『Iリリ｜
 max planck institut informatik

Fine－Grained Complexity and Algorithm Design for Graph Reachability and Distance Problems

Karl Bringmann

＂Fine－Grained Complexity，Logic， and Query Evaluation＂
＠Simons Institute
September 28， 2023

Talk Outline

Hung's invitation:

- survey-ish talk about recursive query evaluation from algorithms perspective
- reachability problems (connected components, transitive closure, ...)
- distance problems (shortest paths, diameter, ...)

Many Problem Variants

Input: graph $G=(V, E)$

What type of graph?
undirected vs directed weighted vs unweighted encoding of weights, negative cycles?, ...

Which parameters for measuring time? $n=$ number of nodes $m=$ number of edges output size, range of weights, ...

Reachability

Single-Source Reachability

given a node s, compute all nodes that are reachable from s

Classic optimal algorithm:
Run depth-first-search from s
linear time $O(n+m)$

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Undirected graphs \rightarrow connected components
Run depth-first-search from every unexplored node linear time $O(n+m)$

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter m :
Run single-source reachability from every node
time $O(\mathrm{~nm}) \leq O\left(\mathrm{~m}^{2}\right)$
optimal since output size can be up to $\Omega\left(m^{2}\right)$

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter $n:$
Run single-source reachability from every node
time $O(n m) \leq O\left(n^{3}\right)$
equivalent to Boolean matrix multiplication

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter $n:$

Transitive Closure given directed n-node graph, compute for all nodes u, v whether u can reach v	Boolean Matrix Mult, BMM given $n \times n$ matrices A, B, compute matrix C with $C[i, j]=\vee_{k} A[i, k] \wedge B[k, j]$

$A:=$ adjacency matrix plus selfloops
for $i=1, \ldots, \log n$:
$A:=$ Boolean matrix product $A * A$
\rightarrow compute transitive closure in time $\tilde{O}\left(n^{\omega}\right)$

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter $n:$

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter $n:$
Transitive Closure
given directed n-node graph,
compute for all nodes u, v
whether u can reach v

$\tilde{O}\left(n^{\omega}\right)$$\equiv$| Boolean Matrix Mult, BMM |
| :---: |
| given $n \times n$ matrices A, B, |
| compute matrix C with |
| $C[i, j]=\vee_{k} A[i, k] \wedge B[k, j]$ |
| $\tilde{O}\left(n^{\omega}\right)$ |

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter m :
optimal time $O\left(m^{2}\right)$, by output size bound

Directed graphs \rightarrow transitive closure, parameter $n:$
optimal time $\tilde{O}\left(n^{\omega}\right)$, by equivalence with Boolean matrix product
parameter out = number of edges in transitive closure ?

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter out:

Fully-Sparse BMM

solve BMM in time $\tilde{O}\left((\text { in }+ \text { out })^{c}\right)$ where in / out $=\#$ nonzeros in input / output

$$
\begin{array}{ccc}
& \text { with current } \omega \text { : } & \text { assuming } \omega=2: \\
c \geq \omega / 2 & \geq 1.18 & \geq 1 \\
c \leq 1.5 & \leq 1.5 & \leq 1.5
\end{array}
$$

Fully-Sparse BMM

solve BMM in time $\tilde{O}\left((\text { in }+ \text { out })^{c}\right)$ where in / out $=\#$ nonzeros in input / output
with current ω : assuming $\omega=2$:
$c \geq \omega / 2$
≥ 1.18
≥ 1
$c \leq 1.5$
≤ 1.5
≤ 1.5
$\leq 4 / 3$
$\leq 4 / 3$
[van Gucht, Williams,
Woodruff, Zhang '15]
[Amossen, Pagh '09]
[Abboud, B, Fischer,
Künnemann '23+]
also works for integer matrix mult, but randomized
$0.5 \leq \mu \leq 0.5286$

Fully-Sparse BMM - Further Improvements?

solve BMM in time $\tilde{O}\left((\text { in }+ \text { out })^{c}\right)$ where in / out $=\#$ nonzeros in input / output

> BMM has algorithm with exponent $c<1+\frac{\mu}{1+\mu}$
> \Leftrightarrow
> AllEdgesTriangle $\left(n^{\mu}, n, n ; n^{1+\mu}\right)$ can be solved in time $O\left(n^{1+2 \mu-\varepsilon}\right)$ for $\varepsilon>0$
[Abboud, B, Fischer, Künnemann '23+]

$$
0.5 \leq \mu \leq 0.5286
$$

for each edge: decide whether it is in a triangle

Fully-Sparse BMM - General Tradeoff

our bound $\tilde{O}\left((\text { in }+ \text { out })^{1.3459}\right)$ is optimized for out \approx in
general setting: out \approx in r for some $r \in[0,2]$

Fully-Sparse BMM - General Tradeoff

our bound $\tilde{O}\left((\text { in }+ \text { out })^{1.3459}\right)$ is optimized for out \approx in
general setting: out \approx in r for some $r \in[0,2]$

Fully-Sparse BMM - General Tradeoff

our bound $\tilde{O}\left((\text { in }+ \text { out })^{1.3459}\right)$ is optimized for out \approx in
general setting: out \approx in r for some $r \in[0,2]$

Fully-Sparse BMM - Algorithm Overview

A is $x \times y$-matrix, B is $y \times z$-matrix

1. Output Densification:
use hashing / sparse recovery to reduce outer dimensions to $x \cdot z=O$ (out)
2. High-degree/low-degree:
split y 's into degree higher than Δ or lower than Δ
low degree: enumerate all 2-paths in time $O($ in $\cdot \Delta)$
high degree: matrix multiplication in time $\operatorname{MM}\left(x, y_{H}, z\right)$

$$
\begin{aligned}
& \leq \operatorname{MM}\left(x, \frac{\text { in }}{\Delta}, \frac{\text { out }}{x}\right) \quad \Delta \leq x \leq \frac{\text { out }}{\Delta} \\
& \leq M M\left(\Delta, \frac{\text { in }}{\Delta}, \frac{\text { out }}{\Delta}\right)
\end{aligned}
$$

use bounds on MM to bound both terms and balance their sum

All-Pairs Reachability

compute for all nodes u, v whether u can reach v

Directed graphs \rightarrow transitive closure, parameter out:

Distances

Weight Encoding

each edge e has a weight/length $w(e)$

RAM model: each edge weight fits into a machine cell arithmetic operations on two machine cells in time O (1)

1. integer weights in $\{-W, \ldots, W\}$
1.1. near-constant weights: W factors in running time are okay
1.2. polynomial weights: $W \leq n^{O(1)}, \log W$ factors hidden by \tilde{O}
1.3. mildly superpolynomial weights: $\log W$ factors are okay
1.4. strongly polynomial algorithms: running time independent of W
2. real weights
2.1. RealRAM: arithmetic operations on reals in constant time
2.2. floating point approximation, e.g. $O(\log (n / \varepsilon))$-bit mantissa and exponent

Single-Source Shortest Paths

given a node s, compute distances from s to all other nodes
nonnegative edge weights:
Dijkstra's algorithm:

$$
\tilde{O}(m)=O(m+n \log n)
$$

general edge weights:
Bellman-Ford algorithm: $\quad O(\mathrm{mn})$

Single-Source Shortest Paths

given a node s, compute distances from s to all other nodes
nonnegative edge weights:
Dijkstra's algorithm

$$
\tilde{O}(m)=O(m+n \log n)
$$

general edge weights:
Bellman-Ford algorithm: 0
Q: Can the $\log W$ factor be removed?
scaling-based algorithms: $O(m \sqrt{n} \log W)$
[Gabow '83, Gabow, Tarjan '89, Goldberg '95]
recent breakthrough: $\quad \tilde{O}(m \log W)=O\left(m \log ^{8} n \log W\right)$
[Bernstein, Nanongkai, Wulff-Nilsen FOCS'22 best paper]
further improvements: $\quad O\left((m+n \log \log n) \log ^{2} n \log (n W)\right)$
[B, Cassis, Fischer FOCS'23]

All-Pairs Shortest Paths

compute all pairwise distances in a graph
negative edge weights can be removed in time $O(\mathrm{~nm})$ [Johnson'77]
parameter m :
Run single-source shortest paths from every node time $\tilde{O}(\mathrm{~nm}) \leq \tilde{O}\left(\mathrm{~m}^{2}\right)$, optimal by output size

parameter n :

time $\tilde{O}(n m) \leq \widetilde{O}\left(n^{3}\right)$
equivalent to MinPlusProduct

All-Pairs Shortest Paths

compute all pairwise distances in a graph

$A:=$ weighted adjacency matrix plus 0 -weight selfloops
for $i=1, \ldots, \log n$:
$A:=$ MinPlus matrix product $A * A$

All-Pairs Shortest Paths

compute all pairwise distances in a graph

All-Pairs Shortest Paths

given a directed graph, compute for all nodes u, v the distance from u to v

$$
\tilde{O}\left(n^{3}\right)
$$

MinPlusProduct

given $n \times n$ matrices A, B, compute matrix C with

$$
C[i, j]=\min _{k} A[i, k]+B[k, j]
$$

$$
\tilde{O}\left(n^{3}\right)
$$

From the pairwise distances in this graph we can read off the MinPlus matrix product $A * B$

All-Pairs Shortest Paths

compute all pairwise distances in a graph

All-Pairs Shortest Paths

given a directed graph, compute for all nodes u, v the distance from u to v

$$
\tilde{O}\left(n^{3}\right)
$$

MinPlusProduct

given $n \times n$ matrices A, B, compute matrix C with

$$
C[i, j]=\min _{k} A[i, k]+B[k, j]
$$

$$
\tilde{O}\left(n^{3}\right)
$$

$$
\text { [Vassilevska Williams, Williams '10] } \equiv_{\mathbf{3}}
$$

APSP Hypothesis:

These problems cannot be solved in time $O\left(n^{3-\delta}\right)$

Negative Triangle

given an edge-weighted graph, are there nodes x, y, z with

$$
w(x, y)+w(y, z)+w(z, x)<0 ?
$$

All-Pairs Shortest Paths

compute all pairwise distances in a graph

parameter m :

Run single-source shortest paths from every node time $\tilde{O}(\mathrm{~nm}) \leq \tilde{O}\left(\mathrm{~m}^{2}\right)$, optimal by output size

parameter n :

time $\tilde{O}(n m) \leq \tilde{O}\left(n^{3}\right)$
equivalent to MinPlusProduct
optimality is the APSP hypothesis
$n^{3} / 2^{\Omega(\sqrt{\log n})}$ [Williams '14]

Approximate All-Pairs Shortest Paths

compute α-approximation of all pairwise distances in a graph
directed graph OR undirected graph and $\alpha<2$:
time $\Omega\left(n^{\omega}\right)$, since at least as hard as BMM

Approximate All-Pairs Shortest Paths

compute α-approximation of all pairwise distances in a graph
directed graph OR undirected graph and $\alpha<2$:
time $\Omega\left(n^{\omega}\right)$, since at least as hard as BMM
$(\mathbf{1}+\boldsymbol{\varepsilon})$-approximation: \quad time $\tilde{O}\left(\frac{n^{\omega}}{\varepsilon} \log W\right)$
[Zwick ‘02]
$(1+\varepsilon)$-approximate
All-Pairs Shortest Paths
$(1+\varepsilon)$-approximate MinPlusProduct

Is $\log W$ factor necessary?

Approximate All-Pairs Shortest Paths

compute α-approximation of all pairwise distances in a graph
directed graph OR undirected graph and $\alpha<2$:
time $\Omega\left(n^{\omega}\right)$, since at least as hard as BMM
$(\mathbf{1}+\boldsymbol{\varepsilon})$-approximation: \quad time $\tilde{O}\left(\frac{n^{\omega}}{\varepsilon} \log W\right)$
[Zwick ‘02]
.. in undirected graphs: time $\tilde{O}\left(\frac{n^{\omega}}{\varepsilon}\right)$
[B, Künnemann, Wegrzycki STOC'19]
.. in directed graphs: time $\tilde{O}\left(\frac{n^{(3+\omega) / 2}}{\varepsilon}\right)$ [B, Künnemann, Wegrzycki STOC'19]
equivalent to exact MinMaxProduct, for which best known time is $\widetilde{O}\left(n^{(3+\omega) / 2}\right)$

Approximate All-Pairs Shortest Paths

compute α-approximation of all pairwise distances in a graph
directed graph OR undirected graph and $\alpha<2$:
time $\Omega\left(n^{\omega}\right)$, since at least as hard as BMM
$O(1)$-approximation in undirected graphs:
preprocess given graph in time $O\left(m n^{1 / k}\right), \quad k=O(1)$ in [Thorup, Zwick '05]
then query (u, v) returns a $(2 k-1)$-approximation of $\operatorname{dist}(u, v)$
in query time $O(1)$

Under 3SUM, in the same preprocessing time and $n^{o(1)}$ query time we cannot compute a $<k$-approximation \rightarrow hardness of approximation in \mathbf{P}

Conclusion

Graph reachability and distance problems:
single-source: mostly in near-linear time
all-pairs: mostly equivalent (up to logfactors) to an appropriate matrix product

Many, many more directions:
centrality measures: diameter, radius, eccentricities, girth, ... additive approximation, small weights, ...
dynamic graphs, failing edges (replacement paths), spanners, ...
... a huge, active research area
Thank you!

