
An Algorithmist’s Take on Relational Algorithms
(Intermediate Relational Algorithm Design)

Kirk Pruhs

Acknowledements to:
• Academic Network: Sungjin Im, Ben Moseley, Alireza Samadian,

Yuyan Wang
• RAI folks: Mahmoud Abo-Khamis, Ryan Curtin, Hung Ngo

1

Recall:
Relational Algorithms

• Relational algorithms: Algorithms that are
– efficient (say polynomial time), and
– accept the input is in relational form

• Relational algorithms necessarily can not afford to join the tables

2

Analogous Situation
• Goal: StringSearch(Compressed String)

• Standard Approach: StandardAlgorithm(Uncompress(Compressed String))

• [SMTSA, CPM2000] NewSearchAlgorithm(Compressed String)

3

Uncompress

New Search
Algorithm

Intended Take Away Points

• Barrier to entry into
relational algorithms is
relatively low

• Potentially interesting
open algorithmic
problems

• But problems have to be
mined (not picked)

Problem Mining Is Important In Restricted
Computation Model Research

• Kindred Restricted Computational
Model
– Streaming

• Algorithm only is a allow a small number
(most commonly 1) linear passes over the
data

– Massive Parallel Computing (MPC)
• think MapReduce
• Distributed model in which no computer

has enough memory to store all of the input

• My experience is that the key to doing
research in these areas is finding/mining
problems where positive results are
achievable
– Not problem solving!

Necessary Background Before Getting
Started Designing Relational Algorithms

• Graphic and geometric views of a
join

• Sum-Product query

• Variable elimination algorithm

• How to use Sum-Product queries
to develop algorithms

6

Graphic View of Join

7

Table A

x y

3 1

4 1

5 1

6 2

Table B

y z

1 7

1 8

2 9

2 10

Join

Design
Matrix

x y z

3 1 7

3 1 8

4 1 7

4 1 8

5 1 7

5 1 8

6 2 9

6 2 10

=

x zy

3
4
5
6

7
8
9
10

1

2

Intuitive Geometric View of a Join

• ∏xy (A(x, y) ⋈ B(y,z)) ≈ A(x, y)
• ∏yz (A(x, y) ⋈ B(y,z)) ≈ B(y,z)

• Join is intuitively the maximal inverse of
projection

8

x

y

z

Necessary Background Before Getting
Started Designing Relational Algorithms

• Graphic and geometric views of a
join

• Sum-Product query

• Variable elimination algorithm

• How to use Sum-Product queries
to develop algorithms

9

SumProd Aggregation

SVM gradient

Rejection
Sampling

Dynamic Programming Semi-rings

k-means

k
NN

Linear
Regression

Greedy
Decision

Tree

SumProd
Aggregation

 with an Additive
Inequality

Stability
Analysis

Design of Relational Algorithms
Key:
• Problems
• Algorithmic technique

10

Sum-Product Query

• Mahmoud’s view:
–⊕x_1, .. x_k ⊗x_S fS(xS)
– Where each S is conceptually a table with

variables xS

• My take abstracts out the tables
–⊕r⊗cfc(Mrc)
– Where r is a generic row, and c is a generic

column, in the joined table M
– Where ⊕ and ⊗ form a commutative semiring

11

Candidate Problems to Develop
Relational Algorithms For

• Any geometric problem where the input is a
collection of points in some higher
dimensional space
– Example: How many points are in the input?
– Example: Which point is furthest from the origin?
– Example: k-means

12

Geometric Problem: How Many Points
are in the Input

• Standard input representation: Trivial

• Input is in relational format:
– NP-hard to decide if the input is nonempty
– #P-complete
– But this is not important

• Sum-Product Query
– ⊕ is addition
– ⊗ is multiplication
– fc(x) = 1
– So ⊕r⊗cfc(Mrc) = ∑r∏c 1
– Note r is a point and c is a coordinate/dimension
– (1*1*1)+(1*1*1)+(1*1*1)+(1*1*1)+(1*1*1)+(1*

1*1)+(1*1*1)+(1*1*1) = 8

Design
Matrix

x y z

3 1 7

3 1 8

4 1 7

4 1 8

5 1 7

5 1 8

6 2 9

6 2 10

Geometric Problem: Distance of
Furthest Point From the Origin

• Sum-Product Query
–⊕ is max
–⊗ is addition
– fc(x) = x2

– So ⊕r⊗cfc(Mrc) = maxr ∑c Mrc
2

• (32+12+72) max (32+12+82)
max …

Design
Matrix

x y z

3 1 7

3 1 8

4 1 7

4 1 8

5 1 7

5 1 8

6 2 9

6 2 10

Necessary Background Before Getting
Started Designing Relational Algorithms

• Graphic and geometric views of a
join

• Sum-Product query

• Variable elimination algorithm

• How to use Sum-Product queries
to develop algorithms

15

Illustrative Example Problem:
k-means Clustering

16

k-means Problem

• Input: points x1, …, xm in Euclidean space and
integer k

k=3

k-means Problem
• Input: points x1, …, xm in Euclidean space and integer k

• Feasible solution: k centers/points S1, …, Sk

• Objective: Minimize aggregate 2-norm squared distances to nearest center
– Min ∑iϵ[m] minj ϵ[k] ⟪xi – Sh⟫
– Where ⟪xi – Sh⟫ is 2-norm squared

k=3

Strategic Plan Once You’ve Picked a
Problem

A. Design a relational implementation
of a/the standard non-relational
algorithm

B. Design a relational algorithm that
doesn’t exactly implement the
standard algorithm, but that has the
same theoretical guarantees as the
standard algorithm

C. Design a relational algorithm that
has some reasonable theoretical
guarantee

19

Standard k-means++ Algorithm
[AV2007]

• K-means++ Algorithm: Pick a point as
the next center with probability
proportional to its distance to its
nearest previous center

• Plan A succeeds for k-means++:
There is a relational implementation

20

Standard Adaptive k-means Algorithm
[ADK2009]

• Plan A fails: A relational
implementation of the adaptive k-
means algorithm would imply P=NP
– NP-hardness is a reasonably effective

tool for proving the likely nonexistence
of relational algorithms

• Plan B succeeds: We can modify the
adaptive k-means algorithm so that
– It can be implemented relationally
– It still has the same theoretical

guarantee of bounded relative error

21

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries
– Adaptive k-means algorithm

22

Relational Implementation of
1-means++ Algorithm

• 1-means++ Algorithm
– Pick center S1 uniformly at random from x1, …, xn

• Uniform generation can be reduced to
counting
– Standard variable elimination algorithm keeps

track of Sum-Product ala shortest path algorithms

• Implementation of counting as a SumProd
query ∑r∏c 1

Computing Aggregate Number of Points
(∑r∏c 1) on a Path Join

Input Table T1

F1 F2

1 1

2 1

3 3

Input Table T2

F2 F3

1 1

1 2

3 3

Input Table T3

F3 F4

1 1

2 1

3 3

Input Table T4

F4 F5

1 1

1 2

3 3

1
2
3

F1 F2 F3 F4 F5

Each source to sink path can be viewed as a point in 5 dimensional space

4

4

1

Computed by variable elimination algorithm

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries
– Adaptive k-means algorithm

25

Relational Implementation of
2-means++ Algorithm

• 2-means++ Algorithm
– Pick center S1 uniformly at random from x1, …, xn

– Pick xi as center S2 with probability proportional to ⟪xi –
S1⟫, the 2-norm squared distance to S2

• Implementation of second step
– Again reduce sampling to summing
– Need aggregate 2-norm squared

Start with a Path Join
Input Table T1

F1 F2

1 1

2 1

3 3

Input Table T2

F2 F3

1 1

1 2

3 3

Input Table T3

F3 F4

1 1

2 1

3 3

Input Table T4

F4 F5

1 1

1 2

3 3

1
2
3

F1 F2 F3 F4 F5

Each source to sink path can be viewed as a point in 5 dimensional space

32

44

45

Computed by variable elimination algorithm

• Algorithm: Process edges left to right
– Sum2(z) = Sum2(y) + z2 * numpaths(y)
– Numpaths(z) = numpaths(z) + numpaths(y)

• Take away: You need to remember aggregate square
sum and number of paths

Compute aggregate 2-norm squared
on a path join

1
2
3

F1 F2 F3 F4 F5

y z

Compute aggregate 2-norm squared
on a general join

• Base elements of semi-ring pairs (n, s) of numbers
– n is a row count
– s is a sum of squares

• Need to design ⊕ and ⊗ such that variable elimination yields

a

y
z

(n(a), s(a))
(1, y2)

(n(z), s(z)) = (n(z), s(z)) ⊕ [(n(a),s(a)) ⊗ (1,y2)]
 = (n(z) + n(a), s(z) + s(a) + n(a)y2)

Intuition: Think shortest paths sp(z)= min(sp(z), sp(a) + y2)

Compute aggregate 2-norm squared
on a general join

• Dynamic Programming Semiring
– (a, b) ⊕ (c, d) = (a + c, b + d)
– (a, b) ⊗ (c, d) = (ac, ad + bc)
– Multiplicative identity (1, 0)
– Additive identity (0, 0)

a

y
z

(n(a), s(a))
(1, y2)

(n(z), s(z)) = (n(z), s(z)) ⊕ [(n(a),s(a)) ⊗ (1,y2)]
 = (n(z), s(z)) ⊕ [(n(a), s(a) +n(a)y2)]
 = (n(z) + n(a), s(z) + s(a) + n(a)y2)

Algorithmically Interesting Insight
• Known: Dynamic Programs can be used to

compute sum-product queries
– For example, standard shortest path

algorithms such as Dijkstra and Bellman-
Ford extend to computing sum-product
query over a commutative semiring

• New to me: Many standard dynamic
programs can be expressed as sum-product
queries where the elements of the ground
set in the semiring are the rows in the
dynamic programming table

31

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries
– Adaptive k-means algorithm

32

3-means++ Algorithm

• Pick center S1 uniformly at random from x1, …,
xn

• Pick xi as center S2 with probability
proportional to ⟪xi – S1⟫

• Pick xi as center S3 with probability
proportional to min(⟪xi – S1⟫, ⟪xi – S2⟫), the
2-norm squared distance to previous center

Picking S3

S1

S2

Pick each point with probability
proportional to distance to S2

Pick each point with probability
proportional to distance to S1

Picking S3

S1

S2

Pick each point with probability
proportional to distance to S2

Pick each point with probability
proportional to distance to S1

Therefore we can’t reduce random
selection to summing

Theorem: Its NP-hard to compute
aggregate distance of points
to the dividing line even if tables
are simple

Digression: Rejection Sampling

• Given a uniform sample over the red square:
– Generate a uniform sample over the blue circle
– Estimate area of the blue circle

More Rejection Sampling
• Assumptions:

– Want to sample an element r with probability proportional to h(r)
• Easy to compute h(r)
• Hard to compute H = Σr h(r)

– Surrogate distribution e
• Easy to compute e(r)
• h(r) < e(r)
• Easy to compute E = Σr e(r)

• Rejection sampling
– Pick r with probability e(r)/E
– Accept r with probability h(r)/e(r) else resample

• Theorem: r is sampled with probability proportional to h(r) in expected time E/H

37

Defining Easy Distribution e

S1

S2

Box B2

• e(xi) =
– Distance from xi to

S2 if xi in box B2
– Distance from xi to

S1 otherwiseBox B1

xi

xi

xi

Computing E = Σi e(xi) Using Sum-Product Query

• fc(x) =
– (x-S2(c))2 if LB_Box2(c) < x < UB_Box2(c)
– (x-S1(c))2 if otherwise

• E = ∑r∏c fc(Mrc)

39

Picking S3

S1

S2

Pick each point with probability
proportional to distance to S2

Pick each point with probability
proportional to distance to S1

Conclusion: Using rejection
sampling one can sample from this hard
distribution using d samples in
expectation from the easy distribution

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query
– Implementation of 1-means++

B. Design algorithm from scratch
1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query
– Implementation of 2-means++
– Implementation of 3-means++
– Approximately counting points in a hypersphere

• subroutine to our relational modification of the adaptive k-means algorithm

C. Build algorithm from components one knows how to compute using
Sum-product queries
– Adaptive k-means algorithm

41

Sum-Product Query with Additive Inequality

• Definition
– Compute ⊕r⊗cfc(Mrc)
– For those r where ∑c gc(Mrc) <= R

• Fact: Can be approximated within a (1+ε) factor by a sum
product query that implements a dynamic program
– Assuming operations are approximation preserving (so not

subtraction)

• Special Case: Count the points in hypershere centered at
origin

• ∑r∏c 1
• For those r where ∑c Mrc

2 <= R

42

Intended Take Away Points

• Barrier to entry into
relational algorithms is
relatively low

• Potentially interesting
open algorithmic
problems

• But problems have to be
mined (not picked)

Discussion Problems
• Onboarding Warmup

Problem: Find a relational
implementation of the ID3
decision tree construction
algorithm that is as efficient
at possible

• Open Problem: Identify
geometric problems that
would are potentially
interesting to develop
relational algorithms for

44

Core of ID3 Algorithm
• Table T entropy

– H(T) = q lg 1/q + (1-q) log 1/(1-q)
– q= probability label is 0

• This example: H(T) = (2/6)(lg 6/3) + (4/6)(log 6/4)

45

Table T

U V W X Label

1 6 1 6 1

2 5 3 4 1

3 4 5 2 1

4 3 2 1 0

5 2 4 3 1

6 1 6 5 0

Core of ID3 Algorithm

• Find comparison C of the form:
– attribute ≤ value
– that gives maximum information
• Equivalent to minimizing the resulting conditional

entropy H(T | C)
• H(T | C) = Prob(C=0) H(T | C=0) + Prob(C=1) H(T | C=1)

46

Core of ID3 Algorithm

• Consider C is U ≤ 4

• H(T |C) = (2/3) H(T | U ≤ 4) + (1/3) H(T | U > 4) =
– (2/3) (1/4 lg 4 + 3/4 lg 4/3) + (1/3) (1/2 lg 2 + ½ lg 2)

47

Table T

U V W X Label

1 6 1 6 1

2 5 3 4 1

3 4 5 2 1

4 3 2 1 0

5 2 4 3 1

6 1 6 5 0

Core of ID3 Algorithm

• Find comparison C of the form:
– attribute ≤ value
– that gives maximum information
• Equivalent to minimizing the resulting conditional

entropy H(T | C)
• H(T | C) = Prob(C=0) H(T | C=0) + Prob(C=1) H(T | C=1)

• Onboarding warmup problem: Find a
relational algorithm to find this comparison C
that is as efficient as possible

48

Workshop Outing

• San Francisco Giants baseball game
Wednesday evening

• It is not important that you
understand/like baseball

• Contact me if you are interested in
joining

49

50

Dynamic Programming

• D[r] = number of points at distance r
• Need to design ⊕ and ⊗ such that variable elimination

yields

a

y
z

Da
Dy[y2]=1

rth entry of
Dz= Dz ⊕ (Da ⊗ Dy)

= Dz[r]+ Da[r – y2]

Dz

Counting Points in Hypershere
Centered at the Origin

• Dynamic Programming Semiring
– Da ⊕ Db = coordinatewise addition

– Da ⊗ Db[r] = ∑e Da[e] * Db[r-e]
– Multiplicative identity is 1 point at distance 0
– Additive identity is zero vector

a

y
z

Da
Dy[y2]=1

rth entry of
Dz= Dz ⊕ (Da ⊗ Dy)

= Dz[r]+ Da[r – y2]

Dz

