

An Algorithmist's Take on Relational Algorithms (Intermediate Relational Algorithm Design) Kirk Pruhs

Acknowledements to:

- Academic Network: Sungjin Im, Ben Moseley, Alireza Samadian, Yuyan Wang
- RAI folks: Mahmoud Abo-Khamis, Ryan Curtin, Hung Ngo

Recall: Relational Algorithms

- Relational algorithms: Algorithms that are
 - efficient (say polynomial time), and
 - accept the input is in relational form
- Relational algorithms necessarily can not afford to join the tables

Analogous Situation

• Goal: StringSearch(Compressed String)

• Standard Approach: StandardAlgorithm(Uncompress(Compressed String))

• [SMTSA, CPM2000] NewSearchAlgorithm(Compressed String)

Intended Take Away Points

- Barrier to entry into relational algorithms is relatively low

- Potentially interesting open algorithmic problems
- But problems have to be mined (not picked)

Problem Mining Is Important In Restricted Computation Model Research

- Kindred Restricted Computational Model
 - Streaming
 - Algorithm only is a allow a small number (most commonly 1) linear passes over the data
 - Massive Parallel Computing (MPC)
 - think MapReduce
 - Distributed model in which no computer has enough memory to store all of the input

 My experience is that the key to doing research in these areas is finding/mining problems where positive results are achievable

– Not problem solving!

Necessary Background Before Getting Started Designing Relational Algorithms

- Graphic and geometric views of a join
- Sum-Product query
- Variable elimination algorithm

 How to use Sum-Product queries to develop algorithms

Graphic View of Join

Table B

Ζ

Ζ

1	Table A	
х	У	У
3	1	
4	1	1
5	1	Join 2
6	2	2
	X	У
3		1
4		

Des Ma		
х	У	Z
3	1	7
3	1	8
4	1	7
4	1	8
5	1	7
5	1	8
6	2	9
6	2	10

Intuitive Geometric View of a Join

- $\prod_{xy} (A(x, y) \bowtie B(y,z)) \approx A(x, y)$
- $\prod_{yz} (A(x, y) \bowtie B(y, z)) \approx B(y, z)$
- Join is intuitively the maximal inverse of projection

Necessary Background Before Getting Started Designing Relational Algorithms

- Graphic and geometric views of a join
- Sum-Product query
- Variable elimination algorithm

 How to use Sum-Product queries to develop algorithms

Design of Relational Algorithms

Key:

 Problems Algorithmic technique 		k-means		SVM gradient		
		Greedv	Rejection	Su Agg with Ind	umProd gregation an Additive equality	Stability Analysis
k NN	Linear Regression	Decision Tree	Sampling	Dynamic	Programming S	emi-rings
SumProd Aggregation						

Sum-Product Query

- Mahmoud's view:
 - $\oplus_{x_1, \dots x_k} \bigotimes_{x_S} f_S(x_S)$
 - Where each S is conceptually a table with variables \boldsymbol{x}_{S}
- My take abstracts out the tables
 - $\bigoplus_{\rm r} \bigotimes_{\rm c} f_{\rm c}(M_{\rm rc})$
 - Where r is a generic row, and c is a generic column, in the joined table M
 - Where \oplus and \otimes form a commutative semiring

Candidate Problems to Develop Relational Algorithms For

- Any geometric problem where the input is a collection of points in some higher dimensional space
 - Example: How many points are in the input?
 - Example: Which point is furthest from the origin?
 - Example: k-means

Geometric Problem: How Many Points are in the Input

- Standard input representation: Trivial
- Input is in relational format:
 - NP-hard to decide if the input is nonempty
 - #P-complete
 - But this is not important
- Sum-Product Query
 - \oplus is addition
 - \otimes is multiplication
 - $f_c(x) = 1$
 - − So $\bigoplus_{r} \bigotimes_{c} f_{c}(M_{rc}) = \sum_{r} \prod_{c} 1$
 - Note r is a point and c is a coordinate/dimension
 - $(1^*1^*1) + (1^*1^*1) + (1^*1^*1) + (1^*1^*1) + (1^*1^*1) + (1^*1^*1) + (1^*1^*1) + (1^*1^*1) = 8$

Des Ma		
Х	У	Z
3	1	7
3	1	8
4	1	7
4	1	8
5	1	7
5	1	8
6	2	9
6	2	10

Geometric Problem: Distance of Furthest Point From the Origin

- Sum-Product Query
 - \oplus is max
 - \otimes is addition
 - $f_c(x) = x^2$
 - So $\bigoplus_{r} \bigotimes_{c} f_{c}(M_{rc}) = \max_{r} \sum_{c} M_{rc}^{2}$
- (3²+1²+7²) max (3²+1²+8²) max ...

Des Ma		
x	У	z
3	1	7
3	1	8
4	1	7
4	1	8
5	1	7
5	1	8
6	2	9
6	2	10

Necessary Background Before Getting Started Designing Relational Algorithms

- Graphic and geometric views of a join
- Sum-Product query
- Variable elimination algorithm

 How to use Sum-Product queries to develop algorithms

Illustrative Example Problem: k-means Clustering

Ideal Clustering

k-means Problem

 Input: points x₁, ..., x_m in Euclidean space and integer k

k-means Problem

• Input: points x₁, ..., x_m in Euclidean space and integer k

- Feasible solution: k centers/points S₁, ..., S_k
- Objective: Minimize aggregate 2-norm squared distances to nearest center
 - Min $\sum_{i \in [m]} \min_{j \in [k]} \langle \langle x_i S_h \rangle \rangle$
 - Where $\langle\!\langle x_i S_h \rangle\!\rangle$ is 2-norm squared

Strategic Plan Once You've Picked a Problem

- A. Design a relational implementation of a/the standard non-relational algorithm
- B. Design a relational algorithm that doesn't exactly implement the standard algorithm, but that has the same theoretical guarantees as the standard algorithm
- C. Design a relational algorithm that has some reasonable theoretical guarantee

Standard k-means++ Algorithm [AV2007]

- K-means++ Algorithm: Pick a point as the next center with probability proportional to its distance to its nearest previous center
- Plan A succeeds for k-means++: There is a relational implementation

Standard Adaptive k-means Algorithm [ADK2009]

- Plan A fails: A relational implementation of the adaptive kmeans algorithm would imply P=NP
 - NP-hardness is a reasonably effective tool for proving the likely nonexistence of relational algorithms
- Plan B succeeds: We can modify the adaptive k-means algorithm so that
 - It can be implemented relationally
 - It still has the same theoretical guarantee of bounded relative error

Algorithmic Design Strategies

- A. Express the problem using a Sum-Product query
 - Implementation of 1-means++
- B. Design algorithm from scratch
 - 1. First try cross-product join
 - 2. Then try path join
 - 3. Then try express computation as sum-product query
 - Implementation of 2-means++
 - Implementation of 3-means++
 - Approximately counting points in a hypersphere
 - subroutine to our relational modification of the adaptive k-means algorithm
- C. Build algorithm from components one knows how to compute using Sum-product queries
 - Adaptive k-means algorithm

Relational Implementation of 1-means++ Algorithm

• 1-means++ Algorithm

– Pick center S₁ uniformly at random from x₁, ..., x_n

- Uniform generation can be reduced to counting
 - Standard variable elimination algorithm keeps track of Sum-Product ala shortest path algorithms
- Implementation of counting as a SumProd query $\sum_{r} \prod_{c} 1$

Computing Aggregate Number of Points $(\sum_{r} \prod_{c} 1)$ on a Path Join

Input Tal	ole T1	Input Tal	ole T2	Input Tal	ole T3	Input Tal	ole T4	
F1	F2	F2	F3	F3	F4	F4	F5	4
1	1	1	1	1	1	1	1	Л
2	1	1	2	2	1	1	2	4
3	3	3	3	3	3	3	3	1

Computed by variable elimination algorithm

Each source to sink path can be viewed as a point in 5 dimensional space

Algorithmic Design Strategies

- A. Express the problem using a Sum-Product query
 - Implementation of 1-means++
- B. Design algorithm from scratch
 - 1. First try cross-product join
 - 2. Then try path join
 - 3. Then try express computation as sum-product query
 - Implementation of 2-means++
 - Implementation of 3-means++
 - Approximately counting points in a hypersphere
 - subroutine to our relational modification of the adaptive k-means algorithm
- C. Build algorithm from components one knows how to compute using Sum-product queries
 - Adaptive k-means algorithm

1 2 3 4

Relational Implementation of 2-means++ Algorithm

- 2-means++ Algorithm
 - Pick center S_1 uniformly at random from $x_1, ..., x_n$
 - Pick x_i as center S_2 with probability proportional to $\langle\!\langle x_i S_1 \rangle\!\rangle$, the 2-norm squared distance to S_2
- Implementation of second step
 - Again reduce sampling to summing
 - Need aggregate 2-norm squared

Start with a Path Join

Input Tal	ole T1	Input Tak	ole T2	Input Tal	ole T3	Input Tal	ble T4	
F1	F2	F2	F3	F3	F4	F4	F5	32
1	1	1	1	1	1	1	1	лл
2	1	1	2	2	1	1	2	44
3	3	3	3	3	3	3	3	45

Computed by variable elimination algorithm

Each source to sink path can be viewed as a point in 5 dimensional space

Compute aggregate 2-norm squared on a path join

• Algorithm: Process edges left to right

 $-Sum^{2}(z) = Sum^{2}(y) + z^{2} * numpaths(y)$

– Numpaths(z) = numpaths(z) + numpaths(y)

 Take away: You need to remember aggregate square sum and number of paths

Compute aggregate 2-norm squared on a general join

- Base elements of semi-ring pairs (n, s) of numbers
 - n is a row count
 - s is a sum of squares
- Need to design \oplus and \otimes such that variable elimination yields

Intuition: Think shortest paths $sp(z) = min(sp(z), sp(a) + y^2)$

Compute aggregate 2-norm squared on a general join

- Dynamic Programming Semiring
 - $(a, b) \bigoplus (c, d) = (a + c, b + d)$
 - (a, b) \otimes (c, d) = (ac, ad + bc)
 - Multiplicative identity (1, 0)
 - Additive identity (0, 0)

Algorithmically Interesting Insight

- Known: Dynamic Programs can be used to compute sum-product queries
 - For example, standard shortest path algorithms such as Dijkstra and Bellman-Ford extend to computing sum-product query over a commutative semiring
- New to me: Many standard dynamic programs can be expressed as sum-product queries where the elements of the ground set in the semiring are the rows in the dynamic programming table

Algorithmic Design Strategies

- A. Express the problem using a Sum-Product query
 - Implementation of 1-means++
- B. Design algorithm from scratch
 - 1. First try cross-product join
 - 2. Then try path join
 - 3. Then try express computation as sum-product query
 - Implementation of 2-means++
 - Implementation of 3-means++
 - Approximately counting points in a hypersphere
 - subroutine to our relational modification of the adaptive k-means algorithm
- C. Build algorithm from components one knows how to compute using Sum-product queries
 - Adaptive k-means algorithm

1 2 3 4

3-means++ Algorithm

- Pick center S_1 uniformly at random from $x_1, ..., x_n$
- Pick x_i as center S_2 with probability proportional to $\langle\!\langle x_i S_1 \rangle\!\rangle$
- Pick x_i as center S₃ with probability proportional to min(((x_i S₁)), ((x_i S₂))), the 2-norm squared distance to previous center

Picking S₃

Pick each point with probability proportional to distance to S_2

 S_2

Pick each point with probability proportional to distance to S₁

 S_1

Picking S₃

Theorem: Its NP-hard to compute aggregate distance of points to the dividing line even if tables are simple

Pick each point with probability proportional to distance to S₂

Pick each point with probability proportional to distance to S₁

 S_1

Therefore we can't reduce random selection to summing

Digression: Rejection Sampling

- Given a uniform sample over the red square:
 - Generate a uniform sample over the blue circle
 - Estimate area of the blue circle

More Rejection Sampling

- Assumptions:
 - Want to sample an element r with probability proportional to h(r)
 - Easy to compute h(r)
 - Hard to compute $H = \Sigma_r h(r)$
 - Surrogate distribution e
 - Easy to compute e(r)
 - h(r) < e(r)
 - Easy to compute $E = \Sigma_r e(r)$
- Rejection sampling
 - Pick r with probability e(r)/E
 - Accept r with probability h(r)/e(r) else resample
- Theorem: r is sampled with probability proportional to h(r) in expected time E/H

Computing $E = \Sigma_i e(x_i)$ Using Sum-Product Query

- f_c(x) =
 - $(x-S_2(c))^2$ if LB_Box2(c) < x < UB_Box2(c)
 - $-(x-S_1(c))^2$ if otherwise
- $E = \sum_{r} \prod_{c} f_{c}(M_{rc})$

Picking S₃

Pick each point with probability proportional to distance to S₂

Pick each point with probability proportional to distance to S₁

 S_1

Conclusion: Using rejection sampling one can sample from this hard distribution using d samples in expectation from the easy distribution

Algorithmic Design Strategies

- A. Express the problem using a Sum-Product query
 - Implementation of 1-means++
- B. Design algorithm from scratch
 - 1. First try cross-product join
 - 2. Then try path join
 - 3. Then try express computation as sum-product query
 - Implementation of 2-means++
 - Implementation of 3-means++
 - Approximately counting points in a hypersphere
 - subroutine to our relational modification of the adaptive k-means algorithm
- C. Build algorithm from components one knows how to compute using Sum-product queries
 - Adaptive k-means algorithm

Sum-Product Query with Additive Inequality

• Definition

- Compute $\bigoplus_r \bigotimes_c f_c(M_{rc})$
- For those r where $\sum_{c} g_{c}(M_{rc}) \leq R$
- Fact: Can be approximated within a (1+ε) factor by a sum product query that implements a dynamic program
 - Assuming operations are approximation preserving (so not subtraction)
- Special Case: Count the points in hypershere centered at origin
 - ∑_r∏_c 1
 - For those r where $\sum_{c} M_{rc}^2 \leq R$

Intended Take Away Points

- Barrier to entry into relational algorithms is relatively low

- Potentially interesting open algorithmic problems
- But problems have to be mined (not picked)

Discussion Problems

 Onboarding Warmup Problem: Find a relational implementation of the ID3 decision tree construction algorithm that is as efficient at possible

 Open Problem: Identify geometric problems that would are potentially interesting to develop relational algorithms for

- Table T entropy
 - $H(T) = q \lg 1/q + (1-q) \log 1/(1-q)$
 - q= probability label is 0
- This example: H(T) = (2/6)(lg 6/3) + (4/6)(log 6/4)

Table T						
U	V	W	Х	Label		
1	6	1	6	1		
2	5	3	4	1		
3	4	5	2	1		
4	3	2	1	0		
5	2	4	3	1		
6	1	6	5	0		

- Find comparison C of the form:
 - attribute ≤ value
 - that gives maximum information
 - Equivalent to minimizing the resulting conditional entropy H(T | C)
 - H(T | C) = Prob(C=0) H(T | C=0) + Prob(C=1) H(T | C=1)

- Consider C is $U \le 4$
- $H(T | C) = (2/3) H(T | U \le 4) + (1/3) H(T | U > 4) =$ - (2/3) (1/4 lg 4 + 3/4 lg 4/3) + (1/3) (1/2 lg 2 + ½ lg 2)

Table T						
U	V	W	Х	Label		
1	6	1	6	1		
2	5	3	4	1		
3	4	5	2	1		
4	3	2	1	0		
5	2	4	3	1		
6	1	6	5	0		

- Find comparison C of the form:
 - attribute ≤ value
 - that gives maximum information
 - Equivalent to minimizing the resulting conditional entropy H(T | C)
 - H(T | C) = Prob(C=0) H(T | C=0) + Prob(C=1) H(T | C=1)
- Onboarding warmup problem: Find a relational algorithm to find this comparison C that is as efficient as possible

Workshop Outing

- San Francisco Giants baseball game Wednesday evening
- It is not important that you understand/like baseball
- Contact me if you are interested in joining

Dynamic Programming

- D[r] = number of points at distance r
- Need to design \bigoplus and \bigotimes such that variable elimination yields

Counting Points in Hypershere Centered at the Origin

- Dynamic Programming Semiring
 - $D_a \oplus D_b = coordinatewise addition$
 - $D_a \otimes D_b[r] = \sum_e D_a[e] * D_b[r-e]$
 - Multiplicative identity is 1 point at distance 0
 - Additive identity is zero vector

