Matching and Disclosure

Hector Chade

Arizona State University

Kym Pram

University of Nevada, Reno

October 2023

Motivation

- SAT Optional in College Admissions:
 - How does this affect the matching between colleges and students?
 - Do students benefit compared to mandatory SAT taking and disclosure?
 - How about case with voluntary SAT taking but mandatory disclosure?
- Features:
 - Costly pre-match investment
 - Disclosure opportunity
 - Matching
- Another application: Entrepreneurs and VC matching

This Paper

- Matching model with pre-match investment and disclosure:
 - Two sides with heterogeneous agents on each side and no transfers
 - One side can costly find out an attribute (payoff-relevant to the other side)
 - Agents choose to disclose the observed attribute
 - Matching takes place between the two sides of the market
- Key forces at play:
 - Matching affects incentives to invest and disclose
 - Investment and disclosure affects matching
- Main results:
 - Comparison of equilibrium under voluntary/mandatory disclosure
 - Analysis of who benefits from voluntary disclosure
 - Illustration: optional SAT

Related Literature

Disclosure:

 Grossman (1981), Milgrom (1981), Verecchia (1983), Dye (1985), Ben-Porath, Dekel, and Lipman (2018)

Matching with pre-match investments:

 Cole, Mailath, and Postlewaite (2001), Nöldeke and Samuelson (2015), Bhaskar and Hopkins (2016), Chade and Lindenlaub (2022), Bilancini and Boncinelli (2013)

Optional SAT:

Borghesan (2022), Osaki (2022), Dessein, Frankel, and Kartik (2023)

Model

- Continuum of colleges (measure one) with $s \sim G, g > 0$ on [0, 1]
- Continuum of students (measure one) with $t \sim H, h > 0$ on [0, 1]
 - **Type** t is only observed by students
 - Pre-match investment: student can draw $x \sim F(\cdot|t)$, $f(\cdot|t) > 0$, at cost c > 0
 - $\{f(\cdot|t)\}$ common support, strict monotone likelihood ratio property (MLRP)
 - **Disclosure:** If a student observes x, she can then decide whether to disclose it
 - Students who do not invest or invest but do not disclose look identical
- **Payoffs:** utility of students is s, and utility of colleges is x
- After pre-match investment and disclosure, matching takes place
- Equilibrium concept: PBE such that matching is stable

Equilibrium

- Wlog, equilibria in threshold strategies:
 - Invest iff $t \ge t_v \in [0,1]$; then disclose iff $x \ge x_v \in [0,1]$
- Matching:
 - All $x \ge x_v$ are positively assortatively matched according to $\mu_v(\cdot, t_v) \frown \mu_v$
 - $\blacksquare \ s = \mu_v(x,t_v)$ is the college with s who matches with student who disclosed x
 - Rest of students (noninvestor/nondisclosers) and colleges randomly matched
 - x_v expectation of x conditional on students who do not invest/disclose and t_v
- Pre-match investment and disclosure:
 - Given t_v and x_v , a student with t who invested willing to disclose iff $x \ge x_v$
 - Marginal benefit of investment for t given t_v and x_v ($MB_v(t, t_v)$):

 $\mathbb{P}[x \ge x_v(t_v)|t] \mathbb{E}[\mu_v(x, t_v)|x \ge x_v(t_v), t] + (1 - \mathbb{P}[x \ge x_v(t_v)|t])\hat{s}(t_v, x_v(t_v)) - \hat{s}(t_v, x_v(t_v))$

where $\hat{s}(t_v, x_v(t_v))$ is the expected payoff from random matching

Invest iff $MB_v(t, t_v) \ge c$; unique cutoff \tilde{t}_v by MLRP

Equilibrium

In equilibrium, $\tilde{t}_v = t_v$, hence equilibrium condition is

 $MB_v(t_v, t_v) = c$

- If $MB_v(0,0) \ge c$ then $t_v = 0$; if $MB_v(1,1) \le c$ then $t_v = 1$
- For any c equilibrium exists; there can be multiple equilibria

- As a benchmark, consider case where students must invest and disclose
- Matching μ_{fm} matches marginal distribution F of x and G
- Payoff for each t is $\int_0^1 \mu_{fm}(x) dF(x|t) c$
- If student can leave the market, then only $t \ge t_{fm}$ stay, where t_{fm} solves

$$\int_0^1 \mu_{fm}(x, t_{fm}) dF(x|t_{fm}) = c$$

Benchmark II: Mandatory Disclosure

- Another benchmark: voluntary investment but mandatory disclosure
- Wlog, equilibrium in threshold strategies: invest iff $t \ge t_m$
- Matching:
 - $x \ge x_n$ matched positively assortatively with high s's according to $\mu_m^+(\cdot, t_m)$
 - \blacksquare Randomly match students who do not invest with colleges of intermediate $s{\rm 's}$
 - $x < x_n$ matched positively assortatively with low s's with $\mu_m^-(\cdot, t_m) \frown \mu_m$
 - x_n is expectation of x conditional on set of students who do not invest and t_m
- Pre-match investment:
 - Invest iff $MB_m(t, t_m) \ge c$ where marginal benefit is

 $\mathbb{P}[x \ge x_n | t] \mathbb{E}[\mu_m^+(x, t_m) | x \ge x_n, t] + (1 - \mathbb{P}[x \ge x_n | t]) \mathbb{E}[\mu_m^-(x, t_m) | x < x_n, t] - \bar{s}(t_m)$

where \bar{s} is the expected payoff from random matching

• Equilibrium: $MB_m(t_m, t_m) = c$ (plus boundary cases); existence, multiplicity

Voluntary Disclosure vs Mandatory Disclosure

- There is more investment under voluntary than under mandatory disclosure:
 - If equilibrium is unique, $t_v \leq t_m$ and $x_v(t_v) \leq x_n(t_m)$ (both strict if interior)
 - If multiple, set of equilibrium thresholds under mandatory "higher set" than under voluntary disclosure <a hresholds
 - If multiple, interval of values of c that sustain interior equilibria under voluntary "higher" than under mandatory Cost
 - Intuition is that MB_v is "higher" than MB_m
- Amount of disclosure (mass of students disclosing) comparison ambiguous:
 - $1 H(t_v) \int_{t_v}^1 F(x_v(t_v)|t) dH(t)$ versus $1 H(t_m)$
 - More investment under voluntary but, conditional on investing, less disclosure
 - For low and high c's, amount of disclosure higher under voluntary disclosure

■ Voluntary disclosure versus fully mandatory case:

Proposition (VD versus FM)

(i) Interval of low types t starting at t = 0 strictly prefers VD to FM; (ii) If $\{f(x|t)\}_{t \in [0,1]}$ is TP_3 , then either (a) all students strictly prefer VD; or (b) students with t below a threshold strictly prefer VD, while rest FM; or (c) an interval of intermediate types strictly prefers FM, while rest strictly prefers VD.

- (i) since t = 0 strictly benefits from not investing in VD comparing to FM
- (*ii*) from Karlin's Variation Diminishing Property
 - \blacksquare Easy to pin down comparison for $t < t_v$
 - For $t \ge t_v$, write difference in payoffs VD-MD as $\eta(t) = \int_0^1 r(x, t_v) f(x|t) dx$
 - $\blacksquare \ r(\cdot,t_v)$ pcw continuous, changes signs at most twice; if twice, then +/-/+
 - By Karlin's result, same holds for η , and result follows

■ Voluntary disclosure versus mandatory disclosure:

Proposition (VD versus MD)

(i) Interval of low types t starting at t = 0 strictly prefers MD to VD; (ii) If $\{f(x|t)\}_{t \in [0,1]}$ is TP_4 , then either (a) all students strictly prefer MD; or (b) students with t below a threshold strictly prefer MD, while rest VD; or (c) there is one or two intervals of intermediate types that strictly prefer VD, while rest strictly prefers MD.

- (i) since $\bar{s}(t_m) > \hat{s}(t_v, x_v(t_v))$ so all $t \le t_v$ strictly better off under MD
- (*ii*) from Karlin's Variation Diminishing Property
 - All $t < t_v$ better off under MD
 - For $t \geq t_v$, write difference MD–VD as $\delta(t) = \int_0^1 q(x, t_v, t_m) f(x|t) dx$
 - $q(\cdot, t_v, t_m)$ pcw cts, changes signs at most thrice; if thrice, -/+/-/+
 - By Karlin's result, same holds for δ , and result follows

■ Sharper results if we assume binary college characteristics:

- A measure $\kappa \in (0,1)$ has characteristic s_1 ; 1κ has $s_2 > s_1$
- s_2 colleges are "top schools" while s_1 colleges are "non-top schools"
- 1κ and κ aggregate capacities of top and non-top schools
- Focus on interior equilibria $0 < t_v < t_m < 1$, such that:
 - Measure of students who disclose $x \ge x_v$ strictly less than 1κ
 - \blacksquare In mandatory case, measure of students with $x \geq x_n$ strictly less than $1-\kappa$
 - Easy to ensure from primitives; this is the most interesting case

- There is a $\hat{t} \in (0, 1]$ s.t. $t \leq \hat{t}$ strictly prefer VD and $t > \hat{t}$ FM
 - **Result** holds with $\{f(\cdot|t)\}$ MLRP; no need for TP_3
 - Intuition: Higher probability of s_2 in fully mandatory; $\hat{s} > s_1$
- There is a $\tilde{t} \in (t_v, 1]$ s.t. $t \leq \tilde{t}$ strictly prefer MD and $t > \hat{t}$ VD
 - **Result** holds with $\{f(\cdot|t)\}$ MLRP; no need for TP_4
 - Intuition: for high enough t disclosure choice provides extra benefit; for low enough t random matching payoff dominates

- Interpret incurring c > 0 as taking the SAT
- Assume that SAT perfectly reveals student caliber
 - Low caliber students strictly prefer VD to FM
 - But, they benefit even more from MD
 - Ranking reversed for high caliber students in top and non-top schools case
 - More applications under VD than under FM

- Comparative statics: so far wrt FOSD shift in G
- t observable: $x_v = 0$
- t payoff-relevant: either lots of equilibria, or $x_v = 0$
- Colleges choosing to commit to mandatory disclosure

Conclusion

Many economic applications combine matching and disclosure

This paper analyzes their interaction

Motivation comes from voluntary SAT taking and reporting

- All students can be better off than in mandatory SAT taking and reporting
- Low-caliber students: $MD \succ VD \succ FM$
- High-caliber students $FM \succ VD \succ MD$ in binary case
- Next steps:
 - Welfare college side, efficiency, noise, transferable utility

- \blacksquare Fix investment threshold t_v and disclosure threshold x_v
- Let $\tilde{F}_i(x,t_v) = \int_{t_v}^1 F(x|t) dH(t)$ be the distribution of x given t_v , $x \ge x_v$
- $\tilde{F}_i(1,t_v) = 1 H(t_v)$, mass of students who invest
- $1 H(t_v) \tilde{F}_i(x_v, t_v)$ mass of students who invest and disclose, $\tilde{F}_i(x_v, t_v)$ invest but do not disclose, $H(t_v)$ do not invesnt
- Matching μ_v given by $1 G(\mu_v(x, t_v)) = 1 H(t_v) \tilde{F}_i(x, t_v)$ for $x \ge x_v$
- Hence $\mu_v(x,t_v) = G^{-1}(H(t_v) + \tilde{F}_i(x,t_v))$ for $x \ge x_v \smile \mathsf{back}$

- Fix and investment threshold t_m , which yields x_n
- $F_i(x, t_m) = \int_{t_m}^1 F(x|t) dH(t)$ distribution of x given t_m (investors)
- $F_i(1,t_m) = 1 H(t_m)$, mass of students who invest
- Hence $\mu_+(x,t_m) = G^{-1}(H(t_m) + F_i(x,t_m))$ for $x \ge x_n$
- Similarly, $\mu_{-}(x,t_m) = G^{-1}(F_i(x,t_m))$ for $x < x_n$ \smile back

Equilibrium Comparison

• Let A and B be subsets of [0,1]

• A is higher than B in the weak set order, $A \ge_{ws} B$, if for each $t \in B$ there is a $t' \in A$ such that $t' \ge t$, and for each $t' \in A$, there is a $t \in B$ such that $t \le t'$ (Che, Kim, and Kojima (2021))

Proposition

Assume that $\int_0^1 \mu^{-1}(x) dF(x|0) \le 1 - F(\mathbb{E}[x]|1) - \mathbb{E}[s]$. Then given any c > 0, the set of equilibrium investment thresholds under mandatory disclosure is higher than under voluntary disclosure in the weak set order.

At any t_v s.t. $MB_v(t_v, t_v) = c$, $MB_m(t_v, t_v) < MB_v(t_v, t_v)$ \checkmark back

Equilibrium Comparison

• [a, b] lower than [c, d] if $a \le c$ and $b \le d$ (similar for other intervals)

Proposition

As a function of c, the following properties hold:

(i) The interval of values of c that support an equilibrium in which every student invests under mandatory disclosure is lower than the corresponding interval under voluntary disclosure;

(ii) The interval of values of *c* that support an equilibrium in which no student invests under mandatory disclosure is lower than the corresponding interval under voluntary disclosure;

(iii) The interval of values of c that support only interior equilibrium investment thresholds under mandatory disclosure is lower than the corresponding interval under voluntary disclosure.

• Follows from shapes of $MB_v(t_v, t_v)$ and $MB_m(t_m, t_m)$ functions \bigcirc back