

Fine-Grained Complexity and Algorithm Design for Graph Reachability and Distance Problems

European Research Council Established by the European Commission

Karl Bringmann

"Fine-Grained Complexity, Logic, and Query Evaluation" @ Simons Institute

September 28, 2023

Talk Outline

Hung's invitation:

- survey-ish talk about *recursive query evaluation* from algorithms perspective
- reachability problems (connected components, transitive closure, ...)
- distance problems (shortest paths, diameter, ...)

Many Problem Variants

Input: graph G = (V, E)

What type of graph?

undirected vs directed

weighted vs unweighted

encoding of weights, negative cycles?, ...

Which parameters for measuring time?

n = number of nodes

m = number of edges

output size, range of weights, ...

Reachability

Single-Source Reachability

given a node *s*, compute all nodes that are reachable from *s*

Classic optimal algorithm:

Run depth-first-search from s

linear time O(n+m)

compute for all nodes *u*, *v* whether *u* can reach *v*

Undirected graphs \rightarrow connected components

Run depth-first-search from every unexplored node

linear time O(n+m)

compute for all nodes *u*, *v* whether *u* can reach *v*

Directed graphs \rightarrow transitive closure, parameter *m*:

Run single-source reachability from every node

time $O(nm) \leq O(m^2)$

optimal since output size can be up to $\Omega(m^2)$

compute for all nodes *u*, *v* whether *u* can reach *v*

Directed graphs \rightarrow transitive closure, parameter *n*:

Run single-source reachability from every node

time $O(nm) \leq O(n^3)$

equivalent to Boolean matrix multiplication

compute for all nodes *u*, *v* whether *u* can reach *v*

Directed graphs \rightarrow transitive closure, parameter *n*:

 $A \coloneqq adjacency matrix plus selfloops$ for $i = 1, ..., \log n$: $A \coloneqq Boolean matrix product <math>A * A$

→ compute transitive closure in time $\tilde{O}(n^{\omega})$

compute for all nodes *u*, *v* whether *u* can reach *v*

Directed graphs \rightarrow transitive closure, parameter *n*:

From the transitive closure of this graph we can read off the Boolean matrix product A * B

compute for all nodes *u*, *v* whether *u* can reach *v*

 \equiv

Directed graphs \rightarrow transitive closure, parameter *n*:

given directed *n*-node graph, compute for all nodes *u*, *v* whether *u* can reach *v*

 $\tilde{O}(n^{\omega})$

Boolean Matrix Mult, BMM

given $n \times n$ matrices A, B, compute matrix C with $C[i, j] = \bigvee_k A[i, k] \wedge B[k, j]$

 $\tilde{O}(n^{\omega})$

compute for all nodes *u*, *v* whether *u* can reach *v*

Directed graphs \rightarrow transitive closure, parameter *m*:

optimal time $O(m^2)$, by output size bound

Directed graphs \rightarrow transitive closure, parameter n:

optimal time $\tilde{O}(n^{\omega})$, by equivalence with Boolean matrix product

parameter out = number of
edges in transitive closure ?

compute for all nodes *u*, *v* whether *u* can reach *v*

Directed graphs → transitive closure, parameter *out*:

Fully-Sparse BMM

solve BMM in time $\tilde{O}((in + out)^c)$ where in / out = # nonzeros in input / output

	with current ω :	assuming $\omega = 2$:	
$c \ge \omega/2$	≥ 1.18	≥ 1	
$c \leq 1.5$	≤ 1.5	≤ 1.5	[van Gucht, Williams, Woodruff, Zhang '15]
$c \le \frac{2\omega}{\omega + 1}$	≤ 1.41	$\leq 4/3$	[Amossen, Pagh '09]
$c \le 1 + \frac{\mu}{1 + \mu}$	≤ 1.3459	$\leq 4/3$	[Abboud, B , Fischer, Künnemann '23+]
where $\omega(\mu, 1, 1) = 2\mu + 1$ $0.5 \le \mu \le 0.5286$			

Fully-Sparse BMM

solve BMM in time $\tilde{O}((in + out)^c)$ where in / out = # nonzeros in input / output

	with current ω :	assuming $\omega = 2$:		
$c \geq \omega/2$	≥ 1.18	≥1		
<i>c</i> ≤ 1.5	≤ 1.5	≤ 1.5	[van Gucht, Williams, Woodruff, Zhang '15]	
$c \leq \frac{2\omega}{\omega + 1}$	≤ 1.41	$\leq 4/3$	[Amossen, Pagh '09]	
$c \le 1 + \frac{\mu}{1 + \mu}$	≤ 1.3459 ↓	≤ 4/3	[Abboud, B , Fischer, Künnemann '23+]	
	deterministic	deterministic algorithm for BMM		
ere $\omega(\mu, 1, 1) = 2\mu + 1$	also works for	also works for integer matrix mult, but randomized		
$0.5 \le \mu \le 0.5286$				

where

Fully-Sparse BMM – Further Improvements?

solve BMM in time $\tilde{O}((in + out)^c)$ where in / out = # nonzeros in input / output

 $0.5 \le \mu \le 0.5286$

for each edge: decide whether it is in a triangle

Fully-Sparse BMM – General Tradeoff

our bound $\tilde{O}\left((in + out)^{1.3459}\right)$ is optimized for $out \approx in$

general setting: $out \approx in^r$ for some $r \in [0,2]$

 $\tilde{O}(in \cdot out^{0.3459} + in^{0.8002}out^{0.5457} + out)$

Fully-Sparse BMM – General Tradeoff

our bound $\tilde{O}\left((in + out)^{1.3459}\right)$ is optimized for $out \approx in$

general setting: $out \approx in^r$ for some $r \in [0,2]$

 $\tilde{O}(in \cdot out^{0.3459} + in^{0.8002}out^{0.5457} + out)$

Fully-Sparse BMM – General Tradeoff

our bound $\tilde{O}\left((in + out)^{1.3459}\right)$ is optimized for $out \approx in$

general setting: $out \approx in^r$ for some $r \in [0,2]$

Fully-Sparse BMM – Algorithm Overview

A is $x \times y$ -matrix, B is $y \times z$ -matrix

1. Output Densification:

use hashing / sparse recovery to reduce outer dimensions to $x \cdot z = O(out)$

2. High-degree/low-degree:

split y's into degree higher than Δ or lower than Δ

low degree: enumerate all 2-paths in time $O(in \cdot \Delta)$

high degree: matrix multiplication in time $MM(x, y_H, z)$

$$\leq \mathsf{MM}\left(x, \frac{in}{\Delta}, \frac{out}{x}\right) \qquad \Delta \leq x \leq \frac{out}{\Delta}$$
$$\leq \mathsf{MM}\left(\Delta, \frac{in}{\Delta}, \frac{out}{\Delta}\right)$$

use bounds on MM to bound both terms and balance their sum

compute for all nodes *u*, *v* whether *u* can reach *v*

Directed graphs → transitive closure, parameter *out*:

[Abboud, B, Fischer, Künnemann '23+]

Q: What is the optimal exponent?

Distances

Weight Encoding

each edge e has a weight/length w(e)

RAM model: each edge weight fits into a machine cell arithmetic operations on two machine cells in time O(1)

1. integer weights in $\{-W, \dots, W\}$

1.1. near-constant weights: *W* factors in running time are okay

1.2. polynomial weights: $W \le n^{O(1)}$, $\log W$ factors hidden by \tilde{O}

1.3. mildly superpolynomial weights: log *W* factors are okay

1.4. strongly polynomial algorithms: running time independent of W

2. real weights

2.1. RealRAM: arithmetic operations on reals in constant time

2.2. floating point approximation, e.g. $O(\log(n/\varepsilon))$ -bit mantissa and exponent

Single-Source Shortest Paths

given a node *s*, compute distances from *s* to all other nodes

nonnegative edge weights:

Dijkstra's algorithm:

$$\tilde{O}(m) = O(m + n\log n)$$

general edge weights:

Bellman-Ford algorithm: O(mn)

[Ford' 56, Bellman '58]

Single-Source Shortest Paths

given a node *s*, compute distances from *s* to all other nodes

nonnegative edge weights:

Dijkstra's algorithm:

 $\tilde{O}(m) = O(m + n \log n)$

general edge weights:

Bellman-Ford algorithm:

Q: Can the log W factor be removed?

(58]

scaling-based algorithms: $O(m\sqrt{n}\log W)$ [Gabow '83, Gabow, Tarjan '89, Goldberg '95]

recent breakthrough:

 $\tilde{O}(m \log W) = O(m \log^8 n \log W)$ [Bernstein, Nanongkai, Wulff-Nilsen FOCS'22 best paper]

further improvements:

 $O((m + n \log \log n) \log^2 n \log(nW))$ [B. Cassis, Fischer FOCS'23]

compute all pairwise distances in a graph

negative edge weights can be removed in time O(nm) [Johnson'77]

parameter *m*:

Run single-source shortest paths from every node

time $\tilde{O}(nm) \leq \tilde{O}(m^2)$, optimal by output size

parameter *n*:

time $\tilde{O}(nm) \leq \tilde{O}(n^3)$

equivalent to MinPlusProduct

compute all pairwise distances in a graph

 $A \coloneqq$ weighted adjacency matrix plus 0-weight selfloops for $i = 1, ..., \log n$:

 $A \coloneqq MinPlus matrix product A * A$

compute all pairwise distances in a graph

From the pairwise distances in this graph we can read off the MinPlus matrix product A * B

compute all pairwise distances in a graph

[Vassilevska Williams, Williams '10] \equiv_3

APSP Hypothesis:

These problems cannot be solved in time $O(n^{3-\delta})$

Negative Triangle

given an edge-weighted graph, are there nodes x, y, z with w(x, y) + w(y, z) + w(z, x) < 0?

compute all pairwise distances in a graph

parameter *m*:

Run single-source shortest paths from every node time $\tilde{O}(nm) \leq \tilde{O}(m^2)$, optimal by output size

parameter *n*:

time $\tilde{O}(nm) \leq \tilde{O}(n^3)$

equivalent to MinPlusProduct

optimality is the APSP hypothesis

 $n^3/2^{\Omega(\sqrt{\log n})}$ [Williams '14]

compute α -approximation of all pairwise distances in a graph

directed graph OR undirected graph and $\alpha < 2$:

time $\Omega(n^{\omega})$, since at least as hard as BMM

compute α -approximation of all pairwise distances in a graph

directed graph OR undirected graph and $\alpha < 2$:

time $\Omega(n^{\omega})$, since at least as hard as BMM

 $(1 + \varepsilon)$ -approximation: time $\tilde{O}\left(\frac{n^{\omega}}{\varepsilon}\log W\right)$ [Zwick '02]

 $(1 + \varepsilon)$ -approximate All-Pairs Shortest Paths $\equiv (1 + \varepsilon)$ -approximate MinPlusProduct

Is log *W* factor necessary?

compute α -approximation of all pairwise distances in a graph

directed graph OR undirected graph and $\alpha < 2$:

time $\Omega(n^{\omega})$, since at least as hard as BMM

$$(1 + \varepsilon)$$
-approximation: time $\tilde{O}\left(\frac{n^{\omega}}{\varepsilon}\log W\right)$ [Zwick '02]

.. in undirected graphs:

time $\tilde{O}\left(\frac{n^{\omega}}{\varepsilon}\right)$

[**B**, Künnemann, Wegrzycki STOC'19]

.. in directed graphs:

time
$$\tilde{O}\left(\frac{n^{(3+\omega)/2}}{\varepsilon}\right)$$
 [**B**, Künnemann, Wegrzycki STOC'19]

equivalent to exact MinMaxProduct, for which best known time is $\tilde{O}(n^{(3+\omega)/2})$

compute α -approximation of all pairwise distances in a graph

directed graph OR undirected graph and $\alpha < 2$:

time $\Omega(n^{\omega})$, since at least as hard as BMM

O(1)-approximation in undirected graphs:

preprocess given graph in time $O(mn^{1/k})$, k = O(1) in [Thorup, Zwick '05] then query(u, v) returns a (2k - 1)-approximation of dist(u, v)in query time O(1)

Under 3SUM, in the same preprocessing time and $n^{o(1)}$ query time we cannot compute a < k-approximation \rightarrow *hardness of approximation in P* [Abboud, **B**, Khoury, Zamir STOC'22] [Abboud, **B**, Fischer STOC'23] [Jin, Xu STOC'23]

Conclusion

Graph reachability and distance problems:

single-source: mostly in near-linear time

all-pairs: mostly equivalent (up to logfactors) to an appropriate matrix product

Many, many more directions:

centrality measures: diameter, radius, eccentricities, girth, ...

additive approximation, small weights, ...

dynamic graphs, failing edges (replacement paths), spanners, ...

... a huge, active research area

Thank you!