
Fine-Grained Complexity and Algorithm Design for
Graph Reachability and Distance Problems

Karl Bringmann

“Fine-Grained Complexity, Logic,
and Query Evaluation”

@ Simons Institute

September 28, 2023

Talk Outline

- survey-ish talk about recursive query evaluation from algorithms perspective

- reachability problems (connected components, transi:ve closure, …)

- distance problems (shortest paths, diameter, …)

Hung‘s invitation:

Many Problem Variants

What type of graph?

undirected vs directed

weighted vs unweighted

encoding of weights, negative cycles?, …

Input: graph 𝐺 = 𝑉, 𝐸

Which parameters for measuring time?

𝑛 = number of nodes

𝑚 = number of edges

output size, range of weights, …

Reachability

Single-Source Reachability
given a node 𝑠, compute all nodes that are reachable from 𝑠

Run depth-first-search from 𝑠

linear time 𝑂 𝑛 + 𝑚

Classic optimal algorithm:

2 6

4 51

73

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Run depth-first-search from every unexplored node

linear time 𝑂 𝑛 + 𝑚

Undirected graphs → connected components

2 6

4 51

73

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Run single-source reachability from every node

time 𝑂 𝑛𝑚

Directed graphs → transitive closure

2 6

4 51

73

optimal since output size can be up to Ω 𝑚!

, parameter 𝒎:

≤ 𝑂 𝑚!

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Run single-source reachability from every node

<me 𝑂 𝑛𝑚 ≤ 𝑂 𝑛"

Directed graphs → transitive closure, parameter 𝒏:

2 6

4 51

73

equivalent to Boolean matrix multiplication

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Transitive Closure

Directed graphs → transitive closure, parameter 𝒏:

Boolean Matrix Mult, BMM

given directed 𝑛-node graph,
compute for all nodes 𝑢, 𝑣

whether 𝑢 can reach 𝑣

given 𝑛×𝑛 matrices 𝐴, 𝐵,
compute matrix 𝐶 with

𝐶 𝑖, 𝑗 = ⋁!𝐴 𝑖, 𝑘 ∧ 𝐵 𝑘, 𝑗

𝐴 ≔ adjacency matrix plus selfloops
for 𝑖 = 1, … , log 𝑛:
𝐴 ≔ Boolean matrix product 𝐴 ∗ 𝐴

→ compute transitive
closure in time 8𝑂 𝑛#

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Transitive Closure

Directed graphs → transi>ve closure, parameter 𝒏:

Boolean Matrix Mult, BMM

given directed 𝑛-node graph,
compute for all nodes 𝑢, 𝑣

whether 𝑢 can reach 𝑣

given 𝑛×𝑛 matrices 𝐴, 𝐵,
compute matrix 𝐶 with

𝐶 𝑖, 𝑗 = ⋁!𝐴 𝑖, 𝑘 ∧ 𝐵 𝑘, 𝑗

2

1

3

5

4

6

8

7

9
𝐴 𝐵

From the transitive closure of
this graph we can read off the
Boolean matrix product 𝐴 ∗ 𝐵

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Transitive Closure

Directed graphs → transitive closure, parameter 𝒏:

Boolean Matrix Mult, BMM

given directed 𝑛-node graph,
compute for all nodes 𝑢, 𝑣

whether 𝑢 can reach 𝑣

given 𝑛×𝑛 matrices 𝐴, 𝐵,
compute matrix 𝐶 with

𝐶 𝑖, 𝑗 = ⋁!𝐴 𝑖, 𝑘 ∧ 𝐵 𝑘, 𝑗

8𝑂 𝑛# 8𝑂 𝑛#

≡

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

optimal time 𝑂 𝑚! , by output size bound

Directed graphs → transitive closure, parameter 𝒎:

2 6

4 51

73

optimal time 8𝑂 𝑛# , by equivalence with Boolean matrix product

Directed graphs → transitive closure, parameter 𝒏:

parameter 𝒐𝒖𝒕 = number of
edges in transitive closure ?

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Transitive Closure

Directed graphs → transitive closure, parameter 𝒐𝒖𝒕:

Boolean Matrix Mult, BMM

𝑜𝑢𝑡 = number of edges
in transitive closure

𝑖𝑛 = number of nonzero
entries in input matrices
𝑜𝑢𝑡 = number of nonzero
entries in product matrix

8𝑂 𝑜𝑢𝑡$ 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)$

≡

Fully-Sparse BMM

𝑐 ≥ 𝜔/2

solve BMM in time 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)$ where 𝑖𝑛 / 𝑜𝑢𝑡 = # nonzeros in input / output

≥ 1.18 ≥ 1

with current 𝜔: assuming 𝜔 = 2:

𝑐 ≤ 1.5 ≤ 1.5 ≤ 1.5
[van Gucht, Williams,
Woodruff, Zhang ’15]

𝑐 ≤
2𝜔
𝜔 + 1

≤ 1.41 ≤ 4/3 [Amossen, Pagh ‘09]

𝑐 ≤ 1 +
𝜇

1 + 𝜇
≤ 1.3459 ≤ 4/3 [Abboud, B, Fischer,

Künnemann ‘23+]

where 𝜔 𝜇, 1,1 = 2𝜇 + 1

0.5 ≤ 𝜇 ≤ 0.5286

Fully-Sparse BMM

𝑐 ≥ 𝜔/2

solve BMM in time 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)$ where 𝑖𝑛 / 𝑜𝑢𝑡 = # nonzeros in input / output

≥ 1.18 ≥ 1

with current 𝜔: assuming 𝜔 = 2:

𝑐 ≤ 1.5 ≤ 1.5 ≤ 1.5
[van Gucht, Williams,
Woodruff, Zhang ’15]

𝑐 ≤
2𝜔
𝜔 + 1

≤ 1.41 ≤ 4/3 [Amossen, Pagh ‘09]

𝑐 ≤ 1 +
𝜇

1 + 𝜇
≤ 1.3459 ≤ 4/3 [Abboud, B, Fischer,

Künnemann ‘23+]

where 𝜔 𝜇, 1,1 = 2𝜇 + 1

0.5 ≤ 𝜇 ≤ 0.5286

deterministic algorithm for BMM

also works for integer matrix mult, but randomized

Fully-Sparse BMM – Further Improvements?
solve BMM in time 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)$ where 𝑖𝑛 / 𝑜𝑢𝑡 = # nonzeros in input / output

𝑛%

BMM has algorithm with exponent 𝑐 < 1 + %
&'%

⟺

AllEdgesTriangle 𝑛% , 𝑛, 𝑛; 𝑛&'% can be solved in time 𝑂 𝑛&'!%() for 𝜀 > 0

𝑛

𝑛 ≤ 𝑛&'% edges

for each edge: decide whether it is in a triangle0.5 ≤ 𝜇 ≤ 0.5286

[Abboud, B, Fischer, Künnemann ‘23+]

Fully-Sparse BMM – General Tradeoff

general setting: 𝑜𝑢𝑡 ≈ 𝑖𝑛* for some 𝑟 ∈ 0,2

near-linear time &𝑂 𝑜𝑢𝑡
if 𝑜𝑢𝑡 ≥ 𝑖𝑛(.*+,

with current 𝜔:

our bound 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)&.",-. is optimized for 𝑜𝑢𝑡 ≈ 𝑖𝑛

<𝑂 𝑖𝑛 ⋅ 𝑜𝑢𝑡".$%&' + 𝑖𝑛".("")𝑜𝑢𝑡".&%&* + 𝑜𝑢𝑡

[van Gucht, Williams,
Woodruff, Zhang ‘15]

<𝑂 𝑖𝑛 𝑜𝑢𝑡

[Amossen, Pagh ‘09]

[Abboud, B, Fischer,
Künnemann ‘23+]

Fully-Sparse BMM – General Tradeoff

general setting: 𝑜𝑢𝑡 ≈ 𝑖𝑛* for some 𝑟 ∈ 0,2

[van Gucht, Williams,
Woodruff, Zhang ‘15]

<𝑂 𝑖𝑛 𝑜𝑢𝑡

[Amossen, Pagh ‘09]

[Abboud, B, Fischer,
Künnemann ‘23+]

/me &𝑂 𝑖𝑛(.*+, + 𝑜𝑢𝑡

with current 𝜔:

our bound 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)&.",-. is optimized for 𝑜𝑢𝑡 ≈ 𝑖𝑛

<𝑂 𝑖𝑛 ⋅ 𝑜𝑢𝑡".$%&' + 𝑖𝑛".("")𝑜𝑢𝑡".&%&* + 𝑜𝑢𝑡

Fully-Sparse BMM – General Tradeoff

our bound 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)&.",-. is optimized for 𝑜𝑢𝑡 ≈ 𝑖𝑛

general setting: 𝑜𝑢𝑡 ≈ 𝑖𝑛* for some 𝑟 ∈ 0,2

assuming 𝜔 = 2:

/me &𝑂 𝑖𝑛(.- + 𝑜𝑢𝑡

<𝑂 𝑖𝑛 ⋅ 𝑜𝑢𝑡+/$ + 𝑜𝑢𝑡

[van Gucht, Williams,
Woodruff, Zhang ‘15]

<𝑂 𝑖𝑛 𝑜𝑢𝑡

[Amossen, Pagh ‘09]

[Abboud, B, Fischer,
Künnemann ‘23+]

Fully-Sparse BMM – Algorithm Overview

1. Output Densification:

use hashing / sparse recovery to reduce outer dimensions to 𝑥 ⋅ 𝑧 = 𝑂 𝑜𝑢𝑡

𝐴 is 𝑥×𝑦-matrix, 𝐵 is 𝑦×𝑧-matrix

2. High-degree/low-degree:

split 𝑦’s into degree higher than Δ or lower than Δ

low degree: enumerate all 2-paths in time 𝑂(𝑖𝑛 ⋅ Δ)

high degree: matrix multiplication in time MM 𝑥, 𝑦/ , 𝑧

≤ MM Δ, 01
2
, 345
2

use bounds on MM to bound both terms and balance their sum

≤ MM 𝑥, 01
2
, 345
6 Δ ≤ 𝑥 ≤ 345

2

All-Pairs Reachability
compute for all nodes 𝑢, 𝑣 whether 𝑢 can reach 𝑣

Transitive Closure

Directed graphs → transitive closure, parameter 𝒐𝒖𝒕:

Boolean Matrix Mult, BMM

𝑜𝑢𝑡 = number of edges
in transitive closure

𝑖𝑛 = number of nonzero
entries in input matrices
𝑜𝑢𝑡 = number of nonzero
entries in product matrix

8𝑂 𝑜𝑢𝑡&.",-. 8𝑂 (𝑖𝑛 + 𝑜𝑢𝑡)&.",-.

≡

[Abboud, B, Fischer, Künnemann ‘23+]

Q: What is the optimal exponent?

Distances

Weight Encoding

RAM model:

1. integer weights in −𝑊,… ,𝑊

1.2. polynomial weights: 𝑊 ≤ 𝑛7 & , log𝑊 factors hidden by 8𝑂

1.1. near-constant weights: 𝑊 factors in running time are okay

1.4. strongly polynomial algorithms: running time independent of 𝑊

2. real weights

2.1. RealRAM: arithmetic operations on reals in constant time

2.2. floating point approximation, e.g. 𝑂 log 𝑛/𝜀 -bit mantissa and exponent

each edge 𝑒 has a weight/length 𝑤 𝑒

each edge weight fits into a machine cell

arithmetic operations on two machine cells in time 𝑂 1

1.3. mildly superpolynomial weights: log𝑊 factors are okay

Single-Source Shortest Paths
given a node 𝑠, compute distances from 𝑠 to all other nodes

Dijkstra‘s algorithm:

nonnegative edge weights:

Bellman-Ford algorithm:

general edge weights:

[Ford’ 56, Bellman ‘58]𝑂 𝑚𝑛

8𝑂 𝑚 = 𝑂 𝑚 + 𝑛 log 𝑛

2 6

4 51

73

4 1 1

2 5 6 -3

4
1

1

Single-Source Shortest Paths
given a node 𝑠, compute distances from 𝑠 to all other nodes

Dijkstra‘s algorithm:

nonnega>ve edge weights:

Bellman-Ford algorithm:

general edge weights:

scaling-based algorithms:
[Gabow ’83, Gabow, Tarjan ‘89, Goldberg ‘95]

recent breakthrough:
[Bernstein, Nanongkai, Wulff-Nilsen FOCS’22 best paper]

further improvements:
[B, Cassis, Fischer FOCS’23]

[Ford’ 56, Bellman ‘58]𝑂 𝑚𝑛

𝑂 𝑚 𝑛 log𝑊

8𝑂 𝑚 log𝑊 = 𝑂 𝑚 log8 𝑛 log𝑊

𝑂 𝑚 + 𝑛 log log 𝑛 log! 𝑛 log 𝑛𝑊

8𝑂 𝑚 = 𝑂 𝑚 + 𝑛 log 𝑛

Q: Can the log𝑊 factor be removed?

All-Pairs Shortest Paths
compute all pairwise distances in a graph

2 6

4 51

73

4 1 1

2 5 6 1

4
1

1

Run single-source shortest paths from every node

time 8𝑂 𝑛𝑚

parameter 𝒎:

≤ 8𝑂 𝑚! , optimal by output size

time 8𝑂 𝑛𝑚 ≤ 8𝑂 𝑛"
parameter 𝒏:

equivalent to MinPlusProduct

negative edge weights can be removed in time 𝑂 𝑛𝑚 [Johnson’77]

All-Pairs Shortest Paths
compute all pairwise distances in a graph

All-Pairs Shortest Paths MinPlusProduct

given a directed graph,
compute for all nodes 𝑢, 𝑣
the distance from 𝑢 to 𝑣

given 𝑛×𝑛 matrices 𝐴, 𝐵,
compute matrix 𝐶 with

𝐶 𝑖, 𝑗 = min
!
𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗

8𝑂 𝑛" 8𝑂 𝑛"

𝐴 ≔ weighted adjacency matrix plus 0-weight selfloops
for 𝑖 = 1, … , log 𝑛:
𝐴 ≔ MinPlus matrix product 𝐴 ∗ 𝐴

All-Pairs Shortest Paths
compute all pairwise distances in a graph

All-Pairs Shortest Paths MinPlusProduct

given a directed graph,
compute for all nodes 𝑢, 𝑣
the distance from 𝑢 to 𝑣

given 𝑛×𝑛 matrices 𝐴, 𝐵,
compute matrix 𝐶 with

𝐶 𝑖, 𝑗 = min
!
𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗

8𝑂 𝑛" 8𝑂 𝑛"

2

1

3

5

4

6

8

7

9
𝐴 𝐵

From the pairwise distances in
this graph we can read off the
MinPlus matrix product 𝐴 ∗ 𝐵

All-Pairs Shortest Paths
compute all pairwise distances in a graph

All-Pairs Shortest Paths MinPlusProduct

given a directed graph,
compute for all nodes 𝑢, 𝑣
the distance from 𝑢 to 𝑣

given 𝑛×𝑛 matrices 𝐴, 𝐵,
compute matrix 𝐶 with

𝐶 𝑖, 𝑗 = min
!
𝐴 𝑖, 𝑘 + 𝐵 𝑘, 𝑗

8𝑂 𝑛" 8𝑂 𝑛"

≡

≡𝟑

Negative Triangle

given an edge-weighted graph,
are there nodes 𝑥, 𝑦, 𝑧 with

𝑤 𝑥, 𝑦 + 𝑤 𝑦, 𝑧 + 𝑤 𝑧, 𝑥 < 0?

APSP Hypothesis:
These problems cannot
be solved in time 𝑂 𝑛"(9

[Vassilevska Williams, Williams ‘10]

All-Pairs Shortest Paths
compute all pairwise distances in a graph

2 6

4 51

73

4 1 1

2 5 6 -3

4
1

1

Run single-source shortest paths from every node

time 8𝑂 𝑛𝑚

parameter 𝒎:

≤ 8𝑂 𝑚! , optimal by output size

<me 8𝑂 𝑛𝑚 ≤ 8𝑂 𝑛"
parameter 𝒏:

optimality is the APSP hypothesis

equivalent to MinPlusProduct

𝑛"/2: ;<= 1 [Williams ‘14]

Approximate All-Pairs Shortest Paths
compute 𝛼-approximation of all pairwise distances in a graph

time Ω 𝑛# , since at least as hard as BMM

directed graph

2

1

3

5

4

6

8

7

9
𝐴 𝐵

OR undirected graph and 𝜶 < 𝟐:

2

1

3

5

4

6

8

7

9
𝐴 𝐵

Approximate All-Pairs Shortest Paths
compute 𝛼-approximation of all pairwise distances in a graph

time Ω 𝑛# , since at least as hard as BMM

directed graph OR undirected graph and 𝜶 < 𝟐:

(𝟏 + 𝜺)-approximate
All-Pairs Shortest Paths

(𝟏 + 𝜺)-approximate
MinPlusProduct

≡

(𝟏 + 𝜺)-approxima>on: time 8𝑂 1!

)
log𝑊

Is log𝑊 factor necessary?

[Zwick ‘02]

Approximate All-Pairs Shortest Paths
compute 𝛼-approximation of all pairwise distances in a graph

time Ω 𝑛# , since at least as hard as BMM

directed graph OR undirected graph and 𝜶 < 𝟐:

(𝟏 + 𝜺)-approximation: time 8𝑂 1!

)
log𝑊 [Zwick ‘02]

.. in undirected graphs: time 8𝑂 1!

)
[B, Künnemann, Wegrzycki STOC‘19]

.. in directed graphs: <me 8𝑂 1(#$!)/'

)
[B, Künnemann, Wegrzycki STOC‘19]

equivalent to exact MinMaxProduct,
for which best known time is 8𝑂 𝑛("'#)/!

Approximate All-Pairs Shortest Paths
compute 𝛼-approximation of all pairwise distances in a graph

time Ω 𝑛# , since at least as hard as BMM

directed graph OR undirected graph and 𝜶 < 𝟐:

𝑶(𝟏)-approxima>on in undirected graphs:

preprocess given graph in time 𝑂 𝑚𝑛&/A ,

then query(𝑢, 𝑣) returns a 2𝑘 − 1 -approximation of dist(𝑢, 𝑣)

in query time 𝑂(1)

𝑘 = 𝑂 1 in [Thorup, Zwick ‘05]

Under 3SUM, in the same preprocessing time and 𝑛3 & query time we

cannot compute a < 𝑘-approximation

[Abboud, B, Khoury, Zamir STOC‘22] [Abboud, B, Fischer STOC‘23] [Jin, Xu STOC’23]

→ hardness of approximation in P

Conclusion

single-source: mostly in near-linear time

all-pairs: mostly equivalent (up to logfactors) to an appropriate matrix product

… a huge, active research area

Graph reachability and distance problems:

Many, many more directions:

centrality measures: diameter, radius, eccentricities, girth, …

additive approximation, small weights, …

dynamic graphs, failing edges (replacement paths), spanners, …

Thank you!

