** FM \succ VD \succ MD in binary case

- Next steps:
 - Welfare college side, efficiency, noise, transferable utility
Matching Function μ_v

- Fix investment threshold t_v and disclosure threshold x_v
- Let $\tilde{F}_i(x, t_v) = \int_{t_v}^1 F(x|t)dH(t)$ be the distribution of x given t_v, $x \geq x_v$
- $\tilde{F}_i(1, t_v) = 1 - H(t_v)$, mass of students who invest
- $1 - H(t_v) - \tilde{F}_i(x_v, t_v)$ mass of students who invest and disclose, $\tilde{F}_i(x_v, t_v)$ invest but do not disclose, $H(t_v)$ do not invest
- Matching μ_v given by $1 - G(\mu_v(x, t_v)) = 1 - H(t_v) - \tilde{F}_i(x, t_v)$ for $x \geq x_v$
- Hence $\mu_v(x, t_v) = G^{-1}(H(t_v) + \tilde{F}_i(x, t_v))$ for $x \geq x_v$
Matching Functions μ_- and μ_+

- Fix and investment threshold t_m, which yields x_n

- $F_i(x, t_m) = \int_{t_m}^{1} F(x | t) dH(t)$ distribution of x given t_m (investors)

- $F_i(1, t_m) = 1 - H(t_m)$, mass of students who invest

- Hence $\mu_+(x, t_m) = G^{-1}(H(t_m) + F_i(x, t_m))$ for $x \geq x_n$

- Similarly, $\mu_-(x, t_m) = G^{-1}(F_i(x, t_m))$ for $x < x_n$
Equilibrium Comparison

- Let A and B be subsets of $[0, 1]$

- A is higher than B in the weak set order, $A \geq_{ws} B$, if for each $t \in B$ there is a $t' \in A$ such that $t' \geq t$, and for each $t' \in A$, there is a $t \in B$ such that $t \leq t'$ (Che, Kim, and Kojima (2021))

Proposition

Assume that $\int_0^1 \mu^{-1}(x) dF(x|0) \leq 1 - F(\mathbb{E}[x]|1) - \mathbb{E}[s]$. Then given any $c > 0$, the set of equilibrium investment thresholds under mandatory disclosure is higher than under voluntary disclosure in the weak set order.

- At any t_v s.t. $MB_v(t_v, t_v) = c$, $MB_m(t_v, t_v) < MB_v(t_v, t_v)$
Equilibrium Comparison

- \([a, b]\) lower than \([c, d]\) if \(a \leq c\) and \(b \leq d\) (similar for other intervals)

Proposition

As a function of \(c\), the following properties hold:

(i) The interval of values of \(c\) that support an equilibrium in which every student invests under mandatory disclosure is lower than the corresponding interval under voluntary disclosure;

(ii) The interval of values of \(c\) that support an equilibrium in which no student invests under mandatory disclosure is lower than the corresponding interval under voluntary disclosure;

(iii) The interval of values of \(c\) that support only interior equilibrium investment thresholds under mandatory disclosure is lower than the corresponding interval under voluntary disclosure.

Follows from shapes of \(MB_v(t_v, t_v)\) and \(MB_m(t_m, t_m)\) functions.