Separable Matching

Alfred Galichon ${ }^{1}$ Bernard Salanié ${ }^{2}$

${ }^{1}$ New York University and Sciences Po
${ }^{2}$ Columbia University

October 2023
Berkeley

Early 2000s consensus:

Estimation is hard!

Estimating matching models is hard. . .
the choice is between brute-force methods (simulating and fitting) and ad hoc, unjustified regressions.

Now:

Estimation is easy!

At least for separable, TU matching markets.

How Easy?

Take the most popular "marriage model": Choo and Siow 2006
A match between a man m with observed characteristics $x=1, \ldots, X$ and a woman w with observed characteristics $y=1, \ldots, Y$
generates joint utility

$$
\phi_{x y} \cdot \boldsymbol{\beta}_{0}+\varepsilon_{m y}+\eta_{x w}
$$

and the ε, η are iid standard Gumbel (type I EV).
Suppose we only observe numbers of matches $\left(\hat{\mu}_{x y}\right)$ - not singles.

The Brute-force Method

(1) pick values $\boldsymbol{\beta}$
(2) draw ε and η vectors for each man and each women
(3) solve for the optimal assignment
(4) aggregate to get $\left(\mu_{x y}(\boldsymbol{\beta})\right)$
(5) compare with the observed $\left(\hat{\mu}_{x y}\right)$
(6) iterate until happy.

It does give valid estimates, but it is laborious, and not very illuminating.

Ad hoc Regressions

(1) regress $\hat{\mu}_{x y}$ on x and y dummies, maybe other covariates
(2) do wet-finger interpretation.

What do the coefficients of the regression mean?

Estimation by Generalized Least-squares

(1) estimate $\operatorname{Var} \hat{\mu}$
(2) then $S^{*}=(\operatorname{Var}(2 \log \hat{\mu}))^{-1}$
(3) solve

$$
\left(\phi^{\prime} S^{*} \phi\right) \hat{\boldsymbol{\beta}}=2 \phi^{\prime} S^{*} \log \hat{\boldsymbol{\mu}} .
$$

(9) if the model is well-specified,

$$
\|\phi \hat{\boldsymbol{\beta}}-2 \log \hat{\boldsymbol{\mu}}\|_{S^{*}}^{2}
$$

is (asymptotically) a χ^{2} with $X \times Y-\operatorname{dim} \boldsymbol{\beta}_{0}$ degrees of freedom.
$\hat{\boldsymbol{\beta}}$ is a consistent and asymptotically normal estimator of $\boldsymbol{\beta}_{0}$ and we also get a specification test (basically the sum of square residuals).

Matching: TU, one-to-one, bipartite

one-to-one and bipartite: each match is a couple with one partner in each of two given subpopulations
Call it "(heterosexual) marriage" with "men" and "women".
A match of man m with woman w must be voluntary
\rightarrow it must make them both better off than any other match, or singlehood
("partnered with 0").
If m ends up with utility u_{m} and w with v_{w}, we must have

$$
u_{m}+v_{w}=\Phi_{m w}
$$

where $\Phi_{m w}$ is the sum of the (transferable) utilities they get when together.
Moreover,

- $u_{m} \geq \Phi_{m w}-v_{w}$ for any other woman w, and for $w=0$
- $v_{w} \geq \Phi_{m w}-u_{m}$ for any other man m, and for $m=0$.

Stability Equations

$$
u_{m}+v_{w} \geq \Phi_{m w} \text { for all } m, w
$$

with equality if m, w are matched "in equilibrium".
"Equilibrium" solves the dual $\min \sum_{m} u_{m}+\sum_{w} v_{w}$ under stability.
The primal is $\mu_{m w} \in[0,1]$ that maximizes $\sum_{m, w} \mu_{m w} \Phi_{m w}$ under the margin constraints

$$
\begin{aligned}
& \sum_{w} \mu_{m w}+\mu_{m 0}=1 \text { for all } m \\
& \sum_{m} \mu_{m w}+\mu_{0 w}=1 \text { for all } w
\end{aligned}
$$

Econometrics means unobserved heterogeneity

Now we want to write $\Phi_{m w}=Q\left(x_{m}, y_{w}, \zeta_{m w}\right)$ where the econometrician observes

- all x_{m} and y_{w}
- whether any m and w end up being matched
- but not the $\zeta_{m w}$.

Problem: we know that estimating even one-sided choice models require strong assumptions and/or a lot of data
here we have two-sided choice.
we need to simplify (restrict) the $\zeta_{m w}$.

Separability

Much of the literature assumes separability:
if $x_{m}=x$ and $y_{w}=y$, then

$$
\Phi_{m w}=\bar{\Phi}_{x y}+\varepsilon_{m y}+\eta_{x w} ;
$$

no interaction between the unobserved characteristics of m and w, conditional on ($x_{m}=x, y_{w}=y$)
allows for restricted matching on unobservables.

Separability as Dimension-Reduction

Choo-Siow 2006, Chiappori-Salanié-Weiss 2017, Galichon-Salanié 2022: in equilibrium, there exists $U_{x y}$ and $V_{x y}$ such that

- m with $x_{m}=x$ gets utility $u_{m}=\max _{y}\left(U_{x y}+\varepsilon_{m y}\right)$
- w with $y_{w}=y$ gets utility $v_{w}=\max _{x}\left(V_{x y}+\eta_{x w}\right)$
- $U_{x y}+V_{x y} \geq \bar{\Phi}_{x y}$, with equality if some x and some y match.

Identification

Choose some distribution for $\left(\varepsilon_{m 0}, \ldots, \varepsilon_{m}\right)$ for given x, etc
Then

$$
\bar{\Phi}_{x y}=-\frac{\partial \mathcal{E}}{\partial \mu_{x y}}(\boldsymbol{\mu})
$$

where the generalized entropy function \mathcal{E} depends on the choice of distributions and on the group sizes.
it measures the total surplus generated by matching on unobservables.

Why?

Since m with $x_{m}=x$ maximizes $U_{x y}+\varepsilon_{m y}$, the expected utility of men of type x is

$$
G_{x}\left(\boldsymbol{U}_{x .}\right)=E_{\varepsilon} \max \left(U_{x y}+\varepsilon_{m y}\right)
$$

It is convex in \boldsymbol{U}_{x}., with gradient a.e.

$$
\mu_{y \mid x}=\frac{\partial G_{x}}{\partial U_{x y}}\left(\boldsymbol{U}_{x .}\right)
$$

and by convex duality

$$
U_{x y}=\frac{\partial G_{x}^{*}}{\partial \mu_{y \mid x}}\left(\boldsymbol{\mu}_{\cdot \mid x}\right)
$$

where G_{x}^{*} is the Legendre-Fenchel transform of G_{x}.

Why, ctd

We do the same on women's side and we get, if there are matches betwen x and y :

$$
\bar{\Phi}_{x y}=U_{x y}+V_{x y}=\frac{\partial G_{x}^{*}}{\partial \mu_{y \mid x}}\left(\boldsymbol{\mu}_{\cdot \mid x}\right)+\frac{\partial H_{y}^{*}}{\partial \mu_{x \mid y}}\left(\boldsymbol{\mu}_{\cdot \mid y}\right)
$$

which defines (minus) the derivatives of the generalized entropy \mathcal{E}.

Minimum Distance Estimation

Let $\boldsymbol{\alpha}$ parameterize the distributions, and $\boldsymbol{\beta}$ for $\bar{\phi}$
We have a mixed hypothesis:

$$
\exists \boldsymbol{\lambda} \equiv(\boldsymbol{\alpha}, \boldsymbol{\beta}) \text { s.t. for all } x, y, \bar{\Phi}_{x y}^{\beta}=-\frac{\partial \mathcal{E}_{\boldsymbol{\alpha}}}{\partial \mu_{x y}}(\mu) \text {. }
$$

(1) we get $\hat{\mu}$ from the data
(2) we minimize a suitably weighted norm of the matrix

$$
\overline{\boldsymbol{\Phi}}^{\boldsymbol{\beta}}+\frac{\partial \mathcal{E}_{\boldsymbol{\alpha}}}{\partial \boldsymbol{\mu}}(\hat{\boldsymbol{\mu}}) .
$$

Testing

If the weighted norm is chosen optimally, then its value at the minimum over $\boldsymbol{\lambda}$ is a χ^{2} if the model is well-specified.
\rightarrow a "catch-all" specification test.

Simple Subcases

For many choices of the distributions (but not e.g. with random coefficients), the derivatives of the generalized entropy $\mathcal{E}_{\boldsymbol{\alpha}}$ are linear in $\boldsymbol{\alpha}$
then one can minimize the weighted norm "profiled" on $\boldsymbol{\beta}$ only.
If moreover $\bar{\phi}$ is linear in $\boldsymbol{\beta}$, we get quasi-generalized least squares (cf the opening example).

Extensions in the Paper

Many-to-one matching
Multipartite matching
Unipartite matching.

