Sampling in Query Evaluation

Marcelo Arenas
PUC \& IMFD Chile and RelationalAI

The goals of this tutorial

- Show some fundamental problems that motivate the use of sampling in databases
- Explain the difficulties behind these problems
- Show some tools that are used to do sampling in this context
- Explain how these tools can be used to provide (partial) solutions to these problems
- Convince the audience that there are interesting open problems in the area, and also that sampling tools could be very useful

Motivation: Three related problems

Problem 1: query optimization

The task is to compute $R[A, B] \bowtie S[B, C] \bowtie T[C, D]$
$(R \bowtie S) \bowtie T$
$R \bowtie(S \bowtie T)$
$(R \bowtie T) \bowtie S$

$(R \bowtie S) \bowtie T$

R	A	B
	1	2
	1	4
	\vdots	
	n	4

S	B	C	
	2	0	
4	1		
	\vdots		
	4	n	

$$
\begin{array}{l|ll}
T & C & D \\
\hline & 0 & 3 \\
\hline
\end{array}
$$

$R \bowtie(S \bowtie T)$

R	A	B
	1	2
1	4	
	\vdots	
n	4	

S	B	C
	2	0
4	1	
	\vdots	
	4	n

T	C	D
	0	3

$R \bowtie(S \bowtie T)$

R	A	B
	1	2
1	4	
	\vdots	
n		4

S	B	C
	2 0 4 1 \vdots 4	

T	C	D
	0	3

Query optimization

Now the task is to compute $\sigma_{B=4}(R[A, B] \bowtie S[B, C] \bowtie$

$$
T[C, D])
$$

$\sigma_{B=4}((R \bowtie S) \bowtie T)$ $R \bowtie\left(\sigma_{B=4}(S) \bowtie T\right)$

$\sigma_{B=4}((R \bowtie S) \bowtie T)$

R	$A \quad B$
	$\begin{array}{cc} 1 & 2 \\ 1 & 4 \\ & \vdots \\ n & \\ n \end{array}$
S	$B \quad C$
	$\begin{array}{ll}2 & 0 \\ 4 & 1\end{array}$

$$
\begin{array}{l|ll}
T & C & D \\
\hline & 0 & 3 \\
\cline { 2 - 3 }
\end{array}
$$

$R \bowtie\left(\sigma_{B=4}(S) \bowtie T\right)$

R	$A \quad B$
	$\begin{array}{cc} 1 & 2 \\ 1 & 4 \\ & \vdots \\ & \\ n & 4 \end{array}$
S	$B \quad C$
	$\begin{array}{ll} 2 & 0 \\ 4 & 1 \end{array}$
	$4 \quad n$

$$
\begin{array}{l|ll}
T & C & D \\
\hline & 0 & 3 \\
\cline { 2 - 3 }
\end{array}
$$

$R \bowtie\left(\sigma_{B=4}(S) \bowtie T\right)$

R	$A \quad B$
	$\begin{array}{cc} 1 & 2 \\ 1 & 4 \\ & \vdots \\ n & 4 \end{array}$
S	$B \quad C$
	$\begin{array}{ll} 2 & 0 \\ 4 & 1 \end{array}$

$$
\begin{array}{l|ll}
T & C & D \\
\hline & 0 & 3 \\
\cline { 2 - 3 }
\end{array}
$$

Cardinality estimation

To compare query plans we need estimations of the cardinalities of the intermediate results

- Such estimations should be computed (very) efficiently

Problem 2: approximate query processing [HHW97,HH99]

The task is to compute the aggregate query COUNT(

$$
R[A, B] \bowtie S[B, C] \bowtie T[C, D])
$$

Not a good strategy to solve this task by first computing $R[A, B] \bowtie S[B, C] \bowtie T[C, D]$

- We can approximate the answer by doing a cardinality estimation

Problem 2: approximate query processing [HHW97,HH99]

Can we also approximate $\mathrm{SUM}_{D}(R[A, B] \bowtie S[B, C] \bowtie$ $T[C, D])$ and $\operatorname{AVG}_{A}(R[A, B] \bowtie S[B, C] \bowtie T[C, D])$?

What kind of guarantees can be offered about the results of these approximations?

- How can such guarantees be obtained?

Problem 3: query exploration

The answer to a query can be very large

It can be more informative to:

- Return the number of answers
- Enumerate the answers with polynomial (constant) delay
- Generate an answer uniformly at random

Problem 3: query exploration

Returning the number of answers to a query can be solved again by using cardinality estimation

Problem 3: query exploration

Returning the number of answers to a query can be solved again by using cardinality estimation

Cardinality estimation can also help to generate at random an answer to a query

- Can we sample with uniform distribution?
- Can sampling be used for cardinality estimation?

What do these problems have in common?

Sampling plays a central role in the development of solutions for these problems

The complexity of counting and

uniform generation

Hardness of counting

The problem of counting the number of answers to a join query is \#P-complete

This can be easily shown by reducing from the problem of counting the number of 3 -colorings of a graph

Hardness of counting

The problem of counting the number of answers to a join query is \#P-complete

$$
\begin{aligned}
& \quad E\left(x_{1}, x_{2}\right) \wedge E\left(x_{2}, x_{3}\right) \\
& \wedge E\left(x_{3}, x_{4}\right) \wedge E\left(x_{4}, x_{1}\right) \wedge \\
& E\left(x_{4}, x_{2}\right)
\end{aligned}
$$

Hardness of counting

The problem of counting the number of answers to a join query is \#P-complete

$$
\begin{gathered}
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=E\left(x_{1}, x_{2}\right) \wedge E\left(x_{2}, x_{3}\right) \\
\wedge E\left(x_{3}, x_{4}\right) \wedge E\left(x_{4}, x_{1}\right) \wedge \\
E\left(x_{4}, x_{2}\right)
\end{gathered}
$$

Hardness of counting

The problem of counting the number of answers to a join query is \#P-complete

$$
\begin{gathered}
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=E\left(x_{1}, x_{2}\right) \wedge E\left(x_{2}, x_{3}\right) \\
\\
\wedge E\left(x_{3}, x_{4}\right) \wedge E\left(x_{4}, x_{1}\right) \wedge \\
\\
E\left(x_{4}, x_{2}\right)
\end{gathered}
$$

Number of 3-colorings: $|Q(E)|$

E		
	1	2
	1	3
2	1	
2	3	
3	1	
3	2	

Hardness of uniform generation

There is no randomized polynomial-time algorithm for uniform generation of the answers to a join query (unless $N P=R P)$

If such an algorithm exists, then there exists an FPRAS for the problem of counting the number of answers to a join query (by Jerrum-Valiant-Vazirani)

Then there exists a BPP algorithm problem of verifying whether a join query has a non-empty set of answers

Hardness of uniform generation

There is no randomized polynomial-time algorithm for uniform generation of the answers to a join query (unless $N P=R P)$

Then there exists a BPP algorithm problem of verifying whether a join query has a non-empty set of answers

But the problem of verifying whether a join query has a non-empty set of answers is NP-complete

How can we get better complexity?

Consider acyclic queries

- Or a class of queries with a bounded degree of acyclicity, such as bounded treewidth or bounded hypertree width

Counting in the acyclic case

$R[A, B] \bowtie S \in B, \triangle T[C, A]$

Counting in the acyclic case

$R[A, B] \bowtie S[A, C] \bowtie T[A, D] \bowtie U[C, E, F]$

Counting in the acyclic case

$R[A, B] \bowtie S[A, C] \bowtie T[A, D] \bowtie U[C, E, F]$

Counting in the acyclic case

Uniform generation in the acyclic case

$$
\begin{aligned}
& \begin{array}{|llllll|}
\hline A & B & C & D & E & F \\
\hline 4 & 6 & 1 & & 4 & 7 \\
\hline
\end{array} \frac{3}{4} \cdot 1 \cdot \frac{1}{2} .
\end{aligned}
$$

Uniform generation in the acyclic case

$$
\begin{aligned}
& \begin{array}{|cccccc|c|}
\hline A & B & C & D & E & F & \\
\hline 4 & 6 & 1 & & 4 & 7 & \\
\hline
\end{array} \frac{3}{4} \cdot 1 \cdot \frac{1}{2} .
\end{aligned}
$$

Uniform generation in the acyclic case

$$
\begin{aligned}
& \begin{array}{|cccccc|}
A & B & C & D & E & F \\
\hline 4 & 6 & 1 & 2 & 4 & 7 \\
\hline
\end{array}
\end{aligned}
$$

Uniform generation in the acyclic case

$$
\begin{aligned}
& \begin{array}{|lllllllllll}
A & B & C & D & E & F \\
4 & 6 & 1 & 2 & 4 & 7
\end{array} \\
& \hline
\end{aligned}
$$

Does this work with other operators?

The previous approach for acyclic queries can be extended to consider the selection operator σ

But it does not work if the projection operator π is included

Hardness of counting with projection [PS13]

Hardness of counting with projection [PS13]

The problem of counting the number of perfect matchings in a bipartite graph is \#P-complete

Hardness of counting with projection [PS13]

Hardness of counting with projection [PS13]

I_{1}	
	4
	5

I_{2}	
	4
	5
	6

I_{3}					
	6	\quad	D		
:---	:---	:---:	\quad	4	5
:---	:---				
4	6				
5	4				
5	6				
6	4				
6	5				

$$
\begin{aligned}
F\left(x_{1}, x_{2}, x_{3}\right) & =I_{1}\left(x_{1}\right) \wedge I_{2}\left(x_{2}\right) \wedge I_{3}\left(x_{3}\right) \\
W\left(x_{1}, x_{2}, x_{3}\right) & =I_{1}\left(x_{1}\right) \wedge I_{2}\left(x_{2}\right) \wedge I_{3}\left(x_{3}\right) \wedge \exists y\left(D\left(x_{1}, y\right) \wedge D\left(x_{2}, y\right) \wedge D\left(x_{3}, y\right)\right)
\end{aligned}
$$

Hardness of counting with projection [PS13]

$$
W\left(x_{1}, x_{2}, x_{3}\right)=I_{1}\left(x_{1}\right) \wedge I_{2}\left(x_{2}\right) \wedge I_{3}\left(x_{3}\right) \wedge \exists y\left(D\left(x_{1}, y\right) \wedge D\left(x_{2}, y\right) \wedge D\left(x_{3}, y\right)\right)
$$

Hardness of counting with projection [PS13]

Number of perfect matchings:

$$
\left|F\left(I_{1}, I_{2}, I_{3}\right)\right|-\left|W\left(I_{1}, I_{2}, I_{3}, D\right)\right|
$$

$$
\begin{aligned}
F\left(x_{1}, x_{2}, x_{3}\right) & =I_{1}\left(x_{1}\right) \wedge I_{2}\left(x_{2}\right) \wedge I_{3}\left(x_{3}\right) \\
W\left(x_{1}, x_{2}, x_{3}\right) & =I_{1}\left(x_{1}\right) \wedge I_{2}\left(x_{2}\right) \wedge I_{3}\left(x_{3}\right) \wedge \exists y\left(D\left(x_{1}, y\right) \wedge D\left(x_{2}, y\right) \wedge D\left(x_{3}, y\right)\right)
\end{aligned}
$$

Does this rule out efficient uniform generation?

No, the argument for join queries does not apply here

- The problem of verifying whether an acyclic conjunctive query has a non-empty set of answers can be solved in polynomial time

For practical applications

- We need to consider both acyclic and cyclic queries
- We need to include all relational algebra operators
- We need to consider aggregation

Part I: join, selection and aggregation

A bit of notation

- $\operatorname{dom}(A)$: domain of attribute A
- Given a tuple r and an attribute $A, r[A]$ is the value of r in the attribute A
- $r \sim s: r$ and s have the same values in their common attributes
- $R \ltimes S=\{r \in R \mid \exists s \in S: r \sim s\}$
- If X is the set of attributes of R, then $R \ltimes S=\pi_{X}(R \bowtie S)$

Uniform generation

Sampling with uniform distribution [093,CMN99]

We would like to generate uniformly at random a tuple in $R[A, B] \bowtie S[B, C]$

Ideally, the probability of choosing a tuple $t \in R \bowtie S$ should be

$$
\frac{1}{|R \bowtie S|}
$$

Sampling with uniform distribution: first attempt

To produce a sample do the following:

1. Generate uniformly at random $r \in R$
2. Generate uniformly at random $s \in S$
3. If $r \sim s$, then return (r, s)

Sampling with uniform distribution: first attempt

Tuples in the join are generated uniformly. If $r \sim s$:

$$
\operatorname{Pr}((r, s) \text { is generated })=\frac{1}{|R||S|}
$$

The probability that a tuple is generated is

$$
\frac{|R \bowtie S|}{|R||S|}
$$

If $|R \bowtie S| \ll|R||S|$, then this probability can be very small

Sampling with uniform distribution: second attempt

To produce a sample do the following:

1. Generate uniformly at random $r \in R$
2. Generate uniformly at random $s \in \sigma_{B=r[B]}(S)$
3. Return (r, s)

Sampling with uniform distribution: second attempt

But in this cases the tuples in the join are not generated uniformly.

Assuming $r \sim s$:

$$
\begin{aligned}
& \operatorname{Pr}((r, s) \text { is generated }) \\
&=\operatorname{Pr}(r \text { is generated }) \operatorname{Pr}(s \text { is generated } \mid r \text { is generated }) \\
&=\frac{1}{|R|} \frac{1}{|S \ltimes\{r\}|}
\end{aligned}
$$

Sampling with uniform distribution: second attempt

R	A	B
	1	2
	3	4

S	B	C
	2 1 4 1 4 4 N	

Sampling with uniform distribution: second attempt

How do we solve this problem?

Sampling with uniform distribution: third attempt [093]

Let $M_{B}(S)=\max _{v \in \operatorname{dom}(B)}\left|\sigma_{B=v}(S)\right|$

To produce a sample do the following:

1. Generate uniformly at random $r \in R$
2. Reject with probability

$$
1-\frac{|S \ltimes\{r\}|}{M_{B}(S)}
$$

3. Generate uniformly at random $s \in \sigma_{B=r[B]}(S)$
4. Return (r, s)

Sampling with uniform distribution: third attempt [093]

The tuples in the join are generated uniformly.

Assuming $r \sim s$:

$$
\begin{aligned}
& \operatorname{Pr}((r, s) \text { is generated }) \\
& \quad=\operatorname{Pr}(r \text { is generated }) \operatorname{Pr}(s \text { is generated } \mid r \text { is generated) } \\
& \quad=\frac{1}{|R|} \frac{|S \ltimes\{r\}|}{M_{B}(S)} \frac{1}{|S \ltimes\{r\}|}=\frac{1}{|R| M_{B}(S)} \quad \begin{array}{l}
\text { Upper bound } \\
\text { for }|R \bowtie S|
\end{array}
\end{aligned}
$$

A general framework for sampling [ZCLHY18]

Consider the join query $R_{1}\left[A_{1}, A_{2}\right] \bowtie R_{2}\left[A_{2}, A_{3}\right] \bowtie \cdots \bowtie$ $R_{n}\left[A_{n}, A_{n+1}\right]$

Given $t \in R_{i}$, define

$$
w(t)=\left|\{t\} \bowtie R_{i+1} \bowtie \cdots \bowtie R_{n}\right|
$$

Besides, let

$$
w(R)=\sum_{t \in R} w(t)
$$

A general framework for sampling [ZCLHY18]

For each $t \in R_{i}$, we have that $w(t)=w\left(R_{i+1} \ltimes\{t\}\right)$

$$
\begin{aligned}
w(t) & =\left|\{t\} \bowtie R_{i+1} \bowtie r_{i+1} \bowtie \cdots \bowtie R_{n}\right| \\
& =\sum_{t^{\prime} \in R_{i+1}}\left|\{t\} \bowtie\left\{t^{\prime}\right\} \bowtie R_{i+2} \cdots \bowtie R_{n}\right| \\
& =\sum_{t^{\prime} \in R_{i+1}: t \sim t^{\prime}}\left|\{t\} \bowtie\left\{t^{\prime}\right\} \bowtie R_{i+2} \cdots \bowtie R_{n}\right| \\
& =\sum_{t^{\prime} \in R_{i+1}: t \sim t^{\prime}}\left|\left\{t^{\prime}\right\} \bowtie R_{i+2} \cdots \bowtie R_{n}\right| \\
& =\sum_{t^{\prime} \in R_{i+1} \ltimes\{t\}} w\left(t^{\prime}\right)=w\left(R_{i+1} \ltimes\{t\}\right)
\end{aligned}
$$

A general framework for sampling [ZCLHY18]

We do not have access to the values $w(t)$ when sampling, but instead we have some approximations of them

Assume given an approximation W of w that satisfies the following properties

$$
\begin{aligned}
& \text { 1. } W(t) \geq w(t) \\
& \text { 2. } W(t)=w(t)=1 \text { for each } t \in R_{n} \\
& \text { 3. } W(t) \geq W\left(R_{i+1} \ltimes\{t\}\right) \text { for each } t \in R_{i}
\end{aligned}
$$

A general framework for sampling [ZCLHY18]

To produce a sample, do the following:

1. Generate $r_{1} \in R_{1}$ with probability $\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)}$
2. For $i=2$ to n :
2.1. Reject with probability $1-\frac{W\left(R_{i} \ltimes\left\{r_{i-1}\right\}\right)}{W\left(r_{i-1}\right)}$
2.2. Generate $r_{i} \in R_{i} \ltimes\left\{r_{i-1}\right\}$ with probability $\frac{W\left(r_{i}\right)}{W\left(R_{i} \ltimes\left\{r_{i-1}\right\}\right)}$
3. Return $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)$
$=\operatorname{Pr}\left(r_{1}\right.$ is generated $) \operatorname{Pr}\left(r_{2}\right.$ is generated $\mid r_{1}$ is generated $)$

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)$
$=\operatorname{Pr}\left(r_{1}\right.$ is generated $) \operatorname{Pr}\left(r_{2}\right.$ is generated $\mid r_{1}$ is generated $)$
$=\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)}$.

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)$
$=\operatorname{Pr}\left(r_{1}\right.$ is generated $) \operatorname{Pr}\left(r_{2}\right.$ is generated $\mid r_{1}$ is generated $)$

$$
=\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)} .
$$

1. Generate $r_{1} \in R_{1}$ with probability $\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)}$

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)$
$=\operatorname{Pr}\left(r_{1}\right.$ is generated $) \operatorname{Pr}\left(r_{2}\right.$ is generated $\mid r_{1}$ is generated $)$

$$
=\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)} \cdot \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}\right)} .
$$

2.1. Reject with probability $1-\frac{W\left(R_{i} \times\left\{r_{i-1}\right\}\right)}{W\left(r_{i-1}\right)}$

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)$
$=\operatorname{Pr}\left(r_{1}\right.$ is generated $) \operatorname{Pr}\left(r_{2}\right.$ is generated $\mid r_{1}$ is generated $)$

$$
=\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)} \cdot \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}\right)} \cdot \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}
$$

2.2. Generate $r_{i} \in R_{i} \ltimes\left\{r_{i-1}\right\}$ with probability $\frac{W\left(r_{i}\right)}{W\left(R_{i} \ltimes\left\{r_{i-1}\right\}\right.}$

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)$
$=\operatorname{Pr}\left(r_{1}\right.$ is generated $) \operatorname{Pr}\left(r_{2}\right.$ is generated $\mid r_{1}$ is generated $)$

$$
=\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)} \cdot \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}\right)} \cdot \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}=\frac{W\left(r_{2}\right)}{W\left(R_{1}\right)}
$$

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly

$$
\operatorname{Pr}\left(\left(r_{1}, r_{2}, \ldots, r_{n}\right) \text { is generated }\right)=\frac{W\left(r_{n}\right)}{W\left(R_{1}\right)}
$$

A general framework for sampling [ZCLHY18]

The tuples in the join are generated uniformly

$$
\operatorname{Pr}\left(\left(r_{1}, r_{2}, \ldots, r_{n}\right) \text { is generated }\right)=\frac{W\left(r_{n}\right)}{W\left(R_{1}\right)}=\frac{1}{W\left(R_{1}\right)}
$$

A generalization of the idea of [093]

Assume that:

$$
\begin{aligned}
& W\left(r_{1}\right)=M_{A_{2}}\left(R_{2}\right) \text { for each } r_{1} \in R_{1} \\
& W\left(r_{2}\right)=1 \text { for each } r_{2} \in R_{2}
\end{aligned}
$$

A generalization of the idea of [093]

Then: $\quad W\left(R_{1}\right)=\sum_{t \in R_{1}} W(t)=\sum_{t \in R_{1}} M_{A_{2}}\left(R_{2}\right)=\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)$

$$
W\left(R_{2}\right)=\sum_{t \in R_{2}} W(t)=\sum_{t \in R_{2}} 1=\left|R_{2}\right|
$$

Therefore:
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)=\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)} \cdot \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}\right)} \cdot \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}$

A generalization of the idea of [093]

Then: $\quad W\left(R_{1}\right)=\sum_{t \in R_{1}} W(t)=\sum_{t \in R_{1}} M_{A_{2}}\left(R_{2}\right)=\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)$

$$
W\left(R_{2}\right)=\sum_{t \in R_{2}} W(t)=\sum_{t \in R_{2}} 1=\left|R_{2}\right|
$$

Therefore:
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)=\frac{M_{A_{2}}\left(R_{2}\right)}{W\left(R_{1}\right)} \cdot \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{M_{A_{2}}\left(R_{2}\right)} \cdot \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}$

A generalization of the idea of [093]

Then: $\quad W\left(R_{1}\right)=\sum_{t \in R_{1}} W(t)=\sum_{t \in R_{1}} M_{A_{2}}\left(R_{2}\right)=\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)$

$$
W\left(R_{2}\right)=\sum_{t \in R_{2}} W(t)=\sum_{t \in R_{2}} 1=\left|R_{2}\right|
$$

Therefore:
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)=\frac{M_{A_{2}}\left(R_{2}\right)}{\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)} \cdot \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{M_{A_{2}}\left(R_{2}\right)} \cdot \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right.}$

A generalization of the idea of [093]

Then: $\quad W\left(R_{1}\right)=\sum_{t \in R_{1}} W(t)=\sum_{t \in R_{1}} M_{A_{2}}\left(R_{2}\right)=\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)$

$$
W\left(R_{2}\right)=\sum_{t \in R_{2}} W(t)=\sum_{t \in R_{2}} 1=\left|R_{2}\right|
$$

Therefore:
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)=\frac{M_{A_{2}}\left(R_{2}\right)}{\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)} \cdot \frac{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}{M_{A_{2}}\left(R_{2}\right)} \cdot \frac{W\left(r_{2}\right)}{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}$

A generalization of the idea of [093]

Then: $\quad W\left(R_{1}\right)=\sum_{t \in R_{1}} W(t)=\sum_{t \in R_{1}} M_{A_{2}}\left(R_{2}\right)=\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)$

$$
W\left(R_{2}\right)=\sum_{t \in R_{2}} W(t)=\sum_{t \in R_{2}} 1=\left|R_{2}\right|
$$

Therefore:
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)=\frac{M_{A_{2}}\left(R_{2}\right)}{\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)} \cdot \frac{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}{M_{A_{2}}\left(R_{2}\right)} \cdot \frac{1}{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}$

A generalization of the idea of [093]

Then: $\quad W\left(R_{1}\right)=\sum_{t \in R_{1}} W(t)=\sum_{t \in R_{1}} M_{A_{2}}\left(R_{2}\right)=\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)$

$$
W\left(R_{2}\right)=\sum_{t \in R_{2}} W(t)=\sum_{t \in R_{2}} 1=\left|R_{2}\right|
$$

Therefore:
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)=\frac{1}{\left|R_{1}\right|} \cdot \frac{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}{M_{A_{2}}\left(R_{2}\right)} \cdot \frac{1}{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}$

A generalization of the idea of [093]

Then: $\quad W\left(R_{1}\right)=\sum_{t \in R_{1}} W(t)=\sum_{t \in R_{1}} M_{A_{2}}\left(R_{2}\right)=\left|R_{1}\right| M_{A_{2}}\left(R_{2}\right)$

$$
W\left(R_{2}\right)=\sum_{t \in R_{2}} W(t)=\sum_{t \in R_{2}} 1=\left|R_{2}\right|
$$

Therefore:
$\operatorname{Pr}\left(\left(r_{1}, r_{2}\right)\right.$ is generated $)=\frac{1}{\left|R_{1}\right|} \cdot \frac{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}{M_{A_{2}}\left(R_{2}\right)} \cdot \frac{1}{\left|R_{2} \ltimes\left\{r_{1}\right\}\right|}=\frac{1}{\left|R_{1}\right| M_{A_{2}}(F}$

We can use better bounds

Define W as:

- $W(t)=\operatorname{AGM}\left(R_{i+1} \bowtie \cdots \bowtie R_{n}\right)$ for every $t \in R_{i}$ with $1 \leq i<n$
- $W(t)=1$ for every $t \in R_{n}$
W satisfies the three properties

Sampling in the acyclic

case

Consider an acyclic join query $R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{n}$

Fix a join tree for this query

- $R_{i} \prec R_{j}$ indicates that R_{i} is an ancestor of R_{j} in this tree

Sampling in the acyclic

case

Given $t \in R_{i}$, define

$$
w(t)=\left|\{t\} \bowtie\left(\underset{R_{j}: R_{i} \prec R_{j}}{\bowtie} R_{j}\right)\right|
$$

Besides, if R_{j} is a child of R_{i} :

$$
w\left(t, R_{j}\right)=\left|\{t\} \bowtie R_{j} \bowtie\left(\underset{R_{k}: R_{j} \prec R_{k}}{\bowtie} R_{k}\right)\right|
$$

Sampling in the acyclic

case

Assume given an approximation W of w that satisfies the following properties

1. $W(t) \geq w(t)$
2. $W\left(t, R_{j}\right) \geq w\left(t, R_{j}\right)$ if $t \in R_{i}$ and R_{j} is a child of R_{i}
3. $W(t)=w(t)=1$ if $t \in R_{i}$ and R_{i} is a leaf
4. $W(t) \geq W\left(t, R_{k_{1}}\right) \cdot W\left(t, R_{k_{2}}\right) \cdot \ldots \cdot W\left(t, R_{k_{\ell}}\right)$ if $t \in R_{i}$ and the children of R_{i} are $R_{k_{1}}, R_{k_{2}}, \ldots, R_{k_{\ell}}$
5. $W\left(t, R_{j}\right) \geq W\left(R_{j} \ltimes\{t\}\right)$ if $t \in R_{i}$ and R_{j} is a child of R_{i}

Sampling in the acyclic

case

Sample with probability: $\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)}$
Reject with probability: $1-\frac{W\left(r_{1}, R_{2}\right) W\left(r_{1}, R_{3}\right)}{W\left(r_{1}\right)}$

Reject with probability: $\quad 1-\frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}, R_{2}\right)}$
$1-\frac{W\left(R_{3} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}, R_{3}\right)}$
Sample with probability: $\quad \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}$

$$
\frac{W\left(r_{3}\right)}{W\left(R_{3} \ltimes\left\{r_{1}\right\}\right)}
$$

Sampling in the acyclic

case

Sample with probability: $\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)}$
Accept with probability: $\frac{W\left(r_{1}, R_{2}\right) W\left(r_{1}, R_{3}\right)}{W\left(r_{1}\right)}$

Accept with probability: $\quad \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}, R_{2}\right)}$
Sample with probability: $\quad \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}$

Sampling in the acyclic

case

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(r_{1}, r_{2}, r_{3}\right) \text { is generated }\right)= \\
& =\frac{W\left(r_{1}\right)}{W\left(R_{1}\right)} \cdot \frac{W\left(r_{1}, R_{2}\right) W\left(r_{1}, R_{3}\right)}{W\left(r_{1}\right)} \cdot \frac{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}, R_{2}\right)} \cdot \frac{W\left(r_{2}\right)}{W\left(R_{2} \ltimes\left\{r_{1}\right\}\right)} \cdot \frac{W\left(R_{3} \ltimes\left\{r_{1}\right\}\right)}{W\left(r_{1}, R_{3}\right)} \cdot \frac{W\left(r_{3}\right)}{W\left(R_{3} \ltimes\left\{r_{1}\right\}\right)} \\
& =\frac{W\left(r_{2}\right) W\left(r_{3}\right)}{W\left(R_{1}\right)} \\
& =\frac{1}{W\left(R_{1}\right)}
\end{aligned}
$$

Sampling in the cyclic case

Consider the join query $Q=R_{1} \bowtie R_{2} \bowtie \cdots \bowtie R_{n}$

Split Q into join queries $Q_{\text {acyclic }}$ and $Q_{\text {rest }}$ such that $Q=Q_{\text {acyclic }} \bowtie Q_{\text {rest }}$

- Assume that $\left\{A_{1}, \ldots, A_{k}\right\}$ is the set of attributes that queries $Q_{\text {acyclic }}$ and $Q_{\text {rest }}$ have in common

Sampling in the cyclic case

Let

$$
M_{\mathrm{rest}}=\max _{\left(v_{1}, \ldots, v_{k}\right) \in \operatorname{dom}\left(A_{1}\right) \times \cdots \times \operatorname{dom}\left(A_{k}\right)}\left|\left\{t \in Q_{\text {rest }} \mid \forall i \in\{1, \ldots, k\}: t\left[A_{i}\right]=v_{i}\right\}\right|
$$

To produce a sample do the following:

1. Use the sample algorithm for the acyclic case to generate a tuple $t \in Q_{\text {acyclic }}$
2. Reject with probability

$$
1-\frac{\left|Q_{\text {rest }} \ltimes\{t\}\right|}{M_{\text {rest }}}
$$

3. Generate uniformly at random $t^{\prime} \in Q_{\text {rest }}$
4. Return $\left(t, t^{\prime}\right)$

Sampling in the cyclic case

The tuples in the join are generated uniformly
$\operatorname{Pr}\left(\left(t, t^{\prime}\right)\right.$ is generated $)$

$$
\begin{aligned}
& =\operatorname{Pr}(t \text { is generated }) \operatorname{Pr}\left(t^{\prime} \text { is generated } \mid t \text { is generated }\right) \\
= & \frac{1}{W\left(R_{1}\right)} \cdot \frac{\left|Q_{\mathrm{rest}} \ltimes\{t\}\right|}{M_{\mathrm{rest}}} \cdot \frac{1}{\left|Q_{\mathrm{rest}} \ltimes\{t\}\right|}=\frac{1}{W\left(R_{1}\right) M_{\mathrm{rest}}}
\end{aligned}
$$

Estimation of cardinality and aggregates

Properties of estimators

Bias of an estimator $\hat{\theta}$ relative to θ is defined as
$\operatorname{Bias}(\hat{\theta}, \theta)=E[\hat{\theta}]-\theta$

- $\hat{\theta}$ is unbiased if $\operatorname{Bias}(\hat{\theta}, \theta)=0$
$\hat{\theta}_{n}$ is consistent if $\hat{\theta}_{n} \xrightarrow{p} \theta$
- For every $\varepsilon>0$: $\quad \lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\hat{\theta}_{n}-\theta\right|>\varepsilon\right)=0$

We would like $\hat{\theta}_{n}$ to be computable in polynomial time in n

Confidence intervals

We would like to provide the following guarantee:

$$
\operatorname{Pr}(\theta \in[f(\hat{\theta}), g(\hat{\theta})]) \geq 1-\delta
$$

Which is usually translated into the following:

$$
\operatorname{Pr}\left(\theta \in\left[\hat{\theta}_{n}-\varepsilon(n), \hat{\theta}_{n}+\varepsilon(n)\right]\right) \geq 1-\delta
$$

Confidence intervals

Two fundamental tools to construct confidence intervals:

1. Central Limit Theorem

- The confidence interval depends on the convergence rate, so it would be an approximation if we consider a fixed value n
- A way to deal with this is to use the Berry-Esseen theorem, which gives a precise bound on the difference with the standard normal distribution

Confidence intervals

Two fundamental tools to construct confidence intervals:
2. Concentration inequalities: Chebyshev, Hoeffding, ...

- The bounds produced are not approximations, but they are looser

In both cases it is convenient to have a small variance

Confidence intervals

Chebyshev inequality:

$$
\operatorname{Pr}(|X-E[X]| \geq \varepsilon) \leq \frac{\operatorname{Var}[\hat{\theta}]}{\varepsilon^{2}}
$$

Assuming $\hat{\theta}$ is an unbiased estimator of θ, we can rewrite Chebyshev inequality as:

$$
\operatorname{Pr}(\theta \in(\hat{\theta}-\varepsilon, \hat{\theta}+\varepsilon)) \geq 1-\frac{\operatorname{Var}[\hat{\theta}]}{\varepsilon^{2}}
$$

Warming up [LWYZ16]

Consider the following SQL query Q over the schema $R[A, B]$:

$$
\operatorname{SUM}_{D}(R[A, B] \bowtie S[B, C] \bowtie T[C, D])
$$

We would like to construct an estimator for the answer to this query

Warming up [LWYZ16]

$R[A, B]$
$S[B, C]$
$T[C, D]$

t_{1}
t_{2}
r_{3}
s_{3}
t_{3}
t_{4}

Warming up [LWYZ16]

Warming up [LWYZ16]

Warming up [LWYZ16]

$R[A, B] \quad S[B, C] \quad T[C, D]$

Warming up [LWYZ16]

$\operatorname{Pr}\left(\left(r_{1}, s_{2}, t_{4}\right)\right.$ is generated $)=\frac{1}{18}$

$$
v\left(r_{1}, s_{2}, t_{4}\right)=t_{4}[D]
$$

Warming up [LWYZ16]

$\operatorname{Pr}\left(\left(r_{1}, s_{1}\right)\right.$ is generated $)=\frac{1}{6}$

$$
v\left(r_{1}, s_{1}\right)=0
$$

Warming up [LWYZ16]

How do we estimate $\mathrm{SUM}_{D}(R[A, B] \bowtie S[B, C] \bowtie T[C, D])$?

Given a path γ, define $X(\gamma)=v(\gamma)$

We can use X as an estimator

- But this is a biased estimator, as it does not consider that different paths can have different probabilities

How can we transform X into an unbiased estimator?

Warming up [LWYZ16]

Horvitz-Thompson idea:

$$
Y(\gamma)=\frac{v(\gamma)}{\operatorname{Pr}(\gamma \text { is generated })}
$$

Warming up [LWYZ16]

Horvitz-Thompson idea:

$$
Y(\gamma)=\frac{v(\gamma)}{\operatorname{Pr}(\gamma \text { is generated })}
$$

Y is unbiased:

$$
\begin{aligned}
E[Y] & =\sum_{\gamma} \operatorname{Pr}(\gamma \text { is generated }) \cdot Y(\gamma) \\
& =\sum_{\gamma} \operatorname{Pr}(\gamma \text { is generated }) \cdot \frac{v(\gamma)}{\operatorname{Pr}(\gamma \text { is generated })} \\
& =\sum_{\gamma} v(\gamma)
\end{aligned}
$$

The Horvitz-Thompson estimator [HT52,T12]

Suppose that we have a list of values $\left(v_{1}, \ldots, v_{N}\right)$, and we need to estimate:

$$
\tau=\sum_{i=1}^{N} v_{i}
$$

To do this estimation, we construct a sample of size n of elements from $\{1, \ldots, N\}$

- With or without replacement

The Horvitz-Thompson estimator [HT52,T12]

X_{i} : number of times element $i \in\{1, \ldots, N\}$ appears in the sample

- If we sample without replacement, then X_{i} can be 0 or 1

Let $\pi_{i}=E\left[X_{i}\right]$

The Horvitz-Thompson estimator [HT52,T12]

The Horvitz-Thompson (HT) estimator of τ :

$$
\begin{aligned}
& Y=\sum_{i=1}^{N} \frac{X_{i} v_{i}}{\pi_{i}}=\sum_{i \in \text { sample }} \frac{X_{i} v_{i}}{\pi_{i}} \\
& \text { inverse weighting }
\end{aligned}
$$

The Horvitz-Thompson estimator [HT52,T12]

The Horvitz-Thompson (HT) estimator of τ :

$$
Y=\sum_{i=1}^{N} \frac{X_{i} v_{i}}{\pi_{i}}=\sum_{i \in \mathrm{sample}} \frac{X_{i} v_{i}}{\pi_{i}}
$$

HT is unbiased:

$$
E[Y]=E\left[\sum_{i=1}^{N} \frac{X_{i} v_{i}}{\pi_{i}}\right]=\sum_{i=1}^{N} \frac{E\left[X_{i}\right] v_{i}}{\pi_{i}}=\sum_{i=1}^{N} \frac{\pi_{i} v_{i}}{\pi_{i}}=\tau
$$

An example of HT

We sample uniformly with replacemenet: $p=\frac{1}{N}$

We can think of X_{i} as

$$
X_{i}=\sum_{k=1}^{n} Z_{i, k}
$$

where $Z_{i, k}$ is 1 if i is the k-th element sampled, and 0 otherwise
$X_{i} \sim \operatorname{Binomial}(n, p)$ since each $Z_{i, k} \sim \operatorname{Bernoulli}(p)$ and these random variables are mutually independent

An example of HT

$$
\pi_{i}=E\left[X_{i}\right]=n p
$$

An example of HT

$$
\pi_{i}=E\left[X_{i}\right]=n p
$$

HT estimator in this case:

$$
Y=\sum_{i=1}^{N} \frac{X_{i} v_{i}}{\pi_{i}}=\sum_{i=1}^{N} \frac{X_{i} v_{i}}{n p}=\frac{N}{n} \sum_{i \in \text { sample }} X_{i} v_{i}
$$

What is the variance of HT?

$$
\text { Let } \pi_{i, j}=E\left[X_{i} X_{j}\right]
$$

$E\left[X_{i} X_{j}\right]$ is not necessarily equal to $E\left[X_{i}\right] E\left[X_{j}\right]$

- X_{i} and X_{j} are not independent random variables since $X_{1}+\cdots+X_{N}=n$

What is the variance of HT?

$$
\begin{aligned}
\sigma^{2}(Y) & =E\left[Y^{2}\right]-E[Y]^{2}=E\left[\left(\sum_{i=1}^{N} \frac{X_{i} v_{i}}{\pi_{i}}\right)^{2}\right]-\tau^{2} \\
& =E\left[\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{X_{i} X_{j}}{\pi_{i} \pi_{j}} v_{i} v_{j}\right]-\left(\sum_{i=1}^{N} v_{i}\right)^{2} \\
& =\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{E\left[X_{i} X_{j}\right]}{\pi_{i} \pi_{j}} v_{i} v_{j}-\sum_{i=1}^{N} \sum_{j=1}^{N} v_{i} v_{j} \\
& =\sum_{i=1}^{N} \sum_{j=1}^{N}\left(\frac{\pi_{i, j}}{\pi_{i} \pi_{j}}-1\right) v_{i} v_{j}
\end{aligned}
$$

But an estimation of $\sigma^{2}(Y)$ is usually needed in practice

How do we estimate $\sigma^{2}(Y)$? We use HT again!

Define $X_{i, j}=X_{i} X_{j}$ and

$$
v_{i, j}=\left(\frac{\pi_{i, j}}{\pi_{i} \pi_{j}}-1\right) v_{i} v_{j}
$$

We have that

$$
\sigma^{2}(Y)=\sum_{(i, j) \in\{1, \ldots, N\} \times\{1, \ldots, N\}} v_{i, j}
$$

But an estimation of $\sigma^{2}(Y)$ is usually needed in practice

The HT estimator of $\sigma^{2}(Y)$ is

$$
\hat{\sigma}^{2}(Y)=\sum_{(i, j) \in\{1, \ldots, N\} \times\{1, \ldots, N\}} \frac{X_{i, j} v_{i, j}}{\pi_{i, j}},
$$

given that $E\left[X_{i, j}\right]=E\left[X_{i} X_{j}\right]=\pi_{i, j}$

But an estimation of $\sigma^{2}(Y)$ is usually needed in practice

Replacing the values of $v_{i, j}$, we obtain:

$$
\hat{\sigma}^{2}(Y)=\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{X_{i} X_{j}}{\pi_{i, j}}\left(\frac{\pi_{i, j}}{\pi_{i} \pi_{j}}-1\right) v_{i} v_{j}=\sum_{i, j \in \text { sample }} \frac{X_{i} X_{j}}{\pi_{i, j}}\left(\frac{\pi_{i, j}}{\pi_{i} \pi_{j}}-1\right) v_{i} v_{j}
$$

Horvitz-Thompson estimators

The idea behind the HT estimator can be used to define unbiased estimators in many different escenarios

In this sense, we can talk about a family of HT estimators

Estimation in databases

Let's put what we learned into practice [CGHJ12]

Consider the following SQL query Q over the schema $R[A, B]$:

$$
\operatorname{SUM}_{B}(R[A, B])
$$

The result $Q(R)$ of this query is $\sum_{r \in R} r[B]$, so we need an estimator for this amount

Simple random sampling with replacement (SRSWR)

To produce the sample repeat n times the following steps:

1. Generate uniformly at random $r \in R$
2. Add r to the sample

Simple random sampling with replacement (SRSWR)

X_{r} : number of times tuple r appears in the sample

$$
\pi_{r}=E\left[X_{r}\right]=\frac{n}{|R|}
$$

The HT estimator of $Q(R)$:

$$
Y=\sum_{r \in R} \frac{X_{r} \cdot r[B]}{\pi_{r}}=\frac{|R|}{n} \sum_{r \in \text { sample }} X_{r} \cdot r[B]
$$

The variance for SRSWR

For $i \in\{1, \ldots, n\}$, let W_{i} be a random variable such that for each possible value v of attribute B :

$$
\operatorname{Pr}\left(W_{i}=v\right)=\frac{|\{r \in R \mid r[B]=v\}|}{|R|}
$$

We have that:

$$
Y=\frac{|R|}{n} \sum_{r \in \text { sample }} X_{r} \cdot r[B]=\frac{|R|}{n} \sum_{i=1}^{n} W_{i}
$$

The variance for SRSWR

$$
E\left[W_{i}\right]=\sum_{v} v \cdot \operatorname{Pr}\left(W_{i}=v\right)=\frac{1}{|R|} \sum_{v} v \cdot|\{r \in R \mid r[B]=v\}|=\frac{Q(R)}{|R|}
$$

The variance for SRSWR

$$
E\left[W_{i}\right]=\sum_{v} v \cdot \operatorname{Pr}\left(W_{i}=v\right)=\frac{1}{|R|} \sum_{v} v \cdot|\{r \in R \mid r[B]=v\}|=\frac{Q(R)}{|R|}
$$

Random variables W_{i} are mutually independent:

$$
\sigma^{2}(Y)=\sigma^{2}\left(\frac{|R|}{n} \sum_{i=1}^{N} W_{i}\right)=\frac{|R|^{2}}{n^{2}} \sum_{i=1}^{N} \sigma^{2}\left(W_{i}\right)
$$

The variance for SRSWR

$$
E\left[W_{i}\right]=\sum_{v} v \cdot \operatorname{Pr}\left(W_{i}=v\right)=\frac{1}{|R|} \sum_{v} v \cdot|\{r \in R \mid r[B]=v\}|=\frac{Q(R)}{|R|}
$$

We have that:
$\sigma^{2}\left(W_{i}\right)=E\left[\left(W_{i}-E\left[W_{i}\right]\right)^{2}\right]=\sum_{r \in R} \frac{1}{|R|}\left(r[B]-\frac{Q(R)}{|R|}\right)^{2}=\sigma^{2}(R)$

We conclude that:

$$
\sigma^{2}(Y)=\frac{|R|^{2}}{n^{2}} \sum_{i=1}^{n} \sigma^{2}\left(W_{i}\right)=\frac{|R|^{2}}{n^{2}} \sum_{i=1}^{n} \sigma^{2}(R)=\frac{|R|^{2} \sigma^{2}(R)}{n}
$$

Simple random sampling without replacement (SRSWoR)

To produce the sample repeat n times the following steps:

1. Generate uniformly at random $r \in R$
2. Add r to the sample and remove it from R

Simple random sampling without replacement (SRSWoR)

X_{r} : number of times tuple r appears in the sample, which can be 0 or 1
$X_{r} \sim \operatorname{Bernoulli}(p)$, where p is the following probability

Assume that s_{k} is the k-th element sampled, so that:

$$
p=\operatorname{Pr}\left(X_{r}=1\right)=\operatorname{Pr}\left(\bigvee_{i=1}^{n} s_{i}=r\right)
$$

Simple random sampling without replacement (SRSWoR)

$$
\begin{aligned}
\operatorname{Pr}\left(\bigvee_{i=1}^{n} s_{i}=r\right) & =\operatorname{Pr}\left(\bigvee_{i=1}^{n}\left[s_{i}=r \wedge \bigwedge_{j=1}^{i-1} s_{j} \neq r\right]\right) \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(s_{i}=r \wedge \bigwedge_{j=1}^{i-1} s_{j} \neq r\right) \\
& =\sum_{i=1}^{n} \frac{\binom{|R|-1}{i-1}}{\binom{|R|}{i-1}} \cdot \frac{1}{|R|-(i-1)} \\
& =\sum_{i=1}^{n} \frac{|R|-(i-1)}{|R|} \cdot \frac{1}{|R|-(i-1)}=\frac{n}{|R|}
\end{aligned}
$$

Simple random sampling without replacement (SRSWoR)

$$
\pi_{r}=E\left[X_{r}\right]=\frac{n}{|R|}
$$

The HT estimator of $Q(R)$:

$$
Y=\sum_{r \in R} \frac{X_{r} \cdot r[B]}{\pi_{r}}=\frac{|R|}{n} \sum_{r \in \text { sample }} X_{r} \cdot r[B]=\frac{|R|}{n} \sum_{r \in \text { sample }} r[B]
$$

This is a similar estimator to the one for the case with replacement. But what is the variance of Y ?

The variance for SRSWoR

The variance is lower than for the case of SRSWR:

$$
\sigma^{2}(Y)=\frac{|R|(|R|-n) \sigma^{2}(R)}{n}
$$

A second group of estimators [VMZC15,HYPM19]

Now consider the following SQL query Q over the schema $R[A, B], S[B, C]$:

$$
\operatorname{SUM}_{C}(R[A, B] \bowtie S[B, C])
$$

Bernoulli sampling: first alternative

To produce the sample do the following for each $(r, s) \in R \times S$:

1. Generate uniformly at random $x \in[0,1]$
2. If $x \leq p$, then add (r, s) to the sample

Bernoulli sampling: first alternative

$X_{r, s}$: number of times $(r, s) \in R \times S$ appears in the sample

- $X_{r, s} \sim \operatorname{Bernoulli}(p)$, so that $\pi_{r, s}=E\left[X_{r, s}\right]=p$

HT estimator of $Q(R, S)$:

$$
Y=\sum_{(r, s) \in R \times S} \frac{X_{r, s} \cdot v_{r, s}}{\pi_{r, s}}=\frac{1}{p} \sum_{r \in \text { sample }} v_{r, s}
$$

But how is $v_{r, s}$ defined? It cannot always be $s[C]$

- $v_{r, s}=s[C]$ if $r \sim s$, and $v_{(r, s)}=0$ otherwise

Bernoulli sampling: first alternative

The random variables $X_{r, s}$ are mutually independent, so $\sigma^{2}(Y)$ is easy to compute

But we have a problem: the loop considers all the tuples, so we could just compute the exact answer to the query

How do we solve this problem?

Independent Bernoulli sampling

sample $_{R}$

sample $_{S}$
sample $=\operatorname{sample}_{R} \bowtie \operatorname{sample}_{S}$

Independent Bernoulli sampling

To produce the sample do the following:

1. For each $r \in R$, generate uniformly at random $x \in[0,1]$, and add r to $\operatorname{sample}_{R}$ if $x \leq p_{R}$
2. For each $s \in S$, generate uniformly at random $x \in[0,1]$, and add s to sample $_{S}$ if $x \leq p_{S}$
3. Let sample $=\operatorname{sample}_{R} \bowtie$ sample $_{S}$

Independent Bernoulli sampling

$X_{r, s}$ and $v_{r, s}$ are defined as before

- $X_{r, s} \sim \operatorname{Bernoulli}\left(p_{R} p_{S}\right)$, so that $\pi_{r, s}=E\left[X_{r, s}\right]=p_{R} p_{S}$

HT estimator of $Q(R, S)$:

$$
Y=\sum_{(r, s) \in R \times S} \frac{X_{r, s} \cdot v_{r, s}}{\pi_{r, s}}=\frac{1}{p_{R} p_{S}} \sum_{r \in \text { sample }} v_{r, s}
$$

The variance of

 independent Bernoulli

 independent Bernoulli sampling

Random variables $X_{r, s}$ are not mutually independent

- If $s \neq s^{\prime}$, then $\operatorname{Pr}\left(X_{r, s^{\prime}}=1 \mid X_{r, s}=1\right)=p_{S} \neq \operatorname{Pr}\left(X_{r, s^{\prime}}=\right.$ 1)

The variance of
 independent Bernoulli sampling

We have that:

$$
\begin{aligned}
\operatorname{Var}[Y]= & \sum_{(r, s) \in R \times S}\left(\frac{1}{p_{R} p_{S}}-1\right) v_{r, s}^{2}+ \\
& \sum_{r \in R} \sum_{s_{1}, s_{2} \in S: s_{1} \neq s_{2}}\left(\frac{1}{p_{R}}-1\right) v_{r, s_{1}} v_{r, s_{2}}+ \\
& \sum_{r_{1}, r_{2} \in R: r_{1} \neq r_{2}} \sum_{s \in S}\left(\frac{1}{p_{S}}-1\right) v_{r_{1}, s} v_{r_{2}, s}
\end{aligned}
$$

The variance of

independent Bernoulli sampling

And we also have a simple HT estimator of the variance:

$$
\begin{aligned}
\hat{\operatorname{Var}[Y]=} & \sum_{(r, s) \in R \times S} \frac{X_{r} X_{s}}{p_{R} p_{S}}\left(\frac{1}{p_{R} p_{S}}-1\right) v_{r, s}^{2}+ \\
& \sum_{r \in R} \sum_{s_{1}, s_{2} \in S: s_{1} \neq s_{2}} \frac{X_{r} X_{s}}{p_{R} p_{S}}\left(\frac{1}{p_{R}}-1\right) v_{r, s_{1}} v_{r, s_{2}}+ \\
& \sum_{r_{1}, r_{2} \in R: r_{1} \neq r_{2}} \sum_{s \in S} \frac{X_{r} X_{s}}{p_{R} p_{S}}\left(\frac{1}{p_{S}}-1\right) v_{r_{1}, s} v_{r_{2}, s}
\end{aligned}
$$

The variance of
 independent Bernoulli sampling

And we also have a simple HT estimator of the variance:

$$
\begin{aligned}
\hat{\operatorname{Var}[Y]=} & \sum_{r \in \mathrm{sample}_{R}} \sum_{s \in \mathrm{sample}_{S}} \frac{X_{r} X_{s}}{p_{R} p_{S}}\left(\frac{1}{p_{R} p_{S}}-1\right) v_{r, s}^{2}+ \\
& \sum_{r \in \text { sample }_{R}} \sum_{s_{1}, s_{2} \in r \in \text { sample }_{S}:} \frac{X_{r} X_{1} \neq s_{2}}{p_{R} p_{S}}\left(\frac{1}{p_{R}}-1\right) v_{r, s_{1}} v_{r, s_{2}}+ \\
& \sum_{r_{1}, r_{2} \in r \in \text { sample }_{R}:} \sum_{r_{1} \neq r_{2}} \frac{X_{r} X_{s}}{p_{R} p_{S}}\left(\frac{1}{p_{S}}-1\right) v_{r_{1}, s} v_{r_{2}, s}
\end{aligned}
$$

Join size estimation

Consider the schema $R[A, B], S[B, C]$

We can reuse the techniques presented in the previous slides to estimate $|R \bowtie S|$

If we add a column aux to S with value 1 in each tuple, then estimating $|R \bowtie S|$ corresponds to the problem of estimating the answer to the following SQL query:

$$
\mathrm{SUM}_{a u x}(R[A, B] \bowtie S[B, C, a u x])
$$

Universe sampling [VMZC15]

sample $_{R}$

sample $_{S}$
sample $=\operatorname{sample}_{R} \bowtie \operatorname{sample}_{S}$

Universe sampling [VMZC15]

sample $=\operatorname{sample}_{R} \bowtie \operatorname{sample}_{S}$

Universe sampling [VMZC15]

Assume given a (perfect) hash function h : $\operatorname{dom}(B) \rightarrow[0,1]$

To produce the sample do the following:

1. For each $r \in R$, if $h(r[B]) \leq p$, then add r to sample $_{R}$
2. For each $s \in S$, if $h(s[B]) \leq p$, then add s to sample $_{S}$
3. Let sample $=$ sample $_{R} \bowtie$ sample $_{S}$

Universe sampling [VMZC15]

$X_{r, s}$: number of times (r, s) appears in the sample

- $X_{r, s} \sim \operatorname{Bernoulli}(p)$, so that $\pi_{r, s}=E\left[X_{r, s}\right]=p$

HT estimator of $Q(R, S)$:

$$
Y=\sum_{r \in R} \sum_{s \in S} \frac{X_{r, s} \cdot v_{r, s}}{\pi_{r, s}}=\frac{1}{p} \sum_{r \in \text { sample }_{R}} \sum_{s \in \text { sample }_{S}} v_{r, s}
$$

where $v_{r, s}=1$ if $r \sim s$, and $v_{r, s}=0$ otherwise

The variance of universe sampling

Random variables $X_{r, s}$ are not mutually independent

- If $s \neq s^{\prime}$ and $s[B]=s^{\prime}[B]$, then $\operatorname{Pr}\left(X_{r, s^{\prime}}=1 \mid X_{r, s}=1\right)=1$

The variance of universe sampling

But the variance of Y can be computed considered the following representation of this random variable

For $v \in \operatorname{dom}(B)$, let

$$
\begin{aligned}
& N_{R}(v)=|\{r \in R \mid r[B]=v\}| \\
& N_{S}(v)=|\{s \in S \mid s[B]=v\}|
\end{aligned}
$$

The variance of universe sampling

X_{v} : random variable such that $X_{v}=1$ if v is included as the value of attribute B for some tuple in the sample, and 0 otherwise

- $X_{v} \sim \operatorname{Bernoulli}(p)$

Then we can represent Y as the following HT estimator:

$$
Y=\sum_{v \in \operatorname{dom}(B)} \frac{X_{v} N_{R}(v) N_{S}(v)}{E\left[X_{v}\right]}=\frac{1}{p} \sum_{v \in \operatorname{dom}(B)} X_{v} N_{R}(v) N_{S}(v)
$$

The variance of universe sampling

Random variables X_{v} are mutually independent:

$$
\begin{aligned}
\operatorname{Var}[Y] & =\operatorname{Var}\left[\frac{1}{p} \sum_{v \in \operatorname{dom}(B)} X_{v} N_{R}(v) N_{S}(v)\right] \\
& =\frac{1}{p^{2}} \sum_{v \in \operatorname{dom}(B)} \operatorname{Var}\left[X_{v}\right] N_{R}^{2}(v) N_{S}^{2}(v) \\
& =\frac{1}{p^{2}} \sum_{v \in \operatorname{dom}(B)} p(1-p) N_{R}^{2}(v) N_{S}^{2}(v) \\
& =\left(\frac{1}{p}-1\right) \sum_{v \in \operatorname{dom}(B)} N_{R}^{2}(v) N_{S}^{2}(v)
\end{aligned}
$$

What about other operators?

The previous techniques can be easily extended to consider the selection operator

- We leave this as an exercise for the reader

But the inclusion of projection is more challenging

Part II: Adding projection

What is left?

We now consider the operators join, selection and projection

- We consider conjunctive queries

Our goal is to show how to do efficient cardinality estimation for acyclic conjunctive queries

$R[A, B] \bowtie S[A, C] \bowtie T[A, D] \bowtie U[C, E, F]$

$$
R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)
$$

$$
Q(x, y, z, u, v, w)=R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)
$$

$$
Q(x, y, z, u, v, w)=R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)
$$

$Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]$

$Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]$

$Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]$

The main ingredient in the solution: Tree automata

This is the right representation for the problem of counting the number of answers to an acyclic conjunctive query

Tree automata

Tree automata

Tree automata: (Q, Σ, Δ, I)

- $Q=\{p, q, r\}$ is the set of states
- $\Sigma=\{a, b\}$ is the alphabet
- $I=\{p\}$ is the set of initial states
- $\Delta=\{(p, a, q r),(q, b, \lambda),(r, a, q r)\}$ is the transition relation

Tree automata

Tree automata

Tree automata

Tree automata

$$
Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]
$$

Q^{\prime}	x	w
	4	6
4	7	
5	8	

R	x	y
	4	6
5	7	

T	x	u
	4	1
4	2	
4	3	
5	4	
5	5	

U	z	v	w
	1	3	6
1	4	7	
2	5	8	

Alphabet:

$R(4, \star)$	$S(4, \star)$	$T(4, \star)$	$U(\star, \star, 6)$
$R(5, \star)$	$S(5, \star)$	$T(5, \star)$	$U(\star, \star, 7)$
			$U(\star, \star, 8)$

	$R(4,6)$	$S(4,1)$			
States:	$R(5,7)$	$S(5,2)$	\ldots		$U(1,3,6)$
:---					

$$
Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]
$$

Q^{\prime}	x	w
4	6	
4	7	
5	8	

$\left.\begin{array}{l|ll}R & x & y \\ \hline 4 & 6 \\ 5 & 7\end{array} \quad \begin{array}{l|ll}S & x & z \\ 4 & 1 \\ 5 & 2 \\ 4 & 3\end{array} \quad \begin{array}{l|ll}T & x & u \\ 4 & 1 \\ 4 & 2 \\ 4 & 3 \\ 5 & 4 \\ 5 & 5\end{array}\right]$

U	z	v	w
	1	3	6
1	4	7	
2	5	8	

$$
Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]
$$

Q^{\prime}	x	w
4	6	
4	7	
5	8	

$\left.\begin{array}{l|ll}R & x & y \\ \hline 4 & 6 \\ 5 & 7\end{array} \quad \begin{array}{lll}S & x & z \\ 4 & 1 \\ 5 & 2 \\ 4 & 3\end{array}|\quad T| \begin{array}{ll}x & u \\ 4 & 1 \\ 4 & 2 \\ 4 & 3 \\ 5 & 4 \\ 5 & 5\end{array}\right]$

U	z	v	w
	1	3	6
1	4	7	
2	5	8	

$$
Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]
$$

Q^{\prime}	x	w
4	6	
4	7	
5	8	

R	x	y	S	x	z	T	x	u	U	z	v	w
					1			1		1	3	6
										1	4	7
										2	5	8

$$
Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]
$$

Q^{\prime}	x	w
4	6	
4	7	
5	8	

$$
(R(4,6), \quad R(4, \star), \quad S(4,1) T(4,3)) \quad R(4, \star) \quad R(4,6)
$$

$S(4 \bigcirc 1), \quad S(4, \star), \quad U(1,3,6))$ $(T(4,3), \quad T(4, \star), \quad \lambda)$

$$
U(\star, \star, 6)
$$

$$
Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]
$$

Q^{\prime}	x	w
4	6	
4	7	
5	8	

R	x	y	S	x	z	T	x	u	U	z	v	w
		6			1			1		1	3	6
				5	2					1	4	7
										2	5	8

$$
(R(4,6), \quad R(4, \star), S(4,1) T(4,3)) \quad R(4, \star) \quad R(4,6)
$$

$$
S(4,1), \quad S(4, \star), \quad U(1,3,6))
$$

$$
(T(4,3), T(4, \star), \lambda)
$$

$$
U(\star, \star, 6) \quad U(1,3,6)
$$

$$
(U(1,3,6), T(\star, \star, 6), \quad \lambda)
$$

$$
Q^{\prime}(x, w)=\exists y \exists z \exists u \exists v[R(x, y) \wedge S(x, z) \wedge T(x, u) \wedge U(z, v, w)]
$$

Q^{\prime}	x	w
4	6	
4	7	
5	8	

$\left.\begin{array}{c|ll}R & x & y \\ \hline 4 & 6 \\ 5 & 7\end{array} \quad \begin{array}{l|ll}S & x & z \\ 4 & 1 \\ 5 & 2 \\ 4 & 3\end{array} \quad \begin{array}{l|ll}T & x & u \\ 4 & 1 \\ 4 & 2 \\ 4 & 3 \\ 5 & 4 \\ 5 & 5\end{array}\right]$

U	z	v	w
	1	3	6
1	4	7	
2	5	8	

The problem to solve: count the number of trees with 4 nodes accepted by the tree automaton

The problem \#TA

A tree automaton (TA) T over the alphabet
Input: $\{0,1\}$ and a number n (given in unary)

Output:
Number of trees t such that $t \in L(T)$ and the number of nodes of t is n

What is the complexity of this problem?

A detour: graph databases

Graph databases

A query: (friend + knows)*

Two fundamental problems

- COUNT: count the number of paths p in G such that p conforms to regular expression r and the length of p is n
- GEN: generate uniformly at random a path p in G such that p conforms to r and the length of p is n

COUNT is a difficult problem

COUNT is \#P-complete

The decision version of the problem can be solved in polynomial time, so this problem could admit an FPRAS

The connection with \#TA

The problem \#NFA:
A non-deterministic finite automaton (NFA)
Input: A over the alphabet $\{0,1\}$ and a number n (given in unary)

Number of words w such that $w \in L(A)$
Output: and the length of w is n

The connection with \#TA

COUNT and \#NFA are polynomially equivalent under parsimonious reductions

- This implies that if an FPRAS exists for one of them, then it exists for the other
\#TA is \#P-complete
- The construction of an FPRAS for \#NFA seems to be a natural step to construct an FPRAS for \#TA

Existence of an FPRAS for \#NFA

How do we obtain such an approximation algorithm?

- We use the techniques learned in the previous part of the tutorial!

An FPRAS for \#NFA

> Input:

An NFA A over the alphabet $\{0,1\}$ and a number n (given in unary)

Number of words w such that $w \in L(A)$ and the Output: length of w is n

Assume that $L_{n}(A)=\{w \in L(A)| | w \mid=n\}$, so that the output of \#NFA is $\left|L_{n}(A)\right|$

An FPRAS for \#NFA

The input of the approximation algorithm: A, n and $\varepsilon \in$ $(0,1)$

The task is to compute a number N that is a (1 $\pm \varepsilon$)approximation of $\left|L_{n}(A)\right|$:

$$
\operatorname{Pr}\left((1-\varepsilon)\left|L_{n}(A)\right| \leq N \leq(1+\varepsilon)\left|L_{n}(A)\right|\right) \geq \frac{3}{4}
$$

Moreover, number N has to be computed in time $\operatorname{poly}\left(m, n, \frac{1}{\varepsilon}\right)$, where m is the number of states of A

An FPRAS for \#NFA

If we think of the approximation algorithm as an estimator \hat{N} for $\left|L_{n}(A)\right|$, then we need to construct the following confidence interval:

$$
\operatorname{Pr}\left(\left|L_{n}(A)\right| \in\left[\frac{\hat{N}}{1+\varepsilon}, \frac{\hat{N}}{1-\varepsilon}\right]\right) \geq \frac{3}{4}
$$

Constructing an FPRAS for \#NFA [ACJR21a]

Assume that $A=(Q,\{0,1\}, \Delta, I, F)$

- Q is a finite set of states
- $\Delta \subseteq Q \times\{0,1\} \times Q$ is the transition relation
- $I \subseteq Q$ is the set of initial states
- $F \subseteq Q$ is the set of final states

First component: unroll automaton A

Construct $A_{\text {unroll }}$ from A :

- for each state $q \in Q$, include copies $q_{0}, q_{1}, \ldots, q_{n}$ in
$A_{\text {unroll }}$
- for each transition $(p, a, q) \in \Delta$ and $i \in\{0,1, \ldots, n-1\}$, include transition (p_{i}, a, q_{i+1}) in $A_{\text {unroll }}$

Besides, eliminate from $A_{\text {unroll }}$ unnecessary states: each state q_{i} is reachable from an initial state $p_{0}(p \in I)$

Second component: a sketch to be used in the estimation

Define $L\left(q_{i}\right)$ as the set of strings w such that there is a path from an initial state p_{0} to q_{i} labeled with w

- Notice that $|w|=i$

Besides, define for every $X \subseteq Q$:

$$
L\left(X^{i}\right)=\bigcup_{q \in X} L\left(q^{i}\right)
$$

Then the task is to compute an estimation of $\left|L\left(F^{n}\right)\right|$

Second component: a sketch to be used in the estimation

From now assume that $m=|Q|$, and let

$$
\kappa=\left\lceil\frac{n m}{\varepsilon}\right\rceil
$$

We maintain for each state q_{i} :

- $N\left(q^{i}\right):$ a $\left(1 \pm \kappa^{-2}\right)^{i}$-approximation of $\left|L\left(q^{i}\right)\right|$
- $S\left(q^{i}\right)$: a multiset of uniform samples from $L\left(q^{i}\right)$ of size $2 \kappa^{7}$

Second component: a sketch to be used in the estimation

Data structure to be inductively computed: Sketch $[i]=\left\{N\left(q^{j}\right), S\left(q^{j}\right) \mid 0 \leq j \leq i\right.$ and $\left.q \in Q\right\}$

The algorithm template

1. Construct $A_{\text {unroll }}$ from A
2. For each state $q \in I$, set $N\left(q^{0}\right)=\left|L\left(q^{0}\right)\right|=1$ and
$S\left(q^{0}\right)=L\left(q^{0}\right)=\{\lambda\}$
3. For each $i \in\{0, \ldots, n-1\}$ and state $q \in Q$:
3.1. Compute $N\left(q_{i+1}\right)$ given $\operatorname{Sketch}[i]$
3.2. Sample polynomially many uniform elements from $L\left(q^{i+1}\right)$ using $N\left(q^{i+1}\right)$ and Sketch $[i]$, and let $S\left(q^{i+1}\right)$ be the multiset of uniform samples obtained
4. Return an estimation of $\left|L\left(F^{n}\right)\right|$ given Sketch $[n]$

Computing an estimation $N\left(F^{n}\right)$ of $\left|L\left(F^{n}\right)\right|$

We use notation $N\left(X^{i}\right)$ for an estimation $\left|L\left(X^{i}\right)\right|$
Such an estimation is not only needed in the last step of the algorithm, but also in the inductive construction of Sketch $[i]$:
3. For each $i \in\{0, \ldots, n-1\}$ and state $q \in Q$:
3.1. Compute $N\left(q_{i+1}\right)$ given $\operatorname{Sketch}[i]$
3.2. Sample polynomially many uniform elements from $L\left(q^{i+1}\right)$ using $N\left(q^{i+1}\right)$ and Sketch $[i]$, and let $S\left(q^{i+1}\right)$ be the multiset of uniform samples obtained

Computing an estimation $N\left(X^{i}\right)$ of $\left|L\left(X^{i}\right)\right|$

Recall that

$$
L\left(X^{i}\right)=\bigcup_{p \in X} L\left(p^{i}\right)
$$

Notice that $L\left(X^{i}\right)=\sum_{p \in X}\left|L\left(p^{i}\right)\right|$ is not true in general

But the following holds, given a linear order $<$ on Q :

$$
\left|L\left(X^{i}\right)\right|=\sum_{p \in X}\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|L\left(X^{i}\right)\right|$

We have that:

$$
\begin{aligned}
\left|L\left(X^{i}\right)\right| & =\sum_{p \in X}\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right| \\
& =\sum_{p \in X}\left|L\left(p^{i}\right)\right| \frac{\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\left|L\left(p^{i}\right)\right|}
\end{aligned}
$$

So we will use the following approximation:

$$
=\sum_{p \in X}\left|L\left(p^{i}\right)\right| \frac{\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\left|L\left(p^{i}\right)\right|}
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|L\left(X^{i}\right)\right|$

We have that:

$$
\begin{aligned}
\left|L\left(X^{i}\right)\right| & =\sum_{p \in X}\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right| \\
& =\sum_{p \in X}\left|L\left(p^{i}\right)\right| \frac{\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\left|L\left(p^{i}\right)\right|}
\end{aligned}
$$

So we will use the following approximation:

$$
=\sum_{p \in X} \quad \frac{\left|\quad \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\mid}
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|L\left(X^{i}\right)\right|$

We have that:

$$
\begin{aligned}
\left|L\left(X^{i}\right)\right| & =\sum_{p \in X}\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right| \\
& =\sum_{p \in X}\left|L\left(p^{i}\right)\right| \frac{\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\left|L\left(p^{i}\right)\right|}
\end{aligned}
$$

So we will use the following approximation:

$$
=\sum_{p \in X} N\left(p^{i}\right) \frac{\left|\quad \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\mid}
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|L\left(X^{i}\right)\right|$

We have that:

$$
\begin{aligned}
\left|L\left(X^{i}\right)\right| & =\sum_{p \in X}\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right| \\
& =\sum_{p \in X}\left|L\left(p^{i}\right)\right| \frac{\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\left|L\left(p^{i}\right)\right|}
\end{aligned}
$$

So we will use the following approximation:

$$
N\left(X^{i}\right)=\sum_{p \in X} N\left(p^{i}\right) \frac{\left|S\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\left|S\left(p^{i}\right)\right|}
$$

Computing an estimation $N\left(X^{i}\right)$ of $\left|L\left(X^{i}\right)\right|$

$N\left(X^{i}\right)$ can be computed in polynomial time in the size of Sketch $[i]$

- $S\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)$ is constructed by checking for each $w \in S\left(p^{i}\right)$ whether w is not in $L\left(q^{i}\right)$ for every $q \in$ X with $q<p$

What guarantees that $N\left(X^{i}\right)$ is a good estimation of $\mid L\left(X^{i}\right)$?

An invariant to be mantained

$\mathcal{E}(i)$ holds if for every $p \in Q$ and $X \subseteq Q$:

$$
\left|\frac{\left|L\left(p^{i}\right) \backslash \bigcup_{q \in X} L\left(q^{i}\right)\right|}{\left|L\left(p^{i}\right)\right|}-\frac{\left|S\left(p^{i}\right) \backslash \bigcup_{q \in X} L\left(q^{i}\right)\right|}{\left|S\left(p^{i}\right)\right|}\right|<\frac{1}{\kappa^{3}}
$$

The use of the main

property

3. For each $i \in\{0, \ldots, n-1\}$ and state $q \in Q$:
3.1. Compute $N\left(q_{i+1}\right)$ given $\operatorname{Sketch}[i]$
3.2. Sample polynomially many uniform elements from $L\left(q^{i+1}\right)$ using $N\left(q^{i+1}\right)$ and Sketch $[i]$, and let $S\left(q^{i+1}\right)$ be the multiset of uniform samples obtained

Lemma: If $\mathcal{E}(i)$ holds and $N\left(p^{i}\right)$ is a $(1 \pm \kappa)^{i}$ approximation of $\left|L\left(p^{i}\right)\right|$ for every $p \in Q$, then $N\left(X^{i}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{i+1}$-approximation of $\left|L\left(X^{i}\right)\right|$ for every $X \subseteq Q$

The use of the main property

$\mathcal{E}(0)$ holds and $N\left(p^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{0}$-approximation of $\left|L\left(p^{0}\right)\right|$ for every $p \in Q$

- Recall that $N\left(p^{0}\right)=\left|L\left(p^{0}\right)\right|$ and $S\left(p^{0}\right)=L\left(p^{0}\right)$ for every $p \in Q$

Then $N\left(X^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)$-approximation of $\left|L\left(X^{0}\right)\right|$ for every $X \subseteq Q$

- We want to use the values $N\left(X^{0}\right)$ to estimate the values $N\left(p^{1}\right)$

The use of the main property

For $p \in Q$, define:

$$
\begin{aligned}
& Y=\left\{q^{0} \mid\left(q^{0}, 0, p^{1}\right) \text { is a transition in } A_{\text {unroll }}\right\} \\
& Z=\left\{q^{0} \mid\left(q^{0}, 1, p^{1}\right) \text { is a transition in } A_{\text {unroll }}\right\}
\end{aligned}
$$

Then $L\left(p^{1}\right)=L(Y) \cdot\{0\} \uplus L(Z) \cdot\{1\}$

- So that $\left|L\left(p^{1}\right)\right|=|L(Y)|+|L(Z)|$

The use of the main property

For $p \in Q$, define:

$$
\begin{aligned}
& Y=\left\{q^{0} \mid\left(q^{0}, 0, p^{1}\right) \text { is a transition in } A_{\text {unroll }}\right\} \\
& Z=\left\{q^{0} \mid\left(q^{0}, 1, p^{1}\right) \text { is a transition in } A_{\text {unroll }}\right\}
\end{aligned}
$$

Then given that $N(Y)$ is a $\left(1 \pm \kappa^{-2}\right)$-approximation of $|L(Y)|$ and $N(Z)$ is a $\left(1 \pm \kappa^{-2}\right)$-approximation of $|L(Z)|$:

$$
\begin{gathered}
N(Y)+N(Z) \text { is a }\left(1 \pm \kappa^{-2}\right) \text {-approximation of } \\
N\left(p^{1}\right)=|L(Y)|+|L(Z)|
\end{gathered}
$$

Main property: a summary

$\mathcal{E}(0)$ holds and $N\left(p^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{0}$-approximation of $\left|L\left(p^{0}\right)\right|$ for every $p \in Q$

$$
\sqrt{ }
$$

$N\left(X^{0}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $\left|L\left(X^{0}\right)\right|$ for every $X \subseteq Q$

$$
\Downarrow
$$

$N\left(p^{1}\right)=N\left(R_{0}\left(p^{1}\right)\right)+N\left(R_{1}\left(p^{1}\right)\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $L\left(p^{1}\right)$ for every $p \in Q$
where $R_{b}\left(p^{1}\right)=\left\{q^{0} \mid\left(q^{0}, b, p^{1}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$

Main property: a summary

$$
\begin{aligned}
& N\left(p^{1}\right) \text { is a }\left(1 \pm \kappa^{-2}\right)^{1} \text {-approximation of }|L(p 1)| \text { for } \\
& \quad \text { every } p \in Q
\end{aligned}
$$

Main property: a summary

$\mathcal{E}(1)$ holds and $N\left(p^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{1}$-approximation of $|L(p 1)|$ for every $p \in Q$

$$
\Downarrow
$$

$N\left(X^{1}\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{2}$-approximation of $\left|L\left(X^{1}\right)\right|$ for every $X \subseteq Q$

$$
\Downarrow
$$

$N\left(p^{2}\right)=N\left(R_{0}\left(p^{2}\right)\right)+N\left(R_{1}\left(p^{2}\right)\right)$ is a $\left(1 \pm \kappa^{-2}\right)^{2}$-approximation of $L\left(p^{2}\right)$ for every $p \in Q$
where $R_{b}\left(p^{2}\right)=\left\{q^{1} \mid\left(q^{1}, b, p^{2}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$

The final result

Proposition: If $\mathcal{E}(i)$ holds for every $i \in\{0,1, \ldots, n\}$, then $N\left(F^{n}\right)$ is a $(1 \pm \varepsilon)$-approximation of $\left|L\left(F^{n}\right)\right|$

How can we maintain property $\mathcal{E}(i)$?

Sampling from a state

We need to construct the multiset $S\left(q^{i+1}\right)$ of uniform samples

Recall that:

- $S\left(q^{i+1}\right)$ contains $2 \kappa^{7}$ words from $L\left(q^{i+1}\right)$
- $S\left(q^{i+1}\right)$ is computed assuming that $N\left(q^{i+1}\right)$ and Sketch $[i]=\left\{N\left(q^{j}\right), S\left(q^{j}\right) \mid 0 \leq j \leq i\right\}$ have already been constructed

To recall

1. Construct $A_{\text {unroll }}$ from A
2. For each state $q \in I$, set $N\left(q^{0}\right)=\left|L\left(q^{0}\right)\right|=1$ and $S\left(q^{0}\right)=L\left(q^{0}\right)=\{\lambda\}$
3. For each $i \in\{0, \ldots, n-1\}$ and state $q \in Q$:
3.1. Compute $N\left(q_{i+1}\right)$ given $\operatorname{Sketch}[i]$
3.2. Sample polynomially many uniform elements from $L\left(q^{i+1}\right)$ using $N\left(q^{i+1}\right)$ and Sketch $[i]$, and let $S\left(q^{i+1}\right)$ be the multiset of uniform samples obtained
4. Return an estimation of $\left|L\left(F^{n}\right)\right|$ given Sketch[n]

Sampling from q^{i+1}

To generate a sample in $L\left(q^{i+1}\right)$, we construct a sequence of words $w^{i+1}, w^{i}, \ldots, w^{1}, w^{0}$ such that

- $w^{i+1}=\lambda$
- $w^{j}=b^{j} w^{j+1}$ with $b^{j} \in\{0,1\}$
- $w^{0} \in L\left(q^{i+1}\right)$

To choose $w^{i}=b w^{i+1}$, construct for $b=0,1$:

$$
P_{b}=\left\{p^{i} \mid\left(p^{i}, b, q^{i+1}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

Sampling from q^{i+1}

P_{0} and P_{1} are sets of states at layer i

Sampling from q^{i+1}

P_{0} and P_{1} are sets of states at layer i

We compute $N\left(P_{0}\right)$ and $N\left(P_{1}\right)$ as follows:

$$
N\left(X^{i}\right)=\sum_{p \in X} N\left(p^{i}\right) \frac{\left|S\left(p^{i}\right) \backslash \bigcup_{q \in X: q<p} L\left(q^{i}\right)\right|}{\left|S\left(p^{i}\right)\right|}
$$

We choose $b \in\{0,1\}$ with probability:

$$
\frac{N\left(P_{b}\right)}{N\left(P_{0}\right)+N\left(P_{1}\right)}
$$

We could have started from a set of states

Previous procedure works for every set of states P^{i+1} :

$$
P_{b}=\left\{p^{i} \mid \exists r^{i+1} \in P^{i+1}:\left(p^{i}, b, r^{i+1}\right) \text { is a transition in } A_{\text {unroll }}\right\}
$$

In particular, we applied the procedure for $P^{i+1}=\left\{q^{i+1}\right\}$

The sampling algorithm

1. $\mathrm{prob}=\varphi_{0}$
2. $P^{i+1}=\left\{q^{i+1}\right\}$
3. for $j=i+1$ to 1 do
3.1. $P_{j, 0}=\left\{p^{j-1} \mid \exists r^{j} \in P^{j}:\left(p^{j-1}, 0, p^{j}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$
3.2. $P_{j, 1}=\left\{p^{j-1} \mid \exists r^{j} \in P^{j}:\left(p^{j-1}, 1, p^{j}\right)\right.$ is a transition in $\left.A_{\text {unroll }}\right\}$
3.3. Generate $b \in R_{i} \in\{0,1\}$ with probability $\frac{N\left(P_{j, b}\right)}{N\left(P_{b, 0}\right)+N\left(P_{b, 1}\right)}$
3.4. $w^{j-1}=b w^{j}$
3.5. $P^{j-1}=P_{j, b}$
3.6. \quad prob $=$ prop.

4. return w^{0}

As before ...

Let $x=x_{1} \cdots x_{i+1}$ be a word in $L\left(q^{i+1}\right)$
$\operatorname{Pr}($ the output of the procedure is $x)$
$=\operatorname{Pr}\left(w^{0}=x \wedge\right.$ the procedure does not reject $)$
$=\operatorname{Pr}\left(\right.$ the procedure does not reject $\left.\mid w^{0}=x\right) \operatorname{Pr}\left(w^{0}=x\right)$
$=\left(\prod_{j=1}^{i+1} \frac{N\left(P_{j, x_{j}}\right)}{N\left(P_{j, 0}\right) \varphi+N\left(P_{j, 1}\right)}\right)^{-1} \cdot \varphi_{0} \cdot\left(\prod_{j=1}^{i+1} \frac{N\left(P_{j, x_{j}}\right)}{N\left(P_{j, 0}\right)+N\left(P_{j, 1}\right)}\right)$
$=\varphi_{0}$

The value of the initial probability φ_{0}

Lemma: Assume that $\mathcal{E}(j)$ holds for each $j<i+1$. If $\varphi_{0}=\frac{e^{-5}}{N\left(q^{+1}\right)}$, then

- $\operatorname{prob} \leq 1$ in each step in the loop
- $\operatorname{Pr}($ procedure rejects $) \leq 1-e^{-9}$
- $\operatorname{Pr}\left(w^{0}=x\right)=\frac{e^{-5}}{N\left(q^{i+1}\right)}$ for every $x \in L\left(q^{i+1}\right)$

Bounding the probability of breaking the main assumption

Recall that $\mathcal{E}(i)$ holds if for every $q \in Q$ and $P \subseteq Q$:

$$
\left|\frac{\left|L\left(q^{i}\right) \backslash \bigcup_{p \in P} L\left(p^{i}\right)\right|}{\left|L\left(q^{i}\right)\right|}-\frac{\left|S\left(q^{i}\right) \backslash \bigcup_{p \in P} L\left(p^{i}\right)\right|}{\left|S\left(q^{i}\right)\right|}\right|<\frac{1}{\kappa^{3}}
$$

Bounding the probability of breaking the main assumption

By using Hoeffding's inequality, it is possible to obtain that:

$$
\operatorname{Pr}(\mathcal{E}(0) \wedge \cdots \wedge \mathcal{E}(n)) \leq 1-e^{-\kappa}
$$

The complete algorithm: final comments [ACJR21a]

Putting all together, we obtain that the probability that the algorithm returns a wrong estimate is at most $\frac{1}{4}$

The algorithm runs in time $\operatorname{poly}\left(m, n, \frac{1}{\varepsilon}\right)$

Back to conjunctive queries

The ideas used for the case of NFA can be extended to the case of TA

Theorem [ACJR21b]: \#TA admits an FPRAS

Theorem [ACJR21b]: The problem of counting the number of answers to an acyclic conjunctive query admits an FPRAS

- The same holds for each class of conjunctive queries with bounded hypertree width

Research questions

- Development of a general theory for estimation in query optimization [HYPM19]
- Which estimator should be used given a budget? What is an appropriate notion of budget? What are optimal estimators?
- Understand for which relational algebra operators and aggregates it is posible to develop sampling techniques with (strong) guarantees
- Develop (very) efficient algorithms to compute these estimators
- Understand the complexity of computing such estimators (fine-grained complexity)
- Understand for which relational algebra operators and aggregates it is not posible to develop sampling techniques with (strong) guarantees
- What can of guarantees can be provided in these cases?
- Could sample techniques be used for some fundamental tasks for K-relations? For first-order logic with semiring semantics?
- Does \#CFG admits an FPRAS?

Thanks!

Bibliography

[ACJR21a] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros. \#NFA Admits an FPRAS: Efficient Enumeration, Counting, and Uniform Generation for Logspace Classes. J. ACM 68(6): 48:1-48:40, 2021
[ACJR21b] M. Arenas, L. A. Croquevielle, R. Jayaram, C. Riveros. When is approximate counting for conjunctive queries tractable? STOC 2021: 1015-1027
[CMN99] S. Chaudhuri, R. Motwani, V. R. Narasayya. On Random Sampling over Joins. SIGMOD Conference 1999: 263-274
[CGHJ12] G. Cormode, M. N. Garofalakis, P. J. Haas, C. Jermaine. Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Found. Trends Databases 4(1-3):1-294, 2012.
[HH99] P. J. Haas, J. M. Hellerstein. Ripple Joins for Online Aggregation. SIGMOD Conference 1999: 287-298
[HHW97] J. M. Hellerstein, P. J. Haas, H. J. Wang. Online Aggregation. SIGMOD Conference 1997: 171-182

Bibliography

[HT52] D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement from a finite universe. Journal of the American statistical Association 47(260):663-685, 1952.
[HYPM19] D. Huang, D. Y. Yoon, S. Pettie, B. Mozafari. Join on Samples: A Theoretical Guide for Practitioners. Proc. VLDB Endow. 13(4): 547-560, 2019
[LWYZ16] F. Li, B. Wu, K. Yi, Z. Zhao. Wander Join: Online Aggregation for Joins. SIGMOD Conference 2016: 2121-2124
[093] F. Olken. Random Sampling from Databases. University of California at Berkeley, LBL Technical Report, 1993
[PS13] R. Pichler, S. Skritek. Tractable counting of the answers to conjunctive queries. J. Comput. Syst. Sci. 79(6):984-1001, 2013
[T12] S. K. Thompson. Sampling. John Wiley \& Sons, 2012.
[VMZC15] D. Vengerov, A. C. Menck, M. Zaït, S. Chakkappen. Join Size Estimation Subject to Filter Conditions. Proc. VLDB Endow. 8(12): 1530-1541, 2015.

Bibliography

[ZCLHY18] Z. Zhao, R. Christensen, F. Li, X. Hu, K. Yi. Random Sampling over Joins Revisited. SIGMOD Conference 2018, 1525-1539.
[HOT18] W.-C. Hou, G. Özsoyoglu, B. K. Taneja. Statistical Estimators for Relational Algebra Expressions. PODS 1988: 276-287

