

An Algorithmist's Take on Relational Algorithms (Intermediate Relational Algorithm Design)

Kirk Pruhs

Acknowledements to:

- Academic Network: Sungjin Im, Ben Moseley, Alireza Samadian, Yuyan Wang
- RAI folks: Mahmoud Abo-Khamis, Ryan Curtin, Hung Ngo

Recall:

Relational Algorithms

- Relational algorithms: Algorithms that are
- efficient (say polynomial time), and
- accept the input is in relational form
- Relational algorithms necessarily can not afford to join the tables

Analogous Situation

- Goal: StringSearch(Compressed String)

- Standard Approach: StandardAlgorithm(Uncompress(Compressed String))

- [SMTSA, CPM2000] NewSearchAlgorithm(Compressed String)

Intended Take Away Points

- Barrier to entry into relational algorithms is relatively low

- Potentially interesting open algorithmic problems
- But problems have to be mined (not picked)

Problem Mining Is Important In Restricted Computation Model Research

- Kindred Restricted Computational Model
- Streaming
- Algorithm only is a allow a small number (most commonly 1) linear passes over the data
- Massive Parallel Computing (MPC)
- think MapReduce
- Distributed model in which no computer has enough memory to store all of the input

MapReduce

- My experience is that the key to doing research in these areas is finding/mining problems where positive results are achievable
- Not problem solving!

Necessary Background Before Getting Started Designing Relational Algorithms

- Graphic and geometric views of a join
- Sum-Product query
- Variable elimination algorithm

- How to use Sum-Product queries to develop algorithms

Graphic View of Join

Table A		Join	Table B		$=$	Design Matrix		
\times	y		y	z				
3	1		1	7		\times	y	z
4	1		1	8		3	1	7
5	1		2	9		3	1	8
6	2		2	10		4	1	7
						4	1	8
	X	y				5	1	7
		1		7		5	1	8
				8		6	2	9
				9		6	2	10
		2		10				

Intuitive Geometric View of a Join

- $\prod_{x y}(A(x, y) \bowtie B(y, z)) \approx A(x, y)$
- $\prod_{y z}(A(x, y) \bowtie B(y, z)) \approx B(y, z)$
- Join is intuitively the maximal inverse of projection

Necessary Background Before Getting Started Designing Relational Algorithms

- Graphic and geometric views of a join
- Sum-Product query
- Variable elimination algorithm

- How to use Sum-Product queries to develop algorithms

Design of Relational Algorithms

Key:

- Problems
- Algorithmic technique

SumProd Aggregation

Sum-Product Query

- Mahmoud's view:
$-\bigoplus_{x_{-} 1, . . x_{-} k} \otimes_{x_{-} S} f_{s}\left(x_{s}\right)$
- Where each S is conceptually a table with variables x_{s}
- My take abstracts out the tables
$-\oplus_{r} \otimes_{c} f_{c}\left(M_{r c}\right)$
- Where r is a generic row, and c is a generic column, in the joined table M
- Where \oplus and \otimes form a commutative semiring

Candidate Problems to Develop Relational Algorithms For

- Any geometric problem where the input is a collection of points in some higher dimensional space
- Example: How many points are in the input?
- Example: Which point is furthest from the origin?
- Example: k-means

Geometric Problem: How Many Points are in the Input

- Standard input representation: Trivial
- Input is in relational format:
- NP-hard to decide if the input is nonempty
- \#P-complete
- But this is not important
- Sum-Product Query
- \bigoplus is addition
- \otimes is multiplication
$-f_{c}(x)=1$
- So $\bigoplus_{r} \otimes_{c} f_{c}\left(M_{r c}\right)=\sum_{r} \Pi_{c} 1$
- Note r is a point and c is a coordinate/dimension
$-\left(1^{*} 1^{*} 1\right)+\left(1^{*} 1^{*} 1\right)+\left(1^{*} 1^{*} 1\right)+\left(1^{*} 1^{*} 1\right)+\left(1^{*} 1^{*} 1\right)+\left(1^{*}\right.$ $1 * 1)+(1 * 1 * 1)+(1 * 1 * 1)=8$

Design Matrix		
x	y	z
3	1	7
3	1	8
4	1	7
4	1	8
5	1	7
5	1	8
6	2	9
6	2	10

Geometric Problem: Distance of Furthest Point From the Origin

- Sum-Product Query
$-\oplus$ is max
- \otimes is addition
$-f_{c}(x)=x^{2}$
- So $\bigoplus_{r} \otimes_{c} f_{c}\left(M_{r c}\right)=\max _{r} \sum_{c} M_{r c}{ }^{2}$
- $\left(3^{2}+1^{2}+7^{2}\right) \max \left(3^{2}+1^{2}+8^{2}\right)$ max ...

Design Matrix		
x	y	z
3	1	7
3	1	8
4	1	7
4	1	8
5	1	7
5	1	8
6	2	9
6	2	10

Necessary Background Before Getting Started Designing Relational Algorithms

- Graphic and geometric views of a join
- Sum-Product query
- Variable elimination algorithm

- How to use Sum-Product queries to develop algorithms

Illustrative Example Problem: k-means Clustering

Ideal Clustering

k-means Problem

- Input: points x_{1}, \ldots, x_{m} in Euclidean space and integer k

$$
\mathrm{k}=3
$$

k-means Problem

- Input: points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$ in Euclidean space and integer k

$$
\mathrm{k}=3
$$

- Feasible solution: k centers/points $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{k}}$
- Objective: Minimize aggregate 2-norm squared distances to nearest center
- Min $\sum_{i \in[m]} \min _{j \in[k]}\left\langle\left\langle x_{i}-S_{h}\right\rangle\right.$
- Where $\left\langle\left\langle x_{i}-S_{h}\right\rangle\right\rangle$ is 2-norm squared

Strategic Plan Once You've Picked a Problem

A. Design a relational implementation of a/the standard non-relational algorithm
B. Design a relational algorithm that doesn't exactly implement the standard algorithm, but that has the same theoretical guarantees as the standard algorithm
C. Design a relational algorithm that
 has some reasonable theoretical guarantee

Standard k-means++ Algorithm [AV2007]

- K-means++ Algorithm: Pick a point as the next center with probability proportional to its distance to its nearest previous center
- Plan A succeeds for k-means++:

There is a relational implementation

Standard Adaptive k-means Algorithm [ADK2009]
 - Plan A fails: A relational implementation of the adaptive k means algorithm would imply $\mathrm{P}=\mathrm{NP}$
 - NP-hardness is a reasonably effective tool for proving the likely nonexistence of relational algorithms

- Plan B succeeds: We can modify the adaptive k-means algorithm so that
- It can be implemented relationally
- It still has the same theoretical guarantee of bounded relative error

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query

- Implementation of 1-means++

B. Design algorithm from scratch

1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query

- Implementation of 2-means++
- Implementation of 3-means++
- Approximately counting points in a hypersphere
- subroutine to our relational modification of the adaptive k -means algorithm
C. Build algorithm from components one knows how to compute using Sum-product queries
- Adaptive k-means algorithm

Relational Implementation of 1-means++ Algorithm

- 1-means++ Algorithm
- Pick center S_{1} uniformly at random from x_{1}, \ldots, x_{n}
- Uniform generation can be reduced to counting
- Standard variable elimination algorithm keeps track of Sum-Product ala shortest path algorithms
- Implementation of counting as a SumProd query $\Sigma_{r} \Pi_{c} 1$

Computing Aggregate Number of Points $\left(\Sigma_{r} \Pi_{c} 1\right)$ on a Path Join

Input Table T1	
F1	F2
1	1
2	1
3	3

Input Table T2	
F2	F3
1	1
1	2
3	3

Input Table T3	
F3	F4
1	1
2	1
3	3

Input Table T4		
F4	F5	4
1	1	4
1	2	4
3	3	1

Computed by variable elimination algorithm

Each source to sink path can be viewed as a point in 5 dimensional space

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query

- Implementation of 1-means++

B. Design algorithm from scratch

1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query

- Implementation of 2-means++
- Implementation of 3-means++
- Approximately counting points in a hypersphere
- subroutine to our relational modification of the adaptive k -means algorithm
C. Build algorithm from components one knows how to compute using Sum-product queries
- Adaptive k-means algorithm

Relational Implementation of 2-means++ Algorithm

- 2-means++ Algorithm
- Pick center S_{1} uniformly at random from x_{1}, \ldots, x_{n}
- Pick x_{i} as center S_{2} with probability proportional to $\left\langle\left\langle x_{i}-\right.\right.$ $\left.\left.S_{1}\right\rangle\right\rangle$, the 2-norm squared distance to S_{2}
- Implementation of second step
- Again reduce sampling to summing
- Need aggregate 2-norm squared

Start with a Path Join

Input Table T1	
F1	F2
1	1
2	1
3	3

Input Table T2	
F2	F3
1	1
1	2
3	3

Input Table T3	
F3	F4
1	1
2	1
3	3

Input Table T4		
F4	F5	32
1	1	
1	2	44
3	3	45

Computed by variable elimination algorithm

Each source to sink path can be viewed as a point in 5 dimensional space

Compute aggregate 2-norm squared on a path join

- Algorithm: Process edges left to right
$-\operatorname{Sum}^{2}(z)=\operatorname{Sum}^{2}(\mathrm{y})+\mathrm{z}^{2 *}$ numpaths(y)
- Numpaths(z) = numpaths(z) + numpaths(y)
- Take away: You need to remember aggregate square sum and number of paths

Compute aggregate 2-norm squared on a general join

- Base elements of semi-ring pairs (n, s) of numbers
-n is a row count
$-s$ is a sum of squares
- Need to design \bigoplus and \otimes such that variable elimination yields $(n(a), s(a))$
$a \mathrm{O}$

$$
\begin{aligned}
(\mathrm{n}(\mathrm{z}), \mathrm{s}(\mathrm{z})) & =(\mathrm{n}(\mathrm{z}), \mathrm{s}(\mathrm{z})) \bigoplus\left[(\mathrm{n}(\mathrm{a}), \mathrm{s}(\mathrm{a})) \bigotimes\left(1, \mathrm{y}^{2}\right)\right] \\
& =\left(\mathrm{n}(\mathrm{z})+\mathrm{n}(\mathrm{a}), \mathrm{s}(\mathrm{z})+\mathrm{s}(\mathrm{a})+\mathrm{n}(\mathrm{a}) \mathrm{y}^{2}\right)
\end{aligned}
$$

Intuition: Think shortest paths $\operatorname{sp}(z)=\min \left(s p(z), s p(a)+y^{2}\right)$

Compute aggregate 2-norm squared on a general join

- Dynamic Programming Semiring
$-(a, b) \bigoplus(c, d)=(a+c, b+d)$
$-(a, b) \otimes(c, d)=(a c, a d+b c)$
- Multiplicative identity $(1,0)$
- Additive identity $(0,0)$
($n(a), s(a))$
$a \underbrace{\left(1, y^{2}\right)}_{y}$

$$
\begin{aligned}
(n(z), s(z)) & =(n(z), s(z)) \bigoplus\left[(n(a), s(a)) \otimes\left(1, y^{2}\right)\right] \\
& =(n(z), s(z)) \bigoplus\left[\left(n(a), s(a)+n(a) y^{2}\right)\right] \\
& =\left(n(z)+n(a), s(z)+s(a)+n(a) y^{2}\right)
\end{aligned}
$$

Algorithmically Interesting Insight

- Known: Dynamic Programs can be used to compute sum-product queries
- For example, standard shortest path algorithms such as Dijkstra and BellmanFord extend to computing sum-product query over a commutative semiring
- New to me: Many standard dynamic programs can be expressed as sum-product queries where the elements of the ground set in the semiring are the rows in the dynamic programming table

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query

- Implementation of 1-means++

B. Design algorithm from scratch

1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query

- Implementation of 2-means++
- Implementation of 3-means++
- Approximately counting points in a hypersphere
- subroutine to our relational modification of the adaptive k -means algorithm
C. Build algorithm from components one knows how to compute using Sum-product queries
- Adaptive k-means algorithm

3-means++ Algorithm

- Pick center S_{1} uniformly at random from x_{1}, \ldots, X_{n}
- Pick x_{i} as center S_{2} with probability proportional to $\left\langle\left\langle x_{i}-S_{1}\right\rangle\right\rangle$
- Pick x_{i} as center S_{3} with probability proportional to $\min \left(\left\langle\left\langle x_{i}-S_{1}\right\rangle\right\rangle,\left\langle\left\langle x_{i}-S_{2}\right\rangle\right\rangle\right)$, the 2-norm squared distance to previous center

Picking S_{3}

Pick each point with probability proportional to distance to S_{2}

Pick each point with probability proportional to distance to S_{1}

Picking S_{3}

Theorem: Its NP-hard to compute aggregate distance of points to the dividing line even if tables are simple

Pick each point with probability proportional to distance to S_{2}

Pick each point with probability proportional to distance to S_{1}

Digression: Rejection Sampling

- Given a uniform sample over the red square:
- Generate a uniform sample over the blue circle
- Estimate area of the blue circle

Estimate of $\boldsymbol{\pi}=3.139$

More Rejection Sampling

- Assumptions:
- Want to sample an element r with probability proportional to $h(r)$
- Easy to compute $h(r)$
- Hard to compute $H=\Sigma_{r} h(r)$
- Surrogate distribution e
- Easy to compute e(r)
- h(r) <e(r)
- Easy to compute $\mathrm{E}=\Sigma_{\mathrm{r}} \mathrm{e}(\mathrm{r})$
- Rejection sampling
- Pick r with probability e(r)/E
- Accept r with probability $h(r) / e(r)$ else resample
- Theorem: r is sampled with probability proportional to $h(r)$ in expected time E / H

Defining Easy Distribution e

Computing $E=\Sigma_{i} e\left(x_{i}\right)$ Using Sum-Product Query

- $f_{c}(x)=$
$-\left(x-S_{2}(c)\right)^{2}$ if LB_Box2(c) $<x<U B$ _Box2 (c)
$-\left(x-S_{1}(c)\right)^{2}$ if otherwise
- $E=\sum_{r} \Pi_{c} f_{c}\left(M_{r c}\right)$

Picking S_{3}

Pick each point with probability proportional to distance to S_{2}

Algorithmic Design Strategies

A. Express the problem using a Sum-Product query

- Implementation of 1-means++

B. Design algorithm from scratch

1. First try cross-product join
2. Then try path join
3. Then try express computation as sum-product query

- Implementation of 2-means++
- Implementation of 3-means++
- Approximately counting points in a hypersphere
- subroutine to our relational modification of the adaptive k -means algorithm
C. Build algorithm from components one knows how to compute using Sum-product queries
- Adaptive k-means algorithm

Sum-Product Query with Additive Inequality

- Definition
- Compute $\bigoplus_{r} \otimes_{c} f_{c}\left(M_{r c}\right)$
- For those r where $\sum_{c} g_{c}\left(M_{r c}\right)<=R$
- Fact: Can be approximated within a $(1+\varepsilon)$ factor by a sum product query that implements a dynamic program
- Assuming operations are approximation preserving (so not subtraction)
- Special Case: Count the points in hypershere centered at origin
- $\Sigma_{r} \Pi_{c} 1$
- For those r where $\sum_{c} M_{r c}{ }^{2}<=R$

Intended Take Away Points

- Barrier to entry into relational algorithms is relatively low

- Potentially interesting open algorithmic problems
- But problems have to be mined (not picked)

Discussion Problems

- Onboarding Warmup Problem: Find a relational implementation of the ID3 decision tree construction algorithm that is as efficient at possible

- Open Problem: Identify geometric problems that would are potentially interesting to develop relational algorithms for

Core of ID3 Algorithm

- Table Tentropy
$-H(T)=q \lg 1 / q+(1-q) \log 1 /(1-q)$
- $q=$ probability label is 0
- This example: $\mathrm{H}(\mathrm{T})=(2 / 6)(\lg 6 / 3)+(4 / 6)(\log 6 / 4)$

Table T				
U	V	W	X	Label
1	6	1	6	1
2	5	3	4	1
3	4	5	2	1
4	3	2	1	0
5	2	4	3	1
6	1	6	5	0

Core of ID3 Algorithm

- Find comparison C of the form:
- attribute \leq value
- that gives maximum information
- Equivalent to minimizing the resulting conditional entropy H(T | C)
- $\mathrm{H}(\mathrm{T} \mid \mathrm{C})=\operatorname{Prob}(\mathrm{C}=0) \mathrm{H}(\mathrm{T} \mid \mathrm{C}=0)+\operatorname{Prob}(\mathrm{C}=1) \mathrm{H}(\mathrm{T} \mid \mathrm{C}=1)$

Core of ID3 Algorithm

- Consider C is $\mathrm{U} \leq 4$
- $H(T \mid C)=(2 / 3) H(T \mid U \leq 4)+(1 / 3) H(T \mid U>4)=$
$-(2 / 3)(1 / 4 \lg 4+3 / 4 \lg 4 / 3)+(1 / 3)(1 / 2 \lg 2+1 / 2 \lg 2)$

	Table T			
U	V	W	X	Label
1	6	1	6	1
2	5	3	4	1
3	4	5	2	1
4	3	2	1	0
5	2	4	3	1
6	1	6	5	0

Core of ID3 Algorithm

- Find comparison C of the form:
- attribute \leq value
- that gives maximum information
- Equivalent to minimizing the resulting conditional entropy H(T | C)
- $\mathrm{H}(\mathrm{T} \mid \mathrm{C})=\operatorname{Prob}(\mathrm{C}=0) \mathrm{H}(\mathrm{T} \mid \mathrm{C}=0)+\operatorname{Prob}(\mathrm{C}=1) \mathrm{H}(\mathrm{T} \mid \mathrm{C}=1)$
- Onboarding warmup problem: Find a relational algorithm to find this comparison C that is as efficient as possible

Workshop Outing

- San Francisco Giants baseball game Wednesday evening
- It is not important that you understand/like baseball
- Contact me if you are interested in joining

Thank you for listening

Dynamic Programming

- $D[r]=$ number of points at distance r
- Need to design \bigoplus and \otimes such that variable elimination yields

$$
\underbrace{D_{a}}_{y} \underbrace{D_{y}\left[y^{2}\right]=1} \quad \begin{gathered}
D_{z} \\
\\
\\
\\
\\
\\
\\
\\
\\
r_{z}^{\text {th }} \text { entry of }=D_{z} \oplus\left(D_{a} \otimes D_{y}\right) \\
\\
\\
D_{z}[r]+D_{a}\left[r-y^{2}\right]
\end{gathered}
$$

Counting Points in Hypershere Centered at the Origin

- Dynamic Programming Semiring
- $D_{a} \oplus D_{b}=$ coordinatewise addition
$-D_{a} \otimes D_{b}[r]=\sum_{e} D_{a}[e] * D_{b}[r-e]$
- Multiplicative identity is 1 point at distance 0
- Additive identity is zero vector

